1
|
Liu S, Liu Z, Wu G, Ye H, Wu Z, Yang Z, Jiang S. Assessment of sepsis-associated encephalopathy by quantitative magnetic resonance spectroscopy in a rat model of cecal ligation and puncture. Heliyon 2024; 10:e26836. [PMID: 38434271 PMCID: PMC10906417 DOI: 10.1016/j.heliyon.2024.e26836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is the only non-invasive technique to quantify neurometabolic compounds in the living brain. We used 1H-MRS to evaluate the brain metabolites in a rat model of Sepsis-associated encephalopathy (SAE) established by cecal ligation and puncture (CLP). 36 male Sprague-Dawley rats were randomly divided into sham and CLP groups. Each group was further divided into three subgroups: subgroup O, subgroup M, and subgroup N. Neurological function assessments were performed on the animals in the subgroup O and subgroup N at 24 h, 48 h, and 72 h. The animals in the subgroup M were examined by magnetic resonance imaging (MRI) at 12 h after CLP. Compared with the sham group, the ratio of N-acetylaspartate (NAA) to creatine (Cr) in the hippocampus was significantly lower in the CLP group. The respective ratios of lactate (Lac), myo-inositol (mIns), glutamate and glutamine (Glx), lipid (Lip), and choline (Cho) to Cr in the CLP group were clearly higher than those in the sham group. Cytochrome c, intimately related to oxidative stress, was elevated in the CLP group. Neurofilament light (NfL) chain and glial fibrillary acidic protein (GFAP) scores in the CLP group were significantly higher than those in the sham group, while zonula occludens-1 (ZO-1) was downregulated. Compared with the sham group, the CLP group displayed higher values of oxygen extraction fraction (OEF), central venous-arterial partial pressure of carbon dioxide (P (cv-a) CO2), and central venous lactate (VLac). In contrast, jugular venous oxygen saturation (SjvO2) declined. In the present study, 1H-MRS could be used to quantitatively assess brain injury in terms of microcirculation disorder, oxidative stress, blood-brain barrier disruption, and glial cell activation through changes in metabolites within brain tissue.
Collapse
Affiliation(s)
- Siqi Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhifeng Liu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - Gongfa Wu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - Haoyi Ye
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - Zhihua Wu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shanping Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
2
|
Cottey L, Smith JE, Watts S. Optimisation of mitochondrial function as a novel target for resuscitation in haemorrhagic shock: a systematic review. BMJ Mil Health 2023:e002427. [PMID: 37491136 DOI: 10.1136/military-2023-002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Traumatic injury is one of the leading causes of death worldwide, and despite significant improvements in patient care, survival in the most severely injured patients remains unchanged. There is a crucial need for innovative approaches to improve trauma patient outcomes; this is particularly pertinent in remote or austere environments with prolonged evacuation times to definitive care. Studies suggest that maintenance of cellular homeostasis is a critical component of optimal trauma patient management, and as the cell powerhouse, it is likely that mitochondria play a pivotal role. As a result, therapies that optimise mitochondrial function could be an important future target for the treatment of critically ill trauma patients. METHODS A systematic review of the literature was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol to determine the potential role of mitochondria in traumatic injury and haemorrhagic shock (HS) and to identify current evidence for mitochondrial optimisation therapies in trauma. Articles were included if they assessed a mitochondrial targeted therapy in comparison to a control group, used a model of traumatic injury and HS and reported a method to assess mitochondrial function. RESULTS The search returned 918 articles with 37 relevant studies relating to mitochondrial optimisation identified. Included studies exploring a range of therapies with potential utility in traumatic injury and HS. Therapies were categorised into the key mitochondrial pathways impacted following traumatic injury and HS: ATP levels, cell death, oxidative stress and reactive oxygen species. CONCLUSION This systematic review provides an overview of the key cellular functions of the mitochondria following traumatic injury and HS and identifies why mitochondrial optimisation could be a viable and valuable target in optimising outcome in severely injured patients in the future.
