1
|
Hicks MD, Ovaitt AK, Morrison DR, Fleming JC, Jeyarajan H, Greene B, Sorace AG, Patel J, Kasten BB, Hartman YE, Rosenthal EL, Warram JM, Thomas CM. Determination of Flap Survival Isolated From Wound Bed Vasculature Using a Murine Axial Flap Model. EAR, NOSE & THROAT JOURNAL 2023:1455613231183392. [PMID: 37365848 DOI: 10.1177/01455613231183392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Background: Axial pattern flaps are a common reconstructive option following resection of soft tissue malignancies. We determine the early dependence of an axial flap on wound bed vasculature by isolating the underlying wound bed and depriving contact with the overlying flap. Materials and Methods: Mice were divided into 5 groups: No silicone (n = 7), silicone in the proximal 50% of the wound bed (n = 8), silicone in the distal 50% of the wound bed (n = 5), silicone over the full length of the wound bed with pedicle preservation (n = 5), and silicone over the full length of the wound bed with pedicle sacrifice (n = 5). The pedicle was the lateral thoracic artery. Daily photographs were taken, and the percent of viable flap was determined using ImageJ© software (public domain JAVA image processing program, National Institute of Health, Bethesda, MA). Percent flap viability for each group was compared to the no silicone group, which acted as the reference. Results: Mean differences in percent flap necrotic area (with 95% confidence interval) compared to the no silicone group were -0.15% (-15.09 to 14.09), 2.07% (-5.26 to 9.39), 2.98% (-10.98 to 16.94), and 14.21% (0.48 to 27.94) for the full-length silicone with preserved pedicle, proximal silicone, distal silicone, and full-length silicone with sacrificed pedicle groups, respectively. The full-length silicone with sacrificed pedicle group had a significant difference in flap viability (P = .045) compared to the no silicone group. Conclusion: We investigate the role of the wound bed vasculature in a murine axial flap model and demonstrate that the wound bed vasculature is not essential for early distal flap survival.
Collapse
Affiliation(s)
- Melanie D Hicks
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alyssa K Ovaitt
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel R Morrison
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason C Fleming
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hari Jeyarajan
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin Greene
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juhi Patel
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin B Kasten
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda E Hartman
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Jason M Warram
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carissa M Thomas
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Chiu A, Jia W, Sun Y, Goldman J, Zhao F. Fibroblast-Generated Extracellular Matrix Guides Anastomosis during Wound Healing in an Engineered Lymphatic Skin Flap. Bioengineering (Basel) 2023; 10:bioengineering10020149. [PMID: 36829643 PMCID: PMC9952048 DOI: 10.3390/bioengineering10020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
A healthy lymphatic system is required to return excess interstitial fluid back to the venous circulation. However, up to 49% of breast cancer survivors eventually develop breast cancer-related lymphedema due to lymphatic injuries from lymph node dissections or biopsies performed to treat cancer. While early-stage lymphedema can be ameliorated by manual lymph drainage, no cure exists for late-stage lymphedema when lymph vessels become completely dysfunctional. A viable late-stage treatment is the autotransplantation of functional lymphatic vessels. Here we report on a novel engineered lymphatic flap that may eventually replace the skin flaps used in vascularized lymph vessel transfers. The engineered flap mimics the lymphatic and dermal compartments of the skin by guiding multi-layered tissue organization of mesenchymal stem cells and lymphatic endothelial cells with an aligned decellularized fibroblast matrix. The construct was tested in a novel bilayered wound healing model and implanted into athymic nude rats. The in vitro model demonstrated capillary invasion into the wound gaps and deposition of extracellular matrix fibers, which may guide anastomosis and vascular integration of the graft during wound healing. The construct successfully anastomosed in vivo, forming chimeric vessels of human and rat cells. Overall, our flap replacement has high potential for treating lymphedema.
