1
|
Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. J Neurosci Res 2024; 102:e25366. [PMID: 38953592 DOI: 10.1002/jnr.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Increasing neuroimaging studies have attempted to identify biomarkers of Huntington's disease (HD) progression. Here, we conducted voxel-based meta-analyses of voxel-based morphometry (VBM) studies on HD to investigate the evolution of gray matter volume (GMV) alterations and explore the effects of genetic and clinical features on GMV changes. A systematic review was performed to identify the relevant studies. Meta-analyses of whole-brain VBM studies were performed to assess the regional GMV changes in all HD mutation carriers, in presymptomatic HD (pre-HD), and in symptomatic HD (sym-HD). A quantitative comparison was performed between pre-HD and sym-HD. Meta-regression analyses were used to explore the effects of genetic and clinical features on GMV changes. Twenty-eight studies were included, comparing a total of 1811 HD mutation carriers [including 1150 pre-HD and 560 sym-HD] and 969 healthy controls (HCs). Pre-HD showed decreased GMV in the bilateral caudate nuclei, putamen, insula, anterior cingulate/paracingulate gyri, middle temporal gyri, and left dorsolateral superior frontal gyrus compared with HCs. Compared with pre-HD, GMV decrease in sym-HD extended to the bilateral median cingulate/paracingulate gyri, Rolandic operculum and middle occipital gyri, left amygdala, and superior temporal gyrus. Meta-regression analyses found that age, mean lengths of CAG repeats, and disease burden were negatively associated with GMV atrophy of the bilateral caudate and right insula in all HD mutation carriers. This meta-analysis revealed the pattern of GMV changes from pre-HD to sym-HD, prompting the understanding of HD progression. The pattern of GMV changes may be biomarkers for disease progression in HD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Pal P, Kamble N, Saini J, George L, Ratna N, Bhattacharya A, Yadav R, Jain S. Neural substrates of psychiatric symptoms in patients with Huntington’s Disease. ANNALS OF MOVEMENT DISORDERS 2021. [DOI: 10.4103/aomd.aomd_39_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Discriminating chorea-acanthocytosis from Huntington's disease with single-case voxel-based morphometry analysis. J Neurol Sci 2020; 408:116545. [DOI: 10.1016/j.jns.2019.116545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
|
4
|
Johnson EB, Gregory S. Huntington's disease: Brain imaging in Huntington's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:321-369. [PMID: 31481169 DOI: 10.1016/bs.pmbts.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) gene-carriers show prominent neuronal loss by end-stage disease, and the use of magnetic resonance imaging (MRI) has been increasingly used to quantify brain changes during earlier stages of the disease. MRI offers an in vivo method of measuring structural and functional brain change. The images collected via MRI are processed to measure different anatomical features, such as brain volume, macro- and microstructural changes within white matter and functional brain activity. Structural imaging has demonstrated significant volume loss across multiple white and gray matter regions in HD, particularly within subcortical structures. There also appears to be increasing disorganization of white matter tracts and between-region connectivity with increasing disease progression. Finally, functional changes are thought to represent changes in brain activity underlying compensatory mechanisms in HD. This chapter will provide an overview of the principles of MRI and practicalities associated with using MRI in HD studies, and summarize findings from MRI studies investigating brain structure and function in HD.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Howard A, Powell JL, Gibson J, Hawkes D, Kemp GJ, Frostick SP. A functional Magnetic Resonance Imaging study of patients with Polar Type II/III complex shoulder instability. Sci Rep 2019; 9:6271. [PMID: 31000752 PMCID: PMC6472426 DOI: 10.1038/s41598-019-42754-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of Stanmore Classification Polar type II/III shoulder instability is not well understood. Functional Magnetic Resonance Imaging was used to measure brain activity in response to forward flexion and abduction in 16 patients with Polar Type II/III shoulder instability and 16 age-matched controls. When a cluster level correction was applied patients showed significantly greater brain activity than controls in primary motor cortex (BA4), supramarginal gyrus (BA40), inferior frontal gyrus (BA44), precentral gyrus (BA6) and middle frontal gyrus (BA6): the latter region is considered premotor cortex. Using voxel level correction within these five regions a unique activation was found in the primary motor cortex (BA4) at MNI coordinates -38 -26 56. Activation was greater in controls compared to patients in the parahippocampal gyrus (BA27) and perirhinal cortex (BA36). These findings show, for the first time, neural differences in patients with complex shoulder instability, and suggest that patients are in some sense working harder or differently to maintain shoulder stability, with brain activity similar to early stage motor sequence learning. It will help to understand the condition, design better therapies and improve treatment of this group; avoiding the common clinical misconception that their recurrent shoulder dislocations are a form of attention-seeking.