Collapse
Affiliation(s)
- Laura Cottey
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| | - J E Smith
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine, Birmingham, UK
- Emergency Department, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - S Watts
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Salisbury, UK
| |
Collapse
|
3
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Warren M, Subramani K, Schwartz R, Raju R. Mitochondrial dysfunction in rat splenocytes following hemorrhagic shock. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2526-2533. [PMID: 28844961 DOI: 10.1016/j.bbadis.2017.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/23/2022]
Abstract
The regulation of mitochondrial function is critical in cellular homeostasis following hemorrhagic shock. Hemorrhagic shock results in fluid loss and reduced availability of oxygen and nutrients to tissues. The spleen is a secondary lymphoid organ playing a key role in 'filtering the blood' and in the innate and adaptive immune responses. To understand the molecular basis of hemorrhagic shock, we investigated the changes in splenocyte mitochondrial respiration, and concomitant immune and metabolic alterations. The hemorrhagic injury (HI) in our rat model was induced by bleeding 60% of the total blood volume followed by resuscitation with Ringers lactate. Another group of animals was subjected to hemorrhage, but did not receive fluid resuscitation. Oxygen consumption rate of splenocytes were determined using a Seahorse analyzer. We found a significantly reduced oxygen consumption rate in splenocytes following HI compared to sham operated rats. The mitochondrial stress test revealed a decreased basal oxygen consumption rate, ATP production, maximal respiration and spare respiratory capacity. The mitochondrial membrane potential, and citrate synthase activity, were also reduced in the splenocytes following HI. Hypoxic response in the splenocyte was confirmed by increased gene expression of Hif1α. Elevated level of mitochondrial stress protein, hsp60 and induction of high mobility group box1 protein (HMGB1) were observed in splenocytes following HI. An increased inflammatory response was demonstrated by significantly increased expression of IL-6, IFN-β, Mip-1α, IL-10 and NFκbp65. In summary, we conclude that splenocyte oxidative phosphorylation and metabolism were severely compromised following HI.
Collapse
Affiliation(s)
- Marie Warren
- Augusta University, Augusta, GA 30912, United States
| | | | | | - Raghavan Raju
- Augusta University, Augusta, GA 30912, United States..
| |
Collapse
|
5
|
Shin JK, Lee SM. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control. Toxicol Appl Pharmacol 2017; 328:25-33. [DOI: 10.1016/j.taap.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022]
|
6
|
Cytochrome c limits oxidative stress and decreases acidosis in a rat model of hemorrhagic shock and reperfusion injury. J Trauma Acute Care Surg 2017; 82:35-41. [PMID: 27602909 DOI: 10.1097/ta.0000000000001257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hemorrhagic shock and reperfusion (HSR) injury leads to a cascade of reactive oxygen species (ROS) production and mitochondrial dysfunction, which results in energy failure, cell death, and multiple organ dysfunction. Cytochrome c (cyt c) is the final electron carrier in the mitochondrial electron transport chain providing the electrochemical force for ATP production. We sought to determine whether exogenous cyt c administration would improve parameters of organ dysfunction and/or mitochondrial stability in a rat model of HSR. METHODS Male rats were hemorrhaged to a mean arterial pressure (MAP) of 33 ± 2.0 mm Hg for 1 hour before resuscitation. Saline or cyt c (0.8 mg [HSR-LoCC] or 3.75 mg [HSR-HiCC]) was administered (i.v.) 30 minutes before resuscitation. Rats were euthanized by cardiac puncture 2 hours post-surgery and tissue collected and analyzed for lipid peroxidation, endogenous antioxidant activity (glutathione peroxidase (GPx) and catalase), TNF-α expression, mitochondrial function (complex-I activity), and circulating mitochondrial DNA (mtDNA). RESULTS Cyt c administration improved lactate clearance, decreased hepatic lipid peroxidation, increased hepatic GPx activity, restored pulmonary TNF-α to sham activity levels, and increased hepatic complex-I activity. Furthermore, addition of exogenous cyt c decreased circulating levels of mtDNA. CONCLUSIONS These studies demonstrate that cyt c reduces markers of physiologic stress, decreases oxidative stress, and lowers levels of circulating mtDNA. The impact of cytochrome c is organ specific. Further studies remain to determine the sum of the effects of cytochrome c on overall outcome.
Collapse
|
7
|
Constantinou C, Apidianakis Y, Psychogios N, Righi V, Mindrinos MN, Khan N, Swartz HM, Szeto HH, Tompkins RG, Rahme LG, Tzika AA. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury. Int J Mol Med 2015; 37:299-308. [PMID: 26648055 PMCID: PMC4716799 DOI: 10.3892/ijmm.2015.2426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.