Collapse
Affiliation(s)
- Alvis Chiu
- Stem Cell and Tissue Engineering Lab, Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Stem Cell and Tissue Engineering Lab, Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yumeng Sun
- Stem Cell and Tissue Engineering Lab, Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jeremy Goldman
- Vascular Materials Lab, Department of Biomedical Engineering, College of Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Feng Zhao
- Stem Cell and Tissue Engineering Lab, Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
3
|
Abdelhakim M, Dohi T, Yamato M, Takada H, Sakai A, Suzuki H, Ema M, Fukuhara S, Ogawa R. A New Model for Specific Visualization of Skin Graft Neoangiogenesis Using Flt1-tdsRed BAC Transgenic Mice. Plast Reconstr Surg 2021; 148:89-99. [PMID: 34014859 DOI: 10.1097/prs.0000000000008039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neovascularization plays a critical role in skin graft survival. Up to date, the lack of specificity to solely track the newly sprouting blood vessels has remained a limiting factor in skin graft transplantation models. Therefore, the authors developed a new model by using Flt1-tdsRed BAC transgenic mice. Flt1 is a vascular endothelial growth factor receptor expressed by sprouting endothelial cells mediating neoangiogenesis. The authors determined whether this model reliably visualizes neovascularization by quantifying tdsRed fluorescence in the graft over 14 days. METHODS Cross-transplantation of two full-thickness 1 × 1-cm dorsal skin grafts was performed between 6- to 8-week-old male Flt1 mice and KSN/Slc nude mice (n = 5). The percentage of graft area occupied by tdsRed fluorescence in the central and lateral areas of the graft on days 3, 5, 9, and 14 was determined using confocal-laser scanning microscopy. RESULTS Flt1+ endothelial cells migrating from the transgenic wound bed into the nude graft were first visible in the reticular dermis of the graft center on day 3 (0.5 ± 0.1; p < 0.05). Peak neovascularization was observed on day 9 in the lateral and central parts, increasing by 2- to 4-fold (4.6 ± 0.8 and 4.2 ± 0.9; p < 0.001). Notably, some limited neoangiogenesis was displayed within the Flt grafts on nude mice, particularly in the center. No neovascularization was observed from the wound margins. CONCLUSION The ability of the Flt1-tdsRed transgenic mouse model to efficiently identify the origin of the skin-graft vasculature and visualize graft neovascularization over time suggests its potential utility for developing techniques that promote graft neovascularization.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Teruyuki Dohi
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Mizuho Yamato
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hiroya Takada
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Atsushi Sakai
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hidenori Suzuki
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Masatsugu Ema
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Shigetomo Fukuhara
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Rei Ogawa
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| |
Collapse
|
4
|
Oda T, Kato H, Nakamura M, Morita A. Analysis of biomonitoring data after full-thickness skin grafting. J Dermatol 2021; 48:1035-1043. [PMID: 33811395 DOI: 10.1111/1346-8138.15873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Skin graft vascularization is investigated mainly by histological evaluation. Immunohistochemical analysis has been conducted only in mice. Transcutaneous oxygen tension (TcPO2 ), which is an index of blood flow, has not been evaluated in skin grafts and only a few studies have reported biologic monitoring data using color tone evaluation and surface temperature. In humans, these tests can be performed non-invasively. To evaluate human skin graft vascularization, we analyzed biomonitoring data after skin grafting. We evaluated 14 patients who underwent skin grafting surgery at Nagoya City University Hospital. The TcPO2 , color tone, surface temperature, and dermoscopic observations at recipient sites were measured at postoperative day (POD) 4, 6, and 11. Mean TcPO2 levels at POD4, 6, and 11 were 12.7, 15.2, and 33.5 mmHg, respectively, and significantly higher at POD11 than at POD4 (p = 0.003, Steel-Dwass test). Dermoscopic observation revealed gradually increasing redness and yellowness. Color tone evaluation measured by spectrophotometry supported the appearance. The a*(redness) value at POD4, 6, and 11 was 6.19, 9.20, and 11.27, respectively, and significantly higher at POD11 than at POD4 (p < 0.001, Steel-Dwass test). The b*(yellowness) value at POD4, 6, and 11 was 8.83, 9.24, and 13.02, respectively, and significantly higher at POD11 than at POD4 (p = 0.020, Steel-Dwass test). The surface temperature did not significantly differ between graft and control sites. These findings suggest that skin graft vascularization started by POD6 and stabilized by POD11. Because TcPO2 increases after POD4, skin grafts should remain undisturbed until at least POD11.
Collapse
Affiliation(s)
- Takao Oda
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Kong AM, Yap KK, Lim SY, Marre D, Pébay A, Gerrand YW, Lees JG, Palmer JA, Morrison WA, Mitchell GM. Bio-engineering a tissue flap utilizing a porous scaffold incorporating a human induced pluripotent stem cell-derived endothelial cell capillary network connected to a vascular pedicle. Acta Biomater 2019; 94:281-294. [PMID: 31152943 DOI: 10.1016/j.actbio.2019.05.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Tissue flaps are used to cover large/poorly healing wounds, but involve complex surgery and donor site morbidity. In this study a tissue flap is assembled using the mammalian body as a bioreactor to functionally connect an artery and vein to a human capillary network assembled from induced pluripotent stem cell-derived endothelial cells (hiPSC ECs). In vitro: Porous NovoSorb™ scaffolds (3 mm × 1.35 mm) were seeded with 200,000 hiPSC ECs ± 100,000 human vascular smooth muscle cells (hvSMC), and cultured for 1-3 days, with capillaries formed by 24 h which were CD31+, VE-Cadherin+, EphB4+, VEGFR2+ and Ki67+, whilst hvSMCs (calponin+) attached abluminally. In vivo: In SCID mice, bi-lateral epigastric vascular pedicles were isolated in a silicone chamber for a 3 week 'delay period' for pedicle capillary sprouting, then reopened, and two hiPSC EC ± hvSMCs seeded scaffolds transplanted over the pedicle. The chamber was either resealed (Group 1), or removed and surrounding tissue secured around the pedicle + scaffolds (Group 2), for 1 or 2 weeks. Human capillaries survived in vivo and were CD31+, VE-Cadherin+ and VEGFR2+. Human vSMCs remained attached, and host mesenchymal cells also attached abluminally. Systemically injected FITC-dextran present in human capillary lumens indicated inosculation to host capillaries. Human iPSC EC capillary morphometric parameters at one week in vivo were equal to or higher than the same parameters measured in human abdominal skin. This 'proof of concept' study has demonstrated that bio-engineering an autologous human tissue flap based on hiPSC EC could minimize the use of donor flaps and has potential applications for complex wound coverage. STATEMENT OF SIGNIFICANCE: Tissue flaps, used for surgical reconstruction of wounds, require complex surgery, often associated with morbidity. Bio-engineering a simpler alternative, we assembled a human induced pluripotent stem cell derived endothelial cell (hiPSC ECs) capillary network in a porous scaffold in vitro, which when transplanted over a mouse vascular pedicle in vivo formed a functional tissue flap with mouse blood flow in the human capillaries. Therefore it is feasible to form an autologous tissue flap derived from a hiPSC EC capillary network assembled in vitro, and functionally connect to a vascular pedicle in vivo that could be utilized in complex wound repair for chronic or acute wounds.