Collapse
Affiliation(s)
- Anthony Howard
- Trauma & Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK.
| | - Joanne L Powell
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Jo Gibson
- Physiotherapy Department, Royal Liverpool University Hospital, Liverpool, UK
| | - David Hawkes
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Graham J Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, UK
| | - Simon P Frostick
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Garcia‐Gorro C, de Diego‐Balaguer R, Martínez‐Horta S, Pérez‐Pérez J, Kulisevsky J, Rodríguez‐Dechicha N, Vaquer I, Subira S, Calopa M, Muñoz E, Santacruz P, Ruiz‐Idiago J, Mareca C, Caballol N, Camara E. Reduced striato-cortical and inhibitory transcallosal connectivity in the motor circuit of Huntington's disease patients. Hum Brain Mapp 2018; 39:54-71. [PMID: 28990240 PMCID: PMC6866479 DOI: 10.1002/hbm.23813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder which is primarily associated with striatal degeneration. However, the alterations in connectivity of this structure in HD have been underinvestigated. In this study, we analyzed the functional and structural connectivity of the left putamen, while participants performed a finger-tapping task. Using fMRI and DW-MRI, 30 HD gene expansion carriers (HDGEC) and 29 healthy participants were scanned. Psychophysiological interaction analysis and DTI-based tractography were employed to examine functional and structural connectivity, respectively. Manifest HDGEC exhibited a reduced functional connectivity of the left putamen with the left and the right primary sensorimotor areas (SM1). Based on this result, the inhibitory functional connectivity between the left SM1 and the right SM1 was explored, appearing to be also decreased. In addition, the tract connecting these areas (motor corpus callosum), and the tract connecting the left putamen with the left SM1 appeared disrupted in HDGEC compared to controls. Significant correlations were found between measures of functional and structural connectivity of the motor corpus callosum, showing a coupling of both types of alterations in this tract. The observed reduction of functional and structural connectivity was associated with worse motor scores, which highlights the clinical relevance of these results. Hum Brain Mapp 39:54-71, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Garcia‐Gorro
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| | - Ruth de Diego‐Balaguer
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
- The Institute of Neurosciences of the University of BarcelonaBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Saul Martínez‐Horta
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jesus Pérez‐Pérez
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
- Universidad Autónoma de BarcelonaBarcelonaSpain
| | | | - Irene Vaquer
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Susana Subira
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Department of Clinical and Health PsychologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, L'Hospitalet de LlobregatBarcelonaSpain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer)BarcelonaSpain
- Facultat de medicina, University of BarcelonaBarcelonaSpain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
| | | | | | - Nuria Caballol
- Hospital de Sant Joan Despí Moisès Broggi, Sant Joan DespíBarcelonaSpain
| | - Estela Camara
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
7
|
Turner LM, Jakabek D, Wilkes FA, Croft RJ, Churchyard A, Walterfang M, Velakoulis D, Looi JCL, Georgiou-Karistianis N, Apthorp D. Striatal morphology correlates with frontostriatal electrophysiological motor processing in Huntington's disease: an IMAGE-HD study. Brain Behav 2016; 6:e00511. [PMID: 28031992 PMCID: PMC5167007 DOI: 10.1002/brb3.511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) causes progressive atrophy to the striatum, a critical node in frontostriatal circuitry. Maintenance of motor function is dependent on functional connectivity of these premotor, motor, and dorsolateral frontostriatal circuits, and structural integrity of the striatum itself. We aimed to investigate whether size and shape of the striatum as a measure of frontostriatal circuit structural integrity was correlated with functional frontostriatal electrophysiological neural premotor processing (contingent negative variation, CNV), to better understand motoric structure-function relationships in early HD. METHODS Magnetic resonance imaging (MRI) scans and electrophysiological (EEG) measures of premotor processing were obtained from a combined HD group (12 presymptomatic, 7 symptomatic). Manual segmentation of caudate and putamen was conducted with subsequent shape analysis. Separate correlational analyses (volume and shape) included covariates of age, gender, intracranial volume, and time between EEG and MRI. RESULTS Right caudate volume correlated with early CNV latency over frontocentral regions and late CNV frontally, whereas right caudate shape correlated with early CNV latency centrally. Left caudate volume correlated with early CNV latency over centroparietal regions and late CNV frontally. Right and left putamen volumes correlated with early CNV latency frontally, and right and left putamen shape/volume correlated with parietal CNV slope. CONCLUSIONS Timing (latency) and pattern (slope) of frontostriatal circuit-mediated premotor functional activation across scalp regions were correlated with abnormalities in structural integrity of the key frontostriatal circuit component, the striatum (size and shape). This was accompanied by normal reaction times, suggesting it may be undetected in regular tasks due to preserved motor "performance." Such differences in functional activation may reflect atrophy-based frontostriatal circuitry despecialization and/or compensatory recruitment of additional brain regions.