Collapse
Affiliation(s)
- Caterina Constantinou
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Yiorgos Apidianakis
- Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - Michael N Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, Lebanon, NH, USA
| | - Harold M Swartz
- EPR Center for Viable Systems, Department of Diagnostic Radiology, The Geisel School of Medicine, Lebanon, NH, USA
| | - Hazel H Szeto
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Ronald G Tompkins
- Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurence G Rahme
- Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Chen GT, Han N, Li GF, Li X, Li G, Liu YZ, Wu W, Wang Y, Chen YX, Sun GX, Li ZC, Li QC. TNF-α mutation affects the gene expression profiles of patients with multiple trauma. EUR J INFLAMM 2015. [DOI: 10.1177/1721727x15588433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple trauma can induce sepsis and organ failure, even threaten people’s lives. To further study the mechanisms of multiple trauma, we analyzed microarray of GSE5760. GSE5760 was downloaded from the Gene Expression Omnibus including a total of 58 peripheral blood transcriptome from patients without (WT, n = 30) and carrying (MUT, n = 28) the tumor necrosis factor (TNF) rs1800629 A variant. The differentially expressed genes (DEGs) were screened using the limma package in R and the Benjamin and Hochberg method in a multi-test package. Then, functional enrichment analysis of DEGs was performed. Also, transcription factors significantly related to DEGs were searched using WebGestalt and interaction network of transcription factors and DEGs were constructed using STRING online software. Furthermore, pathway enrichment analysis for the DEGs in the interaction network was conducted using KO-Based Annotation System (KOBAS). We screened 39 DEGs including 27 upregulated and 12 downregulated genes. The enriched functions were associated with biological process (BP) (such as response to hypoxia, P value = 0.039803), cell components (CC) (such as mitochondrial part, P value = 0.043857), and molecular function (MF) (such as structural constituent of ribosome, P value = 0.008735). Besides, RPS7 and RPL17 were associated with ribosome and participated in ribosome pathway. PPP2R2B was related to mitochondrion. KCNMA1, ALAS2 and SOCS3 were associated with hypoxia. Moreover, transcription factors of LEF1, CHX10, ELK1, SP1, and MAZ were significantly related to DEGs. RPS7, RPL17, PPP2R2B, KCNMA1, ALAS2, and SOCS3 might relate to multiple trauma. And TNF-α mutation could cause sepsis in patients with multiple trauma by changing the expression of these genes.
Collapse
Affiliation(s)
- GT Chen
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - N Han
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - GF Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - X Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - G Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - YZ Liu
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - W Wu
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Y Wang
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - YX Chen
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - GX Sun
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - ZC Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - QC Li
- Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
9
|
|
10
|
MitoQ modulates oxidative stress and decreases inflammation following hemorrhage. J Trauma Acute Care Surg 2015; 78:573-9. [PMID: 25710429 DOI: 10.1097/ta.0000000000000533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Oxidative stress associated with hemorrhagic shock and reperfusion (HSR) results in the production of superoxide radicals and other reactive oxygen species, leading to cell damage and multiple-organ dysfunction. We sought to determine if MitoQ, a mitochondria-targeted antioxidant, reduces morbidity in a rat model of HSR by limiting oxidative stress. METHODS HSR was achieved in male rats by arterial blood withdrawal to a mean arterial pressure of 25 ± 2 mm Hg for 1 hour before resuscitation. MitoQ (5 mg/kg), TPP (triphenylphosphonium, 5 mg/kg) or saline (0.9% vol./vol.) was administered intravenously 30 minutes before resuscitation, followed