Collapse
Affiliation(s)
- Anne M Kong
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Kiryu K Yap
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Department of Plastic and Reconstructive Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Shiang Y Lim
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia
| | - Diego Marre
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Alice Pébay
- Department of Surgery, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Yi-Wen Gerrand
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Jarmon G Lees
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Jason A Palmer
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia
| | - Wayne A Morrison
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Faculty of Health Sciences, Australian Catholic University, Fitzroy, Melbourne, Australia; Department of Plastic and Reconstructive Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Geraldine M Mitchell
- O'Brien Institute Dept. of St Vincent's Institute, Melbourne, Australia; Univ. of Melbourne, Dept. of Surgery at St Vincent's Hospital, Melbourne, Australia; Faculty of Health Sciences, Australian Catholic University, Fitzroy, Melbourne, Australia.
| |
Collapse
|
6
|
Wong R, Donno R, Leon-Valdivieso CY, Roostalu U, Derby B, Tirelli N, Wong JK. Angiogenesis and tissue formation driven by an arteriovenous loop in the mouse. Sci Rep 2019; 9:10478. [PMID: 31324837 PMCID: PMC6642172 DOI: 10.1038/s41598-019-46571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and maintaining the newly formed vascular beds has become a major goal of tissue engineering. The arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger animal models, which are surgically easier to perform, but have inherent limits for the understanding and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production of vascularized tissue. We also present the combined use of the model with 3D printed chambers, which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an understanding of the fundamental mechanisms involved in tissue generation de novo.
Collapse
Affiliation(s)
- Richard Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Christopher Y Leon-Valdivieso
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Urmas Roostalu
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.,Gubra, Horsholm, Denmark
| | - Brian Derby
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.,Division of Pharmacy & Optometry, School of Health Science, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jason K Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK. .,Department of Burns and Plastic Surgery, Manchester University Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT, UK.
| |
Collapse
|
7
|
Schlottmann F, Strauss S, Hake K, Vogt PM, Bucan V. Down-Regulation of MHC Class I Expression in Human Keratinocytes Using Viral Vectors Containing US11 Gene of Human Cytomegalovirus and Cultivation on Bovine Collagen-Elastin Matrix (Matriderm ®): Potential Approach for an Immune-Privileged Skin Substitute. Int J Mol Sci 2019; 20:E2056. [PMID: 31027326 PMCID: PMC6540026 DOI: 10.3390/ijms20092056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Skin transplantation, especially in burn patients, is still challenging because surgeons are faced with limited disposability of autologous donor side material. The in vitro culture of keratinocytes has become an important reconstructive option. However, only non-immunogenic allogenic keratinocytes offer the opportunity to develop a skin graft that can overcome rejection. The purpose of the study was to develop targeted gene modification of keratinocytes in order to reduce immunogenicity for the use as allogenic transplantable skin graft by decreasing the expression of MHC class I. To reduce MHC class I expression, viral vectors containing the US11 gene of human cytomegalovirus were generated and tested on their functionality using Western blotting, indirect immunofluorescence staining, and flow cytometry. Transfected keratinocytes were seeded on commercially available bovine collagen-elastin matrices and further cultured for histological and cell survival assays. Results showed transient down-regulation of MHC class I after 24 h post-transfection, with recovery of MHC class I expression after 48 h. Histological assessments showed long-term cell survival as well as histological patterns comparable to epidermal layers of healthy human skin. The data postulates the potential application of US11 transfected keratinocytes as an approach towards an immune-privileged skin substitute. Nevertheless, further studies and data are needed.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Kevin Hake
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Ring A, Goertz O, Al-Benna S, Ottomann C, Langer S, Steinstraesser L, Schmitz I, Tilkorn D. Accelerated Angiogenic Induction and Vascular Integration in a Novel Synthetic Scaffolding Matrix for Tissue Replacement. Int J Artif Organs 2018. [DOI: 10.1177/039139881003301206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Reduced or delayed neovascularization is a major obstacle with regard to tissue-engineered constructs. The aim of this study was to evaluate the early microvascular response to a novel degradable ε-caprolactone terpolymer matrix. Methods ε-caprolactone terpolymer matrices (Suprathel Plus®; Institute of Textile and Process Engineering, Denkendorf, Germany) were implanted into dorsal skinfold chambers of balb/c mice (n=10). Microcirculatory changes were observed by intravital fluorescence microscopy. Scaffolding matrices from PEGT/PBT copolymer were used as controls (n=10). Results The formation of de novo vascular networks within both scaffolding matrices was noted throughout the experiment. A vascular ingrowth of perfused microvessels into the matrices up to 600 μm apart from the edge was noted within 10 days of implantation. The earliest signs of neoangiogenesis were visible in ε-caprolactone terpolymer matrices on day 1. In both scaffolds the new developed vessels extended centripetally from the border of the matrices towards the center and anastomosed to form a perfused microvascular network. There was significantly earlier onset of vascularization, increased vascularized area and higher vessel density in ε-caprolactone terpolymer matrices compared to PEGT/PBT copolymer matrices were observed. Conclusions The scaffolding matrix from ε-caprolactone terpolymer allowed for an earlier and more intense induction of angiogenesis and displayed the tendency to vascularize more rapidly within a shorter period of time after transplantation compared to PEGT/PBT copolymer scaffolds, thus indicating its potential application for tissue engineering purposes.