Collapse
Affiliation(s)
- Lauren M Turner
- Research School of Psychology College of Medicine, Biology, & Environment Australian National University Canberra Australian Capital Territory Australia
| | - David Jakabek
- Graduate School of Medicine University of Wollongong Wollongong New South Wales Australia
| | - Fiona A Wilkes
- Academic Unit of Psychiatry and Addiction Medicine Australian National University Medical School Canberra Hospital Canberra Australian Capital Territory Australia
| | - Rodney J Croft
- School of Psychology & Illawarra Health & Medical Research Institute University of Wollongong Wollongong New South Wales Australia
| | - Andrew Churchyard
- School of Psychological Sciences Faculty of Medicine, Nursing and Health Sciences Monash University Monash Victoria Australia; Calvary Health Care Bethlehem Hospital Caulfield Victoria Australia
| | - Mark Walterfang
- Neuropsychiatry Unit Royal Melbourne Hospital, and Melbourne Neuropsychiatry Centre University of Melbourne Melbourne Victoria Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit Royal Melbourne Hospital, and Melbourne Neuropsychiatry Centre University of Melbourne Melbourne Victoria Australia
| | - Jeffrey C L Looi
- Academic Unit of Psychiatry and Addiction Medicine Australian National University Medical School Canberra Hospital Canberra Australian Capital Territory Australia; Neuropsychiatry Unit Royal Melbourne Hospital, and Melbourne Neuropsychiatry Centre University of Melbourne Melbourne Victoria Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences Faculty of Medicine, Nursing and Health Sciences Monash University Monash Victoria Australia
| | - Deborah Apthorp
- Research School of Psychology College of Medicine, Biology, & Environment Australian National University Canberra Australian Capital Territory Australia; Graduate School of Medicine University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
8
|
Müller HP, Gorges M, Grön G, Kassubek J, Landwehrmeyer GB, Süßmuth SD, Wolf RC, Orth M. Motor network structure and function are associated with motor performance in Huntington's disease. J Neurol 2016; 263:539-49. [PMID: 26762394 DOI: 10.1007/s00415-015-8014-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022]
Abstract
In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.
Collapse
Affiliation(s)
- Hans-Peter Müller
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Martin Gorges
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Georg Grön
- Section Neuropsychology and Functional Imaging, Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | | | - Sigurd D Süßmuth
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Robert Christian Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| | - Michael Orth
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Minkova L, Scheller E, Peter J, Abdulkadir A, Kaller CP, Roos RA, Durr A, Leavitt BR, Tabrizi SJ, Klöppel S. Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Front Hum Neurosci 2015; 9:634. [PMID: 26635585 PMCID: PMC4658414 DOI: 10.3389/fnhum.2015.00634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg Freiburg, Germany
| | - Elisa Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany
| | - Jessica Peter
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany
| | - Ahmed Abdulkadir
- Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Computer Science, University of Freiburg Freiburg, Germany
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Neurology, University Medical Center Freiburg Freiburg, Germany ; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg Freiburg, Germany
| | - Raymund A Roos
- Department of Neurology, Leiden University Medical Centre Leiden, Netherlands
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, Pitié-Salpêtrière University Hospital Paris, France
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia Vancouver, Canada
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg Freiburg, Germany ; Freiburg Brain Imaging Center, University Medical Center Freiburg Freiburg, Germany ; Department of Neurology, University Medical Center Freiburg Freiburg, Germany
| | | |
Collapse
|
10
|
Turner LM, Croft RJ, Churchyard A, Looi JCL, Apthorp D, Georgiou-Karistianis N. Abnormal Electrophysiological Motor Responses in Huntington's Disease: Evidence of Premanifest Compensation. PLoS One 2015; 10:e0138563. [PMID: 26406226 PMCID: PMC4583227 DOI: 10.1371/journal.pone.0138563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023] Open
Abstract
Background Huntington's disease (HD) causes progressive motor dysfunction through characteristic atrophy. Changes to neural structure begin in premanifest stages yet individuals are able to maintain a high degree of function, suggesting involvement of supportive processing during motor performance. Electroencephalography (EEG) enables the investigation of subtle impairments at the neuronal level, and possible compensatory strategies, by examining differential activation patterns. We aimed to use EEG to investigate neural motor processing (via the Readiness Potential; RP), premotor processing and sensorimotor integration (Contingent Negative Variation; CNV) during simple motor performance in HD. Methods We assessed neural activity associated with motor preparation and processing in 20 premanifest (pre-HD), 14 symptomatic HD (symp-HD), and 17 healthy controls. Participants performed sequential tapping within two experimental paradigms (simple tapping; Go/No-Go). RP and CNV potentials were calculated separately for each group. Results Motor components and behavioural measures did not distinguish pre-HD from controls. Compared to controls and pre-HD, symp-HD demonstrated significantly reduced relative amplitude and latency of the RP, whereas controls and pre-HD did not differ. However, early CNV was found to significantly differ between control and pre-HD groups, due to enhanced early CNV in pre-HD. Conclusions For the first time, we provide evidence of atypical activation during preparatory processing in pre-HD. The increased activation during this early stage of the disease may reflect ancillary processing in the form of recruitment of additional neural resources for adequate motor preparation, despite atrophic disruption to structure and circuitry. We propose an early adaptive compensation mechanism in pre-HD during motor preparation.