by an intraperitoneal administration (MitoQ, 20 mg/kg) immediately after resuscitation (n = 5 per group). Morbidity was assessed based on cumulative markers of animal distress (0-10 scale). Rats were sacrificed 2 hours after procedure completion, and liver tissue was collected and processed for histology or assayed for lipid peroxidation (thiobarbituric acid reactive substance [TBARS]) or endogenous antioxidant (catalase, glutathione peroxidase [GPx], and superoxide dismutase) activity. RESULTS HSR significantly increased morbidity as well as TBARS and catalase activities versus sham. Conversely, no difference in GPx or superoxide dismutase activity was measured between sham, HSR, and TPP, MitoQ administration reduced morbidity versus HSR (5.8 ± 0.3 vs. 7.6 ± 0.3; p < 0.05), while TPP administration significantly reduced hepatic necrosis versus both HSR and HSR-MitoQ (1.2 ± 0.1 vs. 2.0 ± 0.2 vs. 1.9 ± 0.2; p < 0.05, n = 5). Analysis of oxidative stress demonstrated increased TBARS and GPx in HSR-MitoQ versus sham (12.0 ± 1.1 μM vs. 6.2 ± 0.5 μM and 37.9 ± 3.0 μmol/min/mL vs. 22.9 ± 2.7 μmol/min/mL, TBARS and GPx, respectively, n = 5; p < 0.05). Conversely, catalase activity in HSR-MitoQ was reduced versus HSR (1.96 ± 1.17 mol/min/mL vs. 2.58 ± 1.81 mol/min/mL; n = 5; p < 0.05). Finally, MitoQ treatment decreased tumor necrosis factor α (0.66 ± 0.07 pg/mL vs. 0.92 ± 0.08 pg/mL) and interleukin 6 (7.3 ± 0.8 pg/mL vs. 11 ± 0.9 pg/mL) versus HSR as did TPP alone (0.58 ± 0.05 pg/mL vs. 0.92 ± 0.08 pg/mL; 6.7 ± 0.6 pg/mL vs. 11 ± 0.9 pg/mL; n = 5; p < 0.05). CONCLUSION Our data demonstrate that MitoQ treatment following hemorrhage significantly limits morbidity and decreases hepatic tumor necrosis factor α and interleukin 6. In addition, MitoQ differentially modulates oxidative stress and hepatic antioxidant activity.
Collapse
|
11
|
Wang Z, Li C, Mu Y, Lin Z, Yi A, Zhang Q, Yan B. Nanoadduct relieves: Alleviation of developmental toxicity of Cr(VI) due to its spontaneous adsorption to Mg(OH)2 nanoflakes. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:296-305. [PMID: 25668298 DOI: 10.1016/j.jhazmat.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
During pregnancy, both the mother and fetus are vulnerable to environmental pollution by particulate matters and chemicals. Although the toxicity of free pollutants has been frequently reported, the impact of nanoparticle/pollutant adducts on the vulnerable pregnant population remains unclear. In this study, pregnant mice were orally exposed to Mg(OH)2 nanoflakes and nanoflakes adsorbed with Cr(VI) anions during the peri-implantation and organogenesis stages of pregnancy at doses that did not induce systemic toxicity or pregnancy complications. The nano-Mg(OH)2/Cr(VI) adducts formation reduced fetal developmental toxicity compared with the toxicity induced by the same concentration of free Cr(VI) anions.
Collapse
Affiliation(s)
- Zhiping Wang
- School of Public Health, Shandong University, Jinan, China
| | - Chunhui Li
- School of Public Health, Shandong University, Jinan, China
| | - Yan Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zhang Lin
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Anji Yi
- School of Public Health, Shandong University, Jinan, China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock. J Trauma Acute Care Surg 2015; 77:926-33. [PMID: 25248062 DOI: 10.1097/ta.0000000000000358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hemorrhagic shock (HS) may contribute to organ failure, by profoundly altering mitochondrial function. Resveratrol (RSV), a naturally occurring polyphenol, has been shown to promote mitochondrial function and regulate glucose homeostasis in diabetes. We hypothesized that RSV during resuscitation would ameliorate HS-induced mitochondrial dysfunction and improve hyperglycemia following acute blood loss. METHODS With the use a decompensated HS model, male Long-Evans rats (n = 6 per group) were resuscitated with lactated Ringer's solution with or without RSV (30 mg/kg) and were killed before hemorrhage (sham), at severe shock, following resuscitation, and 18 hours after resuscitation. At each time point, the liver and kidney mitochondria were isolated to assess individual respiratory complexes (CI, CII, and CIV) and the production of reactive oxygen species (ROS). Blood samples were assayed for glucose, insulin, corticosterone, total glucagon-like peptide (GLP-1), glucagon, and serum cytokine levels. The Homeostatic Model Assessment-Insulin Resistance index was used to quantify insulin resistance. RESULTS RSV supplementation following HS significantly improved mitochondrial function and decreased mitochondrial ROS production in both liver and kidney. RSV-treated animals had significantly lower blood glucose levels following resuscitation when compared with sham animals (116.0 ± 20.2 mg/dL vs. 227.7 ± 8.3 mg/dL, p < 0.05) or those resuscitated with lactated Ringer's solution (116.0 ± 20.2 mg/dL vs. 359.0 ± 79.5 mg/dL, p < 0.05). RSV supplementation was associated with significantly decreased plasma insulin levels (1.0 ± 0.4 ng/mL vs. 6.5 ± 3.7 ng/mL, p < 0.05), increased total GLP-1 levels (385.8 ± 56.6 ng/mL vs. 187.3 ± 11.1 ng/mL, p < 0.05), and a lower natural Log Homeostatic Model Assessment-Insulin Resistance index (1.30 ± 0.42 vs. 4.18 ± 0.68, p < 0.05) but had minimal effect on plasma corticosterone, glucagon, or cytokine levels. CONCLUSION Resuscitation with RSV restores mitochondrial function and decreases insulin resistance but may be associated with increased hypoglycemia. The observed antiglycemic effects of RSV may be mediated by decreased mitochondrial ROS and increased GLP-1 secretion.
Collapse
|
13
|
Can peripheral blood mononuclear cells be used as a proxy for mitochondrial dysfunction in vital organs during hemorrhagic shock and resuscitation? Shock 2014; 40:476-84. [PMID: 24088987 DOI: 10.1097/shk.0000000000000026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although mitochondrial dysfunction is thought to contribute to the development of posttraumatic organ failure, current techniques to assess mitochondrial function in tissues are invasive and clinically impractical. We hypothesized that mitochondrial function in peripheral blood mononuclear cells (PBMCs) would reflect cellular respiration in other organs during hemorrhagic shock and resuscitation. METHODS Using a fixed-pressure HS model, Long-Evans rats were bled to a mean arterial pressure of 40 mmHg. When blood pressure could no longer be sustained without intermittent fluid infusion (decompensated HS), lactated Ringer's solution was incrementally infused to maintain the mean arterial pressure at 40 mmHg until 40% of the shed blood volume was returned (severe HS). Animals were then resuscitated with 4× total shed volume in lactated Ringer's solution over 60 min (resuscitation). Control animals underwent the same surgical procedures, but were not hemorrhaged. Animals were randomized to control (n = 6), decompensated HS (n = 6), severe HS (n = 6), or resuscitation (n = 6) groups. Kidney, liver, and heart tissues as well as PBMCs were harvested from animals in each group to measure mitochondrial oxygen consumption using high-resolution respirometry. Flow cytometry was used to assess mitochondrial membrane potential (Ψm) in PBMCs. One-way analysis of variance and Pearson correlations were performed. RESULTS Mitochondrial oxygen consumption decreased in all tissues, including PBMCs, following decompensated HS, severe HS, and resuscitation. However, the degree of impairment varied significantly across tissues during hemorrhagic shock and resuscitation. Of the tissues investigated, PBMC mitochondrial oxygen consumption and Ψm provided the closest correlation to kidney mitochondrial function during HS (complex I: r = 0.65; complex II: r = 0.65; complex IV: r = 0.52; P < 0.05). This association, however, disappeared with resuscitation. A weaker association between PBMC and heart mitochondrial function was observed, but no association was noted between PBMC and liver mitochondrial function. CONCLUSIONS All tissues including PBMCs demonstrated significant mitochondrial dysfunction following hemorrhagic shock and resuscitation. Although PBMC and kidney mitochondrial function correlated well during hemorrhagic shock, the variability in mitochondrial response across tissues over the spectrum of hemorrhagic shock and resuscitation limits the usefulness of using PBMCs as a proxy for tissue-specific cellular respiration.