Collapse
Affiliation(s)
- Andrej Ring
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| | - Ole Goertz
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| | - Sammy Al-Benna
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| | - Christian Ottomann
- Section for Plastic Surgery, University Hospital Campus Lübeck, Schleswig-Holstein University, Lübeck - Germany
| | - Stefan Langer
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| | - Lars Steinstraesser
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| | - Inge Schmitz
- Institute of Pathology, Ruhr University Bochum, Bochum - Germany
| | - Daniel Tilkorn
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum - Germany
| |
Collapse
|
9
|
Greaves NS, Morris J, Benatar B, Alonso-Rasgado T, Baguneid M, Bayat A. Acute cutaneous wounds treated with human decellularised dermis show enhanced angiogenesis during healing. PLoS One 2015; 10:e0113209. [PMID: 25602294 PMCID: PMC4300088 DOI: 10.1371/journal.pone.0113209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The influence of skin substitutes upon angiogenesis during wound healing is unclear. OBJECTIVES To compare the angiogenic response in acute cutaneous human wounds treated with autogenic, allogenic and xenogenic skin substitutes to those left to heal by secondary intention. METHODS On day 0, four 5mm full-thickness punch biopsies were harvested from fifty healthy volunteers (sites 1-4). In all cases, site 1 healed by secondary intention (control), site 2 was treated with collagen-GAG scaffold (CG), cadaveric decellularised dermis (DCD) was applied to site 3, whilst excised tissue was re-inserted into site 4 (autograft). Depending on study group allocation, healing tissue from sites 1-4 was excised on day 7, 14, 21 or 28. All specimens were bisected, with half used in histological and immunohistochemical evaluation whilst extracted RNA from the remainder enabled whole genome microarrays and qRT-PCR of highlighted angiogenesis-related genes. All wounds were serially imaged over 6 weeks using laser-doppler imaging and spectrophotometric intracutaneous analysis. RESULTS Inherent structural differences between skin substitutes influenced the distribution and organisation of capillary networks within regenerating dermis. Haemoglobin flux (p = 0.0035), oxyhaemoglobin concentration (p = 0.0005), and vessel number derived from CD31-based immunohistochemistry (p = 0.046) were significantly greater in DCD wounds at later time points. This correlated with time-matched increases in mRNA expression of membrane-type 6 matrix metalloproteinase (MT6-MMP) (p = 0.021) and prokineticin 2 (PROK2) (p = 0.004). CONCLUSION Corroborating evidence from invasive and non-invasive modalities demonstrated that treatment with DCD resulted in increased angiogenesis after wounding. Significantly elevated mRNA expression of pro-angiogenic PROK2 and extracellular matrix protease MT6-MMP seen only in the DCD group may contribute to observed responses.
Collapse
Affiliation(s)
- Nicholas S. Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, Lancashire, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Julie Morris
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Brian Benatar
- Department of Histopatholgy, Pennine Acute Hospitals NHS Trust, Royal Oldham Hospital, Rochdale Road, Oldham, Lancashire, United Kingdom
| | - Teresa Alonso-Rasgado
- School of Materials, University of Manchester, Manchester, Lancashire, United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, Lancashire, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, Lancashire, United Kingdom
- Centre for Dermatology, Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
10
|
van Wingerden JJ, Lapid O, van der Horst CMAM. Bridging phenomenon - Simplifying complex ear reconstructions. Head Neck 2013; 36:735-8. [PMID: 23970464 DOI: 10.1002/hed.23458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/13/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Extirpation of noninvasive skin tumors of the anterior ear may create large defects. Various flaps, described to cover these defects, demand special knowledge without which a loss of the fine detail of the ear may result. METHODS Healthy, exposed cartilage is deliberately excised leaving a basic framework for support, thus preserving contours and a well-vascularized recipient bed for full-thickness skin grafting. The grafts heal by revascularization and "bridging," a phenomenon whereby grafts on avascular beds (such as denuded cartilage) are revascularized. RESULTS By marrying clinical experience gained during microtia reconstruction with insights regarding the bridging phenomenon derived from the laboratory, our 17 reconstructed ears healed without serious complications and kept their normal contours and shape, and there was no recurrence of the carcinoma. CONCLUSION Satisfactory patient-centered outcome can be obtained in reconstructing defects of one-third to two-thirds of the total anterior surface of the ear relying on the bridging phenomenon.