Collapse
Affiliation(s)
- Lauren M. Turner
- Research School of Psychology, College of Medicine, Biology, & Environment, Australian National University, Canberra, Australia
- * E-mail:
| | - Rodney J. Croft
- School of Psychology & Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Andrew Churchyard
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
- Calvary Health Care Bethlehem Hospital, Caulfield, Victoria, Australia
| | - Jeffrey C. L. Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Deborah Apthorp
- Research School of Psychology, College of Medicine, Biology, & Environment, Australian National University, Canberra, Australia
- School of Psychology & Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| |
Collapse
|
11
|
Wolf RC, Sambataro F, Vasic N, Depping MS, Thomann PA, Landwehrmeyer GB, Süssmuth SD, Orth M. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease. Psychol Med 2014; 44:3341-3356. [PMID: 25066491 DOI: 10.1017/s0033291714000579] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. METHOD Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. RESULTS Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. CONCLUSIONS This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Collapse
Affiliation(s)
- R C Wolf
- Center for Psychosocial Medicine,Department of General Psychiatry,University of Heidelberg,Heidelberg,Germany
| | - F Sambataro
- Center for Neuroscience and Cognitive Systems@UniTN,Rovereto,Italy
| | - N Vasic
- Department of Psychiatry and Psychotherapy III,Ulm University,Ulm,Germany
| | - M S Depping
- Center for Psychosocial Medicine,Department of General Psychiatry,University of Heidelberg,Heidelberg,Germany
| | - P A Thomann
- Center for Psychosocial Medicine,Department of General Psychiatry,University of Heidelberg,Heidelberg,Germany
| | | | - S D Süssmuth
- Department of Neurology,Ulm University,Ulm,Germany
| | - M Orth
- Department of Neurology,Ulm University,Ulm,Germany
| |
Collapse
|
12
|
Wesley MJ, Bickel WK. Remember the future II: meta-analyses and functional overlap of working memory and delay discounting. Biol Psychiatry 2014; 75:435-48. [PMID: 24041504 PMCID: PMC3943930 DOI: 10.1016/j.biopsych.2013.08.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
Abstract
Previously we showed that working memory training decreased the discounting of future rewards in stimulant addicts without affecting a go/no-go task. While a relationship between delay discounting and working memory is consistent with other studies, the unique brain regions of plausible causality between these two abilities have yet to be determined. Activation likelihood estimation meta-analyses were performed on foci from studies of delay discounting (DD = 449), working memory (WM = 452), finger tapping (finger tapping = 450), and response inhibition (RI = 450). Activity maps from relatively less (finger tapping) and more (RI) demanding executive tasks were contrasted with maps of DD and WM. Overlap analysis identified unique functional coincidence between DD and WM. The anterior cingulate cortex was engaged by all tasks. Finger tapping largely engaged motor-related brain areas. In addition to motor-related areas, RI engaged frontal brain regions. The right lateral prefrontal cortex was engaged by RI, DD, and WM and was contrasted out of overlap maps. A functional cluster in the posterior portion of the left lateral prefrontal cortex emerged as the largest location of unique overlap between DD and WM. A portion of the left lateral prefrontal cortex is a unique location where delay discounting and working memory processes overlap in the brain. This area, therefore, represents a therapeutic target for improving behaviors that rely on the integration of the recent past with the foreseeable future.
Collapse
Affiliation(s)
- Michael J. Wesley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Addiction Recovery Research Center,Human Neuroimaging Laboratory
| | - Warren K. Bickel
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Addiction Recovery Research Center
| |
Collapse
|
13
|
Poudel GR, Egan GF, Churchyard A, Chua P, Stout JC, Georgiou-Karistianis N. Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J Psychiatry Neurosci 2014; 39:87-96. [PMID: 24083458 PMCID: PMC3937285 DOI: 10.1503/jpn.120226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Functional neural impairments have been documented in people with symptomatic Huntington disease (symp-HD) and in premanifest gene carriers (pre-HD). This study aimed to characterize synchrony in resting state cerebral networks in both pre-HD and symp-HD populations and to determine its association with disease burden and neurocognitive functions. METHODS We acquired functional magnetic resonance imaging (fMRI) data from pre-HD, symp-HD and healthy control participants. The fMRI data were analyzed using multisubject independent component analysis and dual regression. We compared networks of interest among the groups using a nonparametric permutation method and correcting for multiple comparisons. RESULTS Our study included 25 people in the pre-HD, 23 in the symp-HD and 18 in the healthy control groups. Compared with the control group, the pre-HD group showed decreased synchrony in the sensorimotor and dorsal attention networks; decreased level of synchrony in the sensorimotor network was associated with poorer motor performance. Compared with the control group, the symp-HD group showed widespread reduction in synchrony in the dorsal attention network, which was associated with poorer cognitive performance. The posterior putamen and superior parietal cortex were functionally disconnected from the frontal executive network in the symp-HD compared with control and pre-HD groups. Furthermore, the left frontoparietal network showed areas of increased synchrony in the symp-HD compared with the pre-HD group. LIMITATIONS We could not directly correct for influence of autonomic changes (e.g., heart rate) and respiration on resting state synchronization. CONCLUSION Our findings suggest that aberrant synchrony in the sensorimotor and dorsal attention networks may serve as an early signature of neural change in pre-HD individuals. The altered synchrony in dorsal attention, frontoparietal and corticostriatal networks may contribute to the development of clinical symptoms in people with Huntington disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Nellie Georgiou-Karistianis
- Correspondence to: N. Georgiou-Karistianis, Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Monash University, Clayton, Victoria 3800, Australia;
| |
Collapse
|
14
|
Scheller E, Abdulkadir A, Peter J, Tabrizi SJ, Frackowiak RSJ, Klöppel S. Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration. Neuroimage 2013; 75:146-154. [PMID: 23501047 PMCID: PMC3899022 DOI: 10.1016/j.neuroimage.2013.02.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/30/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks. Connectivity of a motor network is altered in preclinical neurodegeneration. Dynamic Causal Modelling reveals task-dependent recruitment of pre- and caudal SMA. Connectivity of the dorsal premotor cortex reveals compensatory mechanisms. DCM allows prediction of years to clinical onset in preclinical patients.