Collapse
|
14
|
Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J Trauma Acute Care Surg 2014; 76:409-17. [PMID: 24458046 DOI: 10.1097/ta.0000000000000096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxidative stress following hemorrhagic shock and resuscitation (HSR) is regulated, in part, by inflammatory and apoptotic mediators such as necrosis factor κB (NF-κB) and p53. Sirtuin 1 (Sirt-1) is a metabolic intermediary that regulates stress responses by suppressing NF-κB and p53 activity. Resveratrol is a naturally occurring polyphenolic antioxidant and Sirt-1 agonist. The aim of this study was to determine whether resveratrol protects hepatocytes following HSR or hypoxia. METHODS In vivo, HSR was achieved in male rats by arterial blood withdrawal to 30 ± 2 mm Hg for 1 hour before resuscitation with or without resveratrol (Res, 30 mg/kg). Hepatic tissue was stained and scored for necrosis, interleukin 6, and Sirt-1 expression. In vitro, primary rat hepatocytes were subjected to 8 hours of hypoxia without or with Res (100 µM). Cells were analyzed immediately or after 6 hours of normoxia, for survival and markers of injury (lactate dehydrogenase assay, lipid peroxidation, and mitochondrial integrity). Cell lysates were collected for cytochrome c analysis and immunoprecipitated using antibodies against NF-κB (p65) or p53. RESULTS In vivo, animals subject to HSR exhibited increased expression of markers of hepatocyte damage compared with those sham operated, concomitant with lower Sirt-1 expression. In vitro, hypoxia followed by normoxia resulted in increased cell death, an effect that was blunted by Res. Analysis of cell and mitochondrial function demonstrated that Res inhibited the detrimental effects of hypoxia in isolated hepatocytes. CONCLUSION Resveratrol prevents cell death in HSR and exerts a protective effect on the mitochondria in a hepatocyte model of hypoxic injury-reoxygenation possibly via Sirt-1 modulation of p53 and NF-κB activity.
Collapse
|
15
|
Immunoinflammatory response in critically ill patients: severe sepsis and/or trauma. Mediators Inflamm 2013; 2013:362793. [PMID: 24371374 PMCID: PMC3859159 DOI: 10.1155/2013/362793] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022] Open
Abstract
Immunoinflammatory response in critically ill patients is very complex. This review explores some of the new elements of immunoinflammatory response in severe sepsis, tumor necrosis factor-alpha in severe acute pancreatitis as a clinical example of immune response in sepsis, immune response in severe trauma with or without secondary sepsis, and genetic aspects of host immuno-inflammatory response to various insults in critically ill patients.
Collapse
|
16
|
Zhao ZG, Niu CY, Qiu JF, Chen XD, Li JC. Effect of mesenteric lymph duct ligation on gene expression profiles of renal tissue in hemorrhagic shock rats with fluid resuscitation. Ren Fail 2013; 36:271-7. [DOI: 10.3109/0886022x.2013.844623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Wang X, Song R, Chen Y, Zhao M, Zhao KS. Polydatin – a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs 2012; 22:169-79. [DOI: 10.1517/13543784.2013.748033] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Danger signals activating the immune response after trauma. Mediators Inflamm 2012; 2012:315941. [PMID: 22778496 PMCID: PMC3388465 DOI: 10.1155/2012/315941] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/29/2022] Open
Abstract
Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1), interleukin-1α (IL-1α), and interleukin-33 (IL-33) as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.
Collapse
|
19
|
Wang X, Song R, Bian HN, Brunk UT, Zhao M, Zhao KS. Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock. Am J Physiol Regul Integr Comp Physiol 2012; 302:R805-14. [PMID: 22277937 DOI: 10.1152/ajpregu.00350.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The main objective of this study was to investigate the activity of polydatin on mitochondrial dysfunction and lysosomal stability of arteriolar smooth muscle cells (ASMCs) in severe shock. The experimental animals (rats) were divided into five groups: control, hemorrhagic shock, shock + CsA, shock + Res, and shock + PD (exposed to cyclosporin A, resveratrol, or polydatin following induction of hemorrhagic shock, respectively). The calcein-Co(2+) technique revealed opening of ASMC mitochondrial permeability transition pores (mPTP) after shock with resulting mitochondrial swelling, decreased mitochondrial membrane potential (ΔΨm), and reduced intracellular ATP levels. These alterations were all inhibited by exposure to PD, which was significantly more effective than CsA and Res. PD also preserved lysosomal stability, suppressed activation of K(ATP) channels, ASMC hyperpolarization, and reduced vasoresponsiveness to norepinephrine that normally follows severe shock. The results demonstrate that exposure to PD after initiation of severe shock effectively preserves ASMC mitochondrial integrity and has a significant therapeutic effect in severe shock. The effects may partially result from lysosomal stabilization against shock-induced oxidative stress and depressed relocation of hydrolytic enzymes and redox-active lysosomal iron that, in turn, may induce mPTP opening.