Collapse
Affiliation(s)
- Jan J van Wingerden
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Kamel RA, Ong JF, Eriksson E, Junker JPE, Caterson EJ. Tissue engineering of skin. J Am Coll Surg 2013; 217:533-55. [PMID: 23816384 DOI: 10.1016/j.jamcollsurg.2013.03.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022]
Affiliation(s)
- Rami A Kamel
- Division of Plastic Surgery, Brigham and Women's Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Combination of a 3-D scaffold with the emerging RNA interference (RNAi) technique represents the latest paradigm of regenerative medicine. In our recent paper "RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring" in the journal Biomaterial, we not only demonstrated a 3-D system for siRNA sustained delivery, but also presented a comprehensive in vivo study by targeting a vital problem in skin regeneration: scarring. It is expected that further development of this kind of RNAi functionalized scaffold can provide a better platform for directing cell fates by integrating the "down-regulating" biomolecular cues into the cellular microenvironment, leading to the complete functional regeneration of skin.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P.R. China
| | | | | |
Collapse
|
13
|
Knapik A, Hegland N, Calcagni M, Althaus M, Vollmar B, Giovanoli P, Lindenblatt N. Metalloproteinases facilitate connection of wound bed vessels to pre-existing skin graft vasculature. Microvasc Res 2012; 84:16-23. [PMID: 22521453 DOI: 10.1016/j.mvr.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/16/2012] [Accepted: 04/02/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite advances in tissue engineering of human skin, the exact revascularization processes remain unclear. Therefore it was the aim of this study to investigate the vascular transformations during engraftment and to identify associated proteolytic factors. METHODS The modified dorsal skinfold chamber with autologous skin grafting was prepared in C57BL/6J mice, and intravital microscopy was performed. The expression of proteases and vascular factors was quantified by immunohistochemistry. RESULTS Reperfusion of the skin graft after 72hours was followed by a temporary angiogenic response of the graft vessels. Wound bed bud formation appeared after 24 to 48hours representing starting points for capillary sprouting. In the reperfused skin graft larger buds developed over several days without transformation into angiogenic sprouts; instead pruning took place. MT1-MMP was detected at sprout tips of in-growing vessels. MMP-2 expression was located at the wound bed/graft connection sites. Pericytes were found to withdraw from the angiogenic vessel in order to facilitate sprouting. CONCLUSIONS Skin graft vasculature responded with temporary angiogenesis to reperfusion, which was pruned after several days and exhibited a different morphology than regular sprouting angiogenesis present within the wound bed. Furthermore we identified MT1-MMP as sprout-tip located protease indicating its potential role as sprout growth facilitator as well as potentially in lysing the existing graft capillaries in order to connect to them. The differences between the wound bed and skin graft angiogenesis may represent a relevant insight into the processes of vascular pruning and may help in the engineering of skin substitutes.
Collapse
Affiliation(s)
- Alicia Knapik
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
14
|
Calcagni M, Althaus MK, Knapik AD, Hegland N, Contaldo C, Giovanoli P, Lindenblatt N. In vivo visualization of the origination of skin graft vasculature in a wild-type/GFP crossover model. Microvasc Res 2011; 82:237-45. [PMID: 21784083 DOI: 10.1016/j.mvr.2011.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Skin substitutes are increasingly produced in tissue engineering, but still the understanding of the physiological skin revascularization process is lacking. To study in vivo conditions we recently introduced a mouse model, in which we already characterized the angiogenic changes within the wound bed and the skin graft. The aim of this study was to identify the origination of the vasculature during skin graft revascularization in vivo and to track vessel development over time. METHODS We created a crossover wild-type/GFP skin transplantation model, in which each animal carried the graft from the other strain. The preparation of the modified dorsal skin fold chamber including cross-over skin grafting was performed in male C57BL/6J wild-type mice (n=5) and C57BL/6-Tg(ACTB-EGFP)1O sb/J mice (n=5). Intravital microscopy in 12 areas of wild-type and GFP skin grafts was performed daily over a time period of 10 days. RESULTS Graft reperfusion started after 48-72 h. After reperfusion GFP-positive structures from the wound bed were visible in the graft capillaries with the highest density in the center of the graft. Overall, we observed a replacement of existing graft capillaries with vessels from the wound bed in 68% of the vessels. Of note, vessel replacement occurred in almost 100% of graft vessels in the periphery. Additionally, vessels within the graft showed a temporary angiogenic response between days 3-8, which originated predominantly from the autochthonous graft vasculature, but also contained already grown-in vessels from the wound bed. CONCLUSIONS These in vivo data indicate an early in-growth of angiogenic bed vessels into the existing vascular channels of the graft and subsequent centripetal replacement. Additionally we observed a temporary angiogenic response of the autochthonous capillaries of the skin graft with contribution from bed vessels. These findings further support the theory that sprouting angiogenesis from the wound bed in combination with the replacement of existing graft vessels are the key factors in skin graft taking. Thus, manufacturing of skin substitutes should be aimed at providing pre-formed vascular channels within the construct to improve vascularization.