Collapse
Affiliation(s)
- Elisa Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany; Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Stefan-Meier-Str. 8, D-79104 Freiburg, Germany.
| | - Ahmed Abdulkadir
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany; Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, 79110 Freiburg, Germany
| | - Jessica Peter
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany; Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Stefan-Meier-Str. 8, D-79104 Freiburg, Germany; Department of Neurology, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Sarah J Tabrizi
- UCL Institute of Neurology, University College London, Queen Square, London WC1N3BG, UK
| | - Richard S J Frackowiak
- Département des Neurosciences Cliniques, CHUV, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany; Department of Neurology, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Georgiou-Karistianis N, Scahill R, Tabrizi SJ, Squitieri F, Aylward E. Structural MRI in Huntington's disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 2013; 37:480-90. [PMID: 23376047 DOI: 10.1016/j.neubiorev.2013.01.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/02/2013] [Accepted: 01/22/2013] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) results in progressive impairment of motor and cognitive function and neuropsychiatric disturbance. There are no disease-modifying treatments available, but HD research is entering a critical phase where promising disease-specific therapies are on the horizon. Thus, a pressing need exists for biomarkers capable of monitoring progression and ultimately determining drug efficacy. Neuroimaging provides a powerful tool for assessing disease progression. However, in order to be accepted as biomarkers for clinical trials, imaging measures must be reproducible, robust to scanner differences, sensitive to disease-related change and demonstrate a relationship to clinically meaningful measures. We provide a review of the current structural imaging literature in HD and highlight inconsistencies between studies. We make recommendations for the standardisation of reporting for future studies, such as appropriate cohort characterisation and documentation of methodologies to facilitate comparisons and inform trial design. We also argue for an intensified effort to consider issues highlighted here so that we have the best chance of assessing the efficacy of the therapeutic benefit in forestalling this devastating disease.
Collapse
|
16
|
Lambrecq V, Langbour N, Guehl D, Bioulac B, Burbaud P, Rotge JY. Evolution of brain gray matter loss in Huntington's disease: a meta-analysis. Eur J Neurol 2012; 20:315-21. [PMID: 22925174 DOI: 10.1111/j.1468-1331.2012.03854.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Huntington's disease is characterized by neuronal loss throughout the disease course. Voxel-based morphometry studies have reported reductions in gray matter concentration (GMC) in many brain regions in patients with Huntington. The description of the time course of gray matter loss may help to identify some evolution markers. Here, we conducted a meta-analysis of voxel-based morphometry studies of Huntington's disease to describe the evolution of brain gray matter loss. METHODS A systematic search led to the inclusion of 11 articles on Huntington's disease (297 patients and 205 controls). We extracted data from patients with preclinical Huntington, patients with clinical Huntington, and controls. Finally, anatomical likelihood estimation analyses were conducted to identify GMC changes between preclinical patients and controls, between clinical patients and controls, and between preclinical and clinical patients. RESULTS Preclinical patients exhibited gray matter loss in the left basal ganglia and the prefrontal cortex. Clinical patients had bilateral gray matter loss in the basal ganglia, the prefrontal cortex, and the insula. The left striatum was smaller in clinical patients than in preclinical patients. CONCLUSIONS Neurodegenerative processes associated with Huntington's disease, as assessed by GMC reduction, begin in the left hemisphere and extend to the contralateral hemisphere throughout the inexorable course of the disease. Changes in gray matter, especially the volumetric side ratio of the striatum, could represent a relevant biomarker for characterizing the different progression stages of the disease.