Collapse
Affiliation(s)
- Xingmin Wang
- Guangdong Key Laboratory of Shock and Microcirculation Research, Dept. of Pathophysiology, Southern Medical Univ., Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
20
|
Bogojević D, Poznanović G, Grdović N, Grigorov I, Vidaković M, Dinić S, Mihailović M. Administration of rat acute-phase protein α(2)-macroglobulin before total-body irradiation initiates cytoprotective mechanisms in the liver. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:167-179. [PMID: 20848291 DOI: 10.1007/s00411-010-0331-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
Previously, we showed that administration of the acute-phase protein α(2)-macroglobulin (α(2)M) to rats before total-body irradiation with 6.7 Gy (LD(50/30)) of X-rays provides the same level of radioprotection as amifostine. Here, we compare the cytoprotective effects of α(2)M and amifostine on rat liver. The potential of the liver to replenish cells destroyed by ionizing radiation was assessed by immunoblot analysis with antibody to proliferating cell nuclear antigen (PCNA). After irradiation, in unprotected rats PCNA decreased 6-fold from the basal level. In rats pretreated with either α(2)M or amifostine, PCNA was increased throughout a 4 week follow-up period, indicating that hepatocyte proliferation was unaffected. Since PCNA is an important component of the repair machinery, its increased expression was accompanied by significantly lower DNA damage in α(2)M- and amifostine-treated rats. At 2 weeks after irradiation, the Comet assay revealed a 15-fold increase in DNA damage in unprotected rats, while in α(2)M- and amifostine-treated rats we observed 3- and 4-fold rise in damage, respectively. The improved protection to DNA damage was supported by elevated activity of the antioxidant systems. Compared to untreated rats, pretreatments with α(2)M and amifostine led to similar increases in levels of the inflammatory cytokine IL-6 and the redox-sensitive transcription factor NFκB, promoting upregulation of MnSOD, the major component of the cell's antioxidant axis, and subsequent increases in Mn/CuZnSOD and catalase enzymatic activities. The results show that α(2)M induces protein factors whose interplay underlies radioprotection and support the idea that α(2)M is the central effector of natural radioprotection in the rat.
Collapse
Affiliation(s)
- Desanka Bogojević
- Institute for Biological Research Siniša Stanković, University of Belgrade, Despot Stephen Blvd. 142, 11060, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
21
|
Mitochondrial injury underlies hyporeactivity of arterial smooth muscle in severe shock. Am J Hypertens 2011; 24:45-51. [PMID: 20940715 DOI: 10.1038/ajh.2010.184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Our previous data showed membrane hyperpolarization of arteriolar smooth muscle cells (ASMCs) caused by adenosine triphosphate (ATP)-sensitive potassium channels (K(ATP)) activation contributed to vascular hyporeactivity in shock. Despite supply of oxygen and nutrients, vascular hyporeactivity to vasoconstrictor agents still remains, which may result from low ATP level. The study was designed to investigate shock-induced mitochondrial changes of rat ASMCs in the genesis and treatment of hypotension in severe shock. METHODS The animals were divided into four groups: controls, hemorrhagic shock, CsA+shock (preadministration of cyclosporin A before bleeding), and ATR+CsA+shock (preadministration of atractyloside, followed by CsA and bleeding). ASMCs were isolated and the ultrastructure and function of ASMC mitochondria and the vasoresponsiveness to norepinephrine (NE) was measured on microcirculatory preparations. RESULTS Ultrastructurally, the hemorrhagic shock group showed swollen mitochondria with poorly defined cristae. In this group, the number of ASMCs with low mitochondrial membrane potential (Δψ(m)) was increased by 49.7%, and the intracellular ATP level was reduced by 82.1%, which led to activation of K(ATP) plasma membrane channels with resultant ASMC hyperpolarization and low vasoreactivity. These changes were reduced in the CsA+shock group. When mitochondrial damage was aggravated by ATR in the ATR+CsA+shock group, the CsA did not protect. Compared to the shock group, vasoresponsiveness to NE was much improved in the CsA+shock group. CONCLUSIONS Mitochondrial ASMC dysfunction is involved in the genesis of reduced vasoreactivity in severe shock. Mitochondrial protection may therefore be a new approach in the treatment of shock-induced hypotension.