Collapse
Affiliation(s)
- Maurizio Calcagni
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Temporary Angiogenic Transformation of the Skin Graft Vasculature after Reperfusion. Plast Reconstr Surg 2010; 126:61-70. [DOI: 10.1097/prs.0b013e3181da87f6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Laschke MW, Vollmar B, Menger MD. Inosculation: connecting the life-sustaining pipelines. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:455-65. [PMID: 19552605 DOI: 10.1089/ten.teb.2009.0252] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent progress in engineering microvascular networks in vitro and in vivo offers exciting opportunities to create tissue constructs with preformed blood vessels, which are rapidly blood perfused by developing interconnections to the preexisting blood vessels of the host tissue after implantation. This process, termed as inosculation, is well known from the revascularization of various tissue grafts, such as transplanted skin, nerves, or bone. It is characterized by the close interaction of the implant's preformed microvascular network and the host microvasculature. The sprouting angiogenic activity of both counterparts determines whether inosculation takes place internally within the implant or externally within the surrounding host tissue. Successful inosculation involves vascular remodeling as well as infiltration of inflammatory cells and stem cells. With the use of sophisticated in vitro and in vivo models, more detailed analysis of regulatory mechanisms of inosculation will help to develop novel strategies, aiming at further accelerating the establishment of a life-sustaining blood supply to implanted tissue constructs.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland , Homburg/Saar, Germany.
| | | | | |
Collapse
|
17
|
Ring A, Langer S, Schaffran A, Stricker I, Awakowicz P, Steinau HU, Hauser J. Enhanced neovascularization of dermis substitutes via low-pressure plasma-mediated surface activation. Burns 2010; 36:1222-7. [PMID: 20510519 DOI: 10.1016/j.burns.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 01/07/2023]
Abstract
PURPOSE The effect of cold low-pressure plasma treatment on neovascularization of a dermis substitute was evaluated in a mouse model. MATERIAL AND METHODS Collagen-elastin matrices (Matriderm(®)) were used as scaffolds. Low-pressure argon/hydrogene plasma-treated scaffolds were transplanted into the dorsal skinfold chambers of balb/c mice (group 1, n=10). Untreated scaffolds served as controls (group 2, n=10). Intravital fluorescence microscopy was performed within the border zone of the scaffolds on days 1, 5 and 10. Functional vessel density (FVD), vessel diameter, intervascular distance, microvascular permeability, and leukocyte-endothelium interaction were analyzed. RESULTS An increase of FVD associated with a reduction of the intervascular distance was observed. Statistical analysis revealed that the functional vessel density in the border zone of the scaffolds was significantly enhanced in the plasma-treated group compared to controls. For group 1, an increase of FVD from 282±8 cm/cm(2) on days 5 to 315±8 cm/cm(2) on day 10 was observed. Whereas values of 254±7 cm/cm(2) on day 5 and 275±13 cm/cm(2) on day 10 have resulted in group 2 (mean±S.E.M., Student's t-test, p<0.05). CONCLUSION The surface treatment by cold low-pressure plasma intensifies the angiogenesis and accelerates the neovascularization of collagen-elastin matrix.
Collapse
Affiliation(s)
- Andrej Ring
- Department of Plastic and Hand Surgery, Burn Center, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Angiogenesis, or the formation of new blood vessels from the preexisting vasculature, is a key component in numerous physiologic and pathologic responses and has broad impact in many medical and surgical specialties. In this review, we discuss the key cellular steps that lead to the neovascularization of tissues and highlight the main molecular mechanisms and mediators in this process. We include discussions on proteolytic enzymes, cell-matrix interactions, and pertinent cell signaling pathways and end with a survey of the mechanisms that lead to the stabilization and maturation of neovasculatures.
Collapse
|
19
|
van der Merwe EL, Kidson SH. Advances in imaging the blood and aqueous vessels of the ocular limbus. Exp Eye Res 2010; 91:118-26. [PMID: 20447395 DOI: 10.1016/j.exer.2010.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/16/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
The vessels of the limbus play a pivotal role in the drainage of the major portion of aqueous humour from the anterior chamber. Aberrations in the limbal architecture can lead to raised intraocular pressure, which in turn can lead to blinding conditions such as glaucoma. Imaging these vessels in the normal eye, in development, and in conditions where there is anterior segment dysgenesis remains a challenge. Here we review the progress in limbal vessel imaging in the past 50 years and provide key information on their strengths and limitations. Included is an analysis of serial histological sectioning, ultrathin sections, microvascular perfusion with plastics and corrosion casting, X-ray microcomputed tomography, in vivo imaging including analysis of transgenic mice expressing GFP-vascular endothelium fusion proteins, in vivo microscopy imaging using fluorescent-labelled antibodies, slit-lamp microscopy and gonioscopy, fluorescein angiography, optical coherence tomography, and various labelling procedures for the vascular endothelium and the various forms of microscopy used to view these.