Collapse
Affiliation(s)
- V Lambrecq
- Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
17
|
Dogan I, Eickhoff SB, Schulz JB, Shah NJ, Laird AR, Fox PT, Reetz K. Consistent neurodegeneration and its association with clinical progression in Huntington's disease: a coordinate-based meta-analysis. NEURODEGENER DIS 2012; 12:23-35. [PMID: 22922585 DOI: 10.1159/000339528] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The neuropathological hallmark of Huntington's disease (HD) is progressive striatal loss starting several years prior to clinical onset. In the past decade, whole-brain magnetic resonance imaging (MRI) studies have provided accumulating evidence for widely distributed cortical and subcortical atrophy in the early course of the disease. OBJECTIVE In order to synthesize current morphometric MRI findings and to investigate the impact of clinical and genetic features on structural changes, we performed a coordinate-based meta-analysis of voxel-based morphometry (VBM) studies in HD. METHODS Twenty HD samples derived from 17 studies were integrated in the analysis comparing a total of 685 HD mutation carriers [345 presymptomatic (pre-HD) and 340 symptomatic (symp-HD) subjects] and 507 controls. Convergent findings across studies were delineated using the anatomical likelihood estimation approach. Effects of genetic and clinical parameters on the likelihood of observing VBM findings were calculated by means of correlation analyses. RESULTS Pre-HD studies featured convergent evidence for neurodegeneration in the basal ganglia, amygdala, thalamus, insula and occipital regions. In symp-HD, cerebral atrophy was more pronounced and spread to cortical regions (i.e., inferior frontal, premotor, sensorimotor, midcingulate, frontoparietal and temporoparietal cortices). Higher cytosine-adenosine-guanosine repeats were associated with striatal degeneration, while parameters of disease progression and motor impairment additionally correlated with cortical atrophy, especially in sensorimotor areas. CONCLUSION This first quantitative meta-analysis in HD demonstrates the extent of striatal atrophy and further consistent extrastriatal degeneration before clinical conversion. Sensorimotor areas seem to be core regions affected in symp-HD and, along with widespread cortical atrophy, may account for the clinical heterogeneity in HD.
Collapse
Affiliation(s)
- Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf , Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - N Jon Shah
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| | - Angela R Laird
- Research Imaging Center, University of Texas Health Science Center San Antonio, San Antonio, Tex. , USA
| | - Peter T Fox
- Research Imaging Center, University of Texas Health Science Center San Antonio, San Antonio, Tex. , USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen.,Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich.,Translational Brain Medicine, Jülich Aachen Research Alliance, Jülich
| |
Collapse
|
18
|
Cosottini M, Pesaresi I, Piazza S, Diciotti S, Cecchi P, Fabbri S, Carlesi C, Mascalchi M, Siciliano G. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis. Exp Neurol 2011; 234:169-80. [PMID: 22226599 DOI: 10.1016/j.expneurol.2011.12.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/30/2022]
Abstract
The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons.
Collapse
Affiliation(s)
- Mirco Cosottini
- Department of Neuroscience, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ginestroni A, Diciotti S, Cecchi P, Pesaresi I, Tessa C, Giannelli M, Della Nave R, Salvatore E, Salvi F, Dotti MT, Piacentini S, Soricelli A, Cosottini M, De Stefano N, Mascalchi M. Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Hum Brain Mapp 2011; 33:1780-91. [PMID: 21674694 DOI: 10.1002/hbm.21319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/23/2010] [Accepted: 03/10/2011] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is associated with a distributed pattern of neurodegeneration in the spinal cord and the brain secondary to selective neuronal loss. We used functional MR Imaging (fMRI) to explore brain activation in FRDA patients during two motor-sensory tasks of different complexity, i.e. continuous hand tapping and writing of "8" figure, with the right dominant hand and without visual feedback. Seventeen FRDA patients and two groups of age-matched healthy controls were recruited. Task execution was monitored and recorded using MR-compatible devices. Hand tapping was correctly performed by 11 (65%) patients and writing of the "8" by 7 (41%) patients. After correction for behavioral variables, FRDA patients showed in both tasks areas of significantly lower activation in the left primary sensory-motor cortex and right cerebellum. Also left thalamus and right dorsolateral prefrontal cortex showed hypo-activation during hand tapping. During writing of the "8" task FRDA patients showed areas of higher activation in the right parietal and precentral cortex, globus pallidus, and putamen. Activation of right parietal cortex, anterior cingulum, globus pallidus, and putamen during writing of the "8" increased with severity of the neurological deficit. In conclusion fMRI demonstrates in FRDA a mixed pattern constituted by areas of decreased activation and areas of increased activation. The decreased activation in the primary motor cortex and cerebellum presumably reflects a regional neuronal damage, the decreased activation of the left thalamus and primary sensory cortex could be secondary to deafferentation phenomena, and the increased activation of right parietal cortex and striatum might have a possible compensatory significance.