Collapse
Affiliation(s)
- E L van der Merwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925 Cape Town, South Africa.
| | | |
Collapse
|
20
|
Dermal vascularity of the auricle: implications for novel composite grafts. J Plast Reconstr Aesthet Surg 2009; 62:1609-15. [DOI: 10.1016/j.bjps.2008.06.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 06/10/2008] [Indexed: 11/21/2022]
|
21
|
A new model for studying the revascularization of skin grafts in vivo: the role of angiogenesis. Plast Reconstr Surg 2009; 122:1669-1680. [PMID: 19050519 DOI: 10.1097/prs.0b013e31818cbeb1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Models of skin graft revascularization are based mostly on histologic evaluations but lack the possibility of analyzing the vascular biology in vivo. The aim of the present study was therefore to develop an animal model that allows continuous monitoring of the microcirculation during skin graft healing. METHODS Skin and subcutaneous tissue were removed from the back of dorsal skinfold chamber preparations in mice, leaving one layer of striated muscle and subcutaneous tissue as a wound bed (n = 5). A corresponding full-thickness skin graft was harvested from the groin and sutured into the defect in the back of the chamber. To study graft healing, repetitive intravital microscopy was performed during the first 10 days after engraftment. RESULTS Capillary widening in the wound bed appeared at day 1 after grafting and increased until day 4. Capillary buds and sprouts first appeared at day 2. Blood filling of autochthonous graft capillaries occurred at day 3, resulting in almost complete restoration of the original skin microcirculation on day 5. This was achieved by interconnections between the microvasculature of the wound bed and the skin graft through a temporary angiogenic response. In principle, angiogenic blood vessel growth originated in the wound bed and was directed toward the graft. CONCLUSIONS This new model allows for repetitive analysis of the microcirculation during skin graft healing. It provides ideal in vivo conditions to further delineate the exact mechanisms of blood vessel interconnection during the complex process of angiogenesis, and may also allow study of the vascularization of tissue-engineered skin substitutes.
Collapse
|
22
|
Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis 2008; 11:369-80. [DOI: 10.1007/s10456-008-9120-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/17/2008] [Indexed: 01/18/2023]
|
23
|
ANGIOGRAPHIC EVIDENCE FOR REVASCULARIZATION OF AN RPE-CHOROID GRAFT IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION. Retina 2008; 28:498-503. [DOI: 10.1097/iae.0b013e318159ec24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Babu AN, Murakawa T, Thurman JM, Miller EJ, Henson PM, Zamora MR, Voelkel NF, Nicolls MR. Microvascular destruction identifies murine allografts that cannot be rescued from airway fibrosis. J Clin Invest 2008; 117:3774-85. [PMID: 18060031 DOI: 10.1172/jci32311] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 09/12/2007] [Indexed: 11/17/2022] Open
Abstract
Small airway fibrosis (bronchiolitis obliterans syndrome) is the primary obstacle to long-term survival following lung transplantation. Here, we show the importance of functional microvasculature in the prevention of epithelial loss and fibrosis due to rejection and for the first time, relate allograft microvascular injury and loss of tissue perfusion to immunotherapy-resistant rejection. To explore the role of alloimmune rejection and airway ischemia in the development of fibroproliferation, we used a murine orthotopic tracheal transplant model. We determined that transplants were reperfused by connection of recipient vessels to donor vessels at the surgical anastomosis site. Microcirculation through the newly formed vascular anastomoses appeared partially dependent on VEGFR2 and CXCR2 pathways. In the absence of immunosuppression, the microvasculature in rejecting allografts exhibited vascular complement deposition, diminished endothelial CD31 expression, and absent perfusion prior to the onset of fibroproliferation. Rejecting grafts with extensive endothelial cell injury were refractory to immunotherapy. After early microvascular loss, neovascularization was eventually observed in the membranous trachea, indicating a reestablishment of graft perfusion in established fibrosis. One implication of this study is that bronchial artery revascularization at the time of lung transplantation may decrease the risk of subsequent airway fibrosis.
Collapse
Affiliation(s)
- Ashok N Babu
- Department of Surgery, University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The growth of new blood vessels may be either beneficial or harmful. The angiogenic process may be measured by a variety of techniques, although it may often be the quality rather than quantity of resulting blood vessels that determines function. Endothelial cells play a key role in the initiation of angiogenesis, and vascular endothelial growth factor (VEGF) may be viewed as a prototypical direct-acting angiogenic factor. VEGF acts through multiple cell surface receptors and signaling pathways to stimulate endothelial cell proliferation, survival, and migration. By inducing other growth factor expression, VEGF stimulates a cascade of angiogenic activity. Different tissues may utilize various angiogenic pathways that are modulated by diverse host tissue responses. Furthermore, a single tissue may progress through a sequence of angiogenic pathways, for example, as acute injury progresses to chronic inflammation. The phenotype of the resulting neovasculature is critically dependent on the context in which it is formed. Biomarkers of angiogenesis are being developed as an aid to assessing human disease. Histological assessment of vascular density and angiogenic factor expression, in vivo imaging, Doppler ultrasound, and biofluid assays each may have clinical utility. Therapeutic targeting of angiogenesis will depend both on the generation of acceptable pharmacological agents and on the identification of patients who may and do gain benefit from such treatments.