Collapse
Affiliation(s)
- Andrea Ginestroni
- Department of Clinical Physiopathology, Radiodiagnostic Section, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arima T, Yanagi Y, Niddam DM, Ohata N, Arendt-Nielsen L, Minagi S, Sessle BJ, Svensson P. Corticomotor plasticity induced by tongue-task training in humans: a longitudinal fMRI study. Exp Brain Res 2011; 212:199-212. [PMID: 21590261 DOI: 10.1007/s00221-011-2719-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
Abstract
Corticomotor pathways may undergo neuroplastic changes in response to acquisition of new motor skills. Little is known about the motor control strategies for learning new tongue tasks. The aim of this study was to investigate the longitudinal effect of novel tongue-task training on corticomotor neuroplasticity. Thirteen healthy, right-handed men, aged 24-35 years (mean age ± SD: 27.3 ± 0.3 years), performed a training task consisting of standardized tongue protrusion onto a force transducer. The tongue task consisted of a relax-protrude-hold-relax cycle with 1.0 N as the target at the hold phase lasting for 1.5 s. Subjects repeated this task for 1 h. Functional magnetic resonance imaging was carried out before the tongue-task training (baseline), 1-h after the training, and one-day and one-week follow-up. During scanning, the subjects performed tongue protrusion in blocks interspersed with rest. A region-of-interest (ROI) approach and an explorative search were implemented for the analysis of corticomotor activity across conditions. All subjects completed the tongue-task training (mean success rate 43.0 ± 13.2%). In the baseline condition, tongue protrusion resulted in bilateral activity in regions most typically associated with a motor task including medial frontal gyrus (supplementary motor area [SMA]), precentral gyrus (tongue motor cortex), putamen, thalamus, and cerebellum. The ROI analysis revealed increased activity in the precentral gyrus already 1 h post-training. One day after the training, increased activity was observed in the precentral gyrus, SMA, putamen, and cerebellum. No increase was found 1 week after training. Correlation analyses between changes in success rates and changes in the numbers of voxels showed robust associations for left Area 4a in primary motor cortex 1 h, 1 day, and 1 week after the tongue-task training and for the left Area 4p in primary motor cortex and the left lateral premotor cortex 1 day after the training. In the unrestricted analysis, increased activity was found in the parahippocampal gyrus 1 h after the tongue-task training and remained for a week. Decreased activity was found in right post-central and middle frontal gyri 1 h and 1 week post-training. The results verified the involvement of specific corticomotor areas in response to tongue protrusion. Short-term tongue-task training was associated with longer-lasting (up to 1 week) changes in motor-related brain activity. The results suggested that primary motor areas are involved in the early and late stages, while other motor areas mainly are engaged in the later stage of corticomotor neuroplasticity of the tongue.
Collapse
Affiliation(s)
- Taro Arima
- Department of Oral Rehabilitation, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Painold A, Anderer P, Holl AK, Letmaier M, Saletu-Zyhlarz GM, Saletu B, Bonelli RM. EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. J Neurol 2010; 258:840-54. [DOI: 10.1007/s00415-010-5852-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 11/21/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023]
|
22
|
Della Nave R, Ginestroni A, Tessa C, Giannelli M, Piacentini S, Filippi M, Mascalchi M. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol 2010; 31:1675-81. [PMID: 20488902 DOI: 10.3174/ajnr.a2128] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE HD entails damage of the WM. Our aim was to explore in vivo the regional volume and microstructure of the brain WM in HD and to correlate such findings with clinical status of the patients. MATERIALS AND METHODS Fifteen HD gene carriers in different clinical stages of the disease and 15 healthy controls were studied with T1-weighted images for VBM and DTI for TBSS. Maps of FA, MD, and λ∥ and λ⊥ were reconstructed. RESULTS Compared with controls, in addition to neostriatum and cortical GM volume loss, individuals with HD showed volume loss in the genu of the internal capsule and subcortical frontal WM bilaterally, the right splenium of the corpus callosum, and the left corona radiata. TBSS revealed symmetrically decreased FA in the corpus callosum, fornix, external/extreme capsule, inferior fronto-occipital fasciculus, and inferior longitudinal fasciculus. Areas of increased MD were more extensive and included arciform fibers of the cerebral hemispheres and cerebral peduncles. Increase of the λ∥ and a comparatively more pronounced increase of the λ⊥ underlay the decreased FA of the WM in HD. Areas of WM atrophy, decreased FA, and increased MD correlated with the severity of the motor and cognitive dysfunction, whereas only the areas with increased MD correlated with disease duration. CONCLUSIONS Microstructural damage accompanies volume decrease of the WM in HD and is correlated with the clinical deficits and disease duration. MR imaging-based measures could be considered as a biomarker of neurodegeneration in HD gene carriers.
Collapse
Affiliation(s)
- R Della Nave
- Radiodiagnostic Unit, San Giuseppe Hospital, Empoli, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Nahab FB, Hallett M. Current role of functional MRI in the diagnosis of movement disorders. Neuroimaging Clin N Am 2010; 20:103-10. [PMID: 19959022 DOI: 10.1016/j.nic.2009.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The functional magnetic resonance (fMR) technique for brain mapping is a valuable tool for understanding both normal physiology and the dysfunction taking place in disorders of the brain. This article provides an overview of fMR imaging methods and their applications in the study of neurologic movement disorders. The article also reviews the current neuroimaging literature regarding parkinsonisms, dystonia, essential tremor, and Huntington disease, and includes a discussion of current methodological limitations and future directions for this exciting field.
Collapse
Affiliation(s)
- Fatta B Nahab
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
24
|
Hanlon CA, Wesley MJ, Roth AJ, Miller MD, Porrino LJ. Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control. Psychiatry Res 2010; 181:15-23. [PMID: 19959345 PMCID: PMC2794910 DOI: 10.1016/j.pscychresns.2009.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 01/29/2023]
Abstract
Movement disturbances are often overlooked consequences of chronic cocaine abuse. The purpose of this study was to systematically investigate sensorimotor performance in chronic cocaine users and characterize changes in brain activity among movement-related regions of interest (ROIs) in these users. Functional magnetic resonance imaging data were collected from 14 chronic cocaine users and 15 age- and gender-matched controls. All participants performed a sequential finger-tapping task with their dominant, right hand interleaved with blocks of rest. For each participant, percent signal change from rest was calculated for seven movement-related ROIs in both the left and right hemisphere. Cocaine users had significantly longer reaction times and higher error rates than controls. Whereas the controls used a left-sided network of motor-related brain areas to perform the task, cocaine users activated a less lateralized pattern of brain activity. Users had significantly more activity in the ipsilateral (right) motor and premotor cortical areas, anterior cingulate cortex and the putamen than controls. These data demonstrate that, in addition to the cognitive and affective consequences of chronic cocaine abuse, there are also pronounced alterations in sensorimotor control in these individuals, which are associated with functional alterations throughout movement-related neural networks.
Collapse
Affiliation(s)
- Colleen A Hanlon
- Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
25
|
Henley SMD, Ridgway GR, Scahill RI, Klöppel S, Tabrizi SJ, Fox NC, Kassubek J. Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease. AJNR Am J Neuroradiol 2009; 31:711-9. [PMID: 20037137 DOI: 10.3174/ajnr.a1939] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE VBM is increasingly used in the study of neurodegeneration, and recently there has been interest in its potential as a biomarker. However, although it is largely "automated," VBM is rarely implemented consistently across studies, and changing user-specified options can alter the results in a way similar to the very biologic differences under investigation. MATERIALS AND METHODS This work uses data from patients with HD to demonstrate the effects of several user-specified VBM parameters and analyses: type and level of statistical correction, modulation, smoothing kernel size, adjustment for brain size, subgroup analysis, and software version. RESULTS The results demonstrate that changing these options can alter results in a way similar to the biologic differences under investigation. CONCLUSIONS If VBM is to be useful clinically or considered for use as a biomarker, there is a need for greater recognition of these issues and more uniformity in its application for the method to be both reproducible and valid.
Collapse
Affiliation(s)
- S M D Henley
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lepron E, Péran P, Cardebat D, Démonet JF. A PET study of word generation in Huntington's disease: effects of lexical competition and verb/noun category. BRAIN AND LANGUAGE 2009; 110:49-60. [PMID: 19615733 DOI: 10.1016/j.bandl.2009.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 04/06/2009] [Accepted: 05/16/2009] [Indexed: 05/28/2023]
Abstract
Huntington's disease (HD) patients show language production deficits that have been conceptualized as a consequence of executive disorders, e.g. selection deficit between candidate words or switching between word categories. More recently, a deficit of word generation specific to verbs has been reported, which might relate to impaired action representations in HD. We studied the brain correlates of language impairment in HD using H(2)O(15) positron emission tomography (PET). The activation task consisted of generation of semantically appropriate nouns and verbs in dominant (low lexical selection) and selective conditions (high lexical selection). Reaction times were longer and number of errors was higher in 12 non-demented HD than in 17 age-matched controls in all conditions. In both groups, the selective condition yielded longer reaction time and a greater number of errors than the dominant one. PET data revealed that, in control subjects, the left inferior temporal gyrus was involved in the selective condition whereas it was not in HD. Moreover, activity in the anterior cingulate and the inferior frontal gyri was correlated with behavioral performance in control subjects only. In HD, the lack of implication of these regions, already shown to be crucial in lexical selection, might have been partly compensated by the activation in the left supramarginal gyrus (phonological loop activity) and the right inferior frontal gyrus (effortful retrieval processes), which might support accessory language strategies allowing patients to achieve word generation.
Collapse
Affiliation(s)
- Evelyne Lepron
- Inserm, Imagerie cérébrale et handicaps neurologiques UMR 825, F-31059 Toulouse, France.
| | | | | | | |
Collapse
|
27
|
Klöppel S, Draganski B, Siebner HR, Tabrizi SJ, Weiller C, Frackowiak RSJ. Functional compensation of motor function in pre-symptomatic Huntington's disease. ACTA ACUST UNITED AC 2009; 132:1624-32. [PMID: 19369489 PMCID: PMC2685920 DOI: 10.1093/brain/awp081] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor control.
Collapse
Affiliation(s)
- Stefan Klöppel
- Department of Psychiatry und Psychotherapy, Hauptstrasse 5, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Worbe Y, Baup N, Grabli D, Chaigneau M, Mounayar S, McCairn K, Féger J, Tremblay L. Behavioral and Movement Disorders Induced by Local Inhibitory Dysfunction in Primate Striatum. Cereb Cortex 2008; 19:1844-56. [DOI: 10.1093/cercor/bhn214] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
|