Collapse
Affiliation(s)
- David A Walsh
- Academic Rheumatology, University of Nottingham Clinical Sciences Building, Nottingham City Hospital, Nottingham NG5 1PB, United Kingdom
| |
Collapse
|
26
|
O'Ceallaigh S, Herrick SE, Bennett WR, Bluff JE, Ferguson MWJ, McGrouther DA. Perivascular cells in a skin graft are rapidly repopulated by host cells. J Plast Reconstr Aesthet Surg 2007; 60:864-75. [PMID: 17616363 DOI: 10.1016/j.bjps.2006.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 02/13/2006] [Accepted: 03/05/2006] [Indexed: 11/28/2022]
Abstract
Survival of grafted tissues is dependent upon revascularisation. This study investigated revascularisation in a murine skin graft model, using two methods. The first involved 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI) labelling of the wound bed, prior to replacing the skin graft, to allow tracking of host cells into the grafts. At time points between day 3 and day 14 post-surgery, DiI-labelled cells which had tracked into the grafts, were found to co-localise with CD31 positive endothelial cells and patent perfused vessels (fluorescein isothiocyanate (FITC)-dextran perfusion), to show possible association with the vasculature. To further differentiate between graft and host-derived cells, C57BL/6 wild-type grafts were placed on enhanced-green fluorescent protein (e-GFP) transgenic mouse hosts, and at set times post-grafting examined using confocal microscopy. Patent vessels were found at all depths of the graft by day 3. Host (DiI- or GFP-positive) cells were predominantly co-localised with graft vessels in grafts from day 3 onwards, with a similar morphology to control skin. Significantly more GFP labelled host cells were visualised in the superficial dermis at day 5 compared to day 3. Initial restoration of circulation appears to be due to linkage between existing graft and bed vessels, followed by an influx of host cells with a definite perivascular distribution. These findings have implications for skin autografts and tissue engineered skin substitutes.
Collapse
Affiliation(s)
- S O'Ceallaigh
- UK Centre for Tissue Engineering, Faculty of Life Sciences, UK
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 461] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
29
|
Wu X, Kathuria N, Patrick CW, Reece GP. Quantitative analysis of the microvasculature growing in the fibrin interface between a skin graft and the recipient site. Microvasc Res 2007; 75:119-29. [PMID: 17631360 DOI: 10.1016/j.mvr.2007.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023]
Abstract
Current tissue engineering techniques have failed to provide an established microvasculature in skin substitutes, a requisite for the maintenance of graft viability and rapid revascularization subsequent to graft transplantation in vivo. To improve outcomes for both conventional skin grafts and skin substitutes, the existing knowledge gap concerning the spatio-temporal mechanisms of skin graft revascularization must be abrogated. The current knowledge gap is due, at least in part, to a lack of appropriate diagnostic methods to quantify skin graft revascularization. To enhance the understanding of skin graft revascularization, we quantitatively evaluated revascularization of autologous skin grafts in a rat model by quantifying 2- and 3-dimensional vascular metrics in the fibrin interface 3, 7, and 10 days after transplantation. In this study, the fibrin interface appeared to be completely replaced with fibrovascular tissue by postoperative day 10. Although the mean vessel diameter was about 10 mum for the time points sampled, the mean vessel number, area, and volume fraction increased about 2.5-fold from postoperative day 3 to 7 and then decreased about 1.27-fold at postoperative day 10. There was no significant difference between 2- and 3-dimensional vascular metrics based on Bland-Altman analysis. In conclusion, these data establish a standard for metrics of vessels growing in the fibrin interface of a rat autologous skin graft and its donor site and suggests that once the blood supply has been restored to a viable transplant, the number, area, and volume fractions of vessels decrease to levels found at postoperative day 3.
Collapse
Affiliation(s)
- Xuemei Wu
- Reparative Biology and Bioengineering, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
30
|
Wong J, Bennett W, Ferguson MWJ, McGrouther DA. Microscopic and histological examination of the mouse hindpaw digit and flexor tendon arrangement with 3D reconstruction. J Anat 2007; 209:533-45. [PMID: 17005025 PMCID: PMC2100351 DOI: 10.1111/j.1469-7580.2006.00625.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mice are currently the species of choice for the in vivo study of injury, but few detailed anatomical descriptions have been made of rodent digits, limiting their use for the investigation of intrasynovial tendon healing. In this study a detailed microscopic and histological investigation was performed using C57/BL6 and Tie2 LacZ reporter gene transgenic mice. Serial-sectioned mouse hindpaw digits were characterized using haematoxylin and eosin, Masson's trichrome (collagen), Alcian blue (fibrocartilage), Miller's stain (elastin) and TRITC-phalloidin (cellular cytoskeleton) staining. Digital vasculature was demonstrated using FITC-labelled dextran perfusion studies supplemented with LacZ expression in Tie2 LacZ transgenic mice digits. Imaging of the digit used a combination of brightfield and confocal microscopy with three-dimensional reconstruction. Our findings demonstrated that the mouse hindpaw possesses deep and superficial flexor tendons within a synovial sheath comparable with that found in other mammalian species. The intrasynovial tendons were avascular and had regions of fibrocartilaginous specialization relating to areas of compression. Corresponding vascular networks were demonstrated around the sheath using Tie2 LacZ mice and FITC-perfused hindpaws. Furthermore, there is an area of digit where both deep and superficial tendons reside between two pulleys, similar to zone 2 in the human hand where it would be possible to study intrasynovial tendon injury and adhesion formation. In conclusion, although the dimensions of the mouse digit pose technical challenges for surgical intervention, we have identified a model for the study of flexor tendon injury that will permit future genetic manipulation studies.
Collapse
Affiliation(s)
- Jason Wong
- Faculty of Life Sciences, University of Manchester, UK.
| | | | | | | |
Collapse
|