Collapse
|
22
|
Zampieri FG, Park M, Machado FS, Azevedo LCP. Sepsis-associated encephalopathy: not just delirium. Clinics (Sao Paulo) 2011; 66:1825-31. [PMID: 22012058 PMCID: PMC3180153 DOI: 10.1590/s1807-59322011001000024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/04/2011] [Indexed: 02/08/2023] Open
Abstract
Sepsis is a major cause of mortality and morbidity in intensive care units. Organ dysfunction is triggered by inflammatory insults and tissue hypoperfusion. The brain plays a pivotal role in sepsis, acting as both a mediator of the immune response and a target for the pathologic process. The measurement of brain dysfunction is difficult because there are no specific biomarkers of neuronal injury, and bedside evaluation of cognitive performance is difficult in an intensive care unit. Although sepsis-associated encephalopathy was described decades ago, it has only recently been subjected to scientific scrutiny and is not yet completely understood. The pathophysiology of sepsis-associated encephalopathy involves direct cellular damage to the brain, mitochondrial and endothelial dysfunction and disturbances in neurotransmission. This review describes the most recent findings in the pathophysiology, diagnosis, and management of sepsis-associated encephalopathy and focuses on its many presentations.
Collapse
Affiliation(s)
- Fernando Godinho Zampieri
- Intensive Care Unit, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
23
|
Jorge MA, Tavella M, Irrazábal CL, Peralta JG, Capdevila AA. Interrelationship between oxygen-related variables in patients with acute myocardial infarction: an interpretative review. Clin Physiol Funct Imaging 2010; 30:381-8. [DOI: 10.1111/j.1475-097x.2010.00961.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock. Shock 2010; 33:289-98. [PMID: 19503022 DOI: 10.1097/shk.0b013e3181aef322] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.
Collapse
|
25
|
Second-generation sulfonylureas preserve inhibition of mitochondrial permeability transition by the mitochondrial K+(ATP) opener nicorandil in experimental myocardial infarction. Shock 2009; 32:247-52. [PMID: 19174741 DOI: 10.1097/shk.0b013e31819c3794] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Openers of K+(ATP) channels protect the myocardium from I/R injury. Sulfonylureas are known as potent blockers of K(ATP) channels. We investigated whether 1) mitochondrial permeability transition pore may be involved in the protection afforded by the mitoK+(ATP) opener nicorandil and 2) whether sulfonylureas may prevent this beneficial effect. Anesthetized New Zealand White rabbits underwent 30 min of coronary artery occlusion, followed by 60 (isolated mitochondria) or 240 min (infarct size) of reperfusion. They received an administration of either saline (control) or nicorandil (0.5 mg kg(-1), i.v.) 15 min before ischemia. Each control and nicorandil group was divided in four subgroups pretreated by either saline, glibenclamide (Glib; 1 mg kg(-1)), gliclazide (Glic; 1 mg kg(-1)), or glimepiride (Glim; 5 microg kg(-1)) 10 min before this. Infarct size was assessed by triphenyltetrazolium chloride staining. Mitochondria were isolated from the area at risk for further assessment of the calcium retention capacity. Glibenclamide (35 +/- 8), but neither Glic (61 +/- 9) nor Glim (48 +/- 7), reversed the improvement in calcium retention capacity due to nicorandil (58 +/- 10 vs. 27 +/- 8 nmoles CaCl2 mg(-1) proteins in control). Infarct size reduction by nicorandil (32% +/- 6% vs. 65% +/- 6% of area at risk) was abolished by Glib (55 +/- 5) but not by Glic (37 +/- 3) or Glim (31 +/- 5). These data suggest that 1) the protective effect of nicorandil involves the inhibition of the mitochondrial permeability transition pore and 2) that unlike Glib, second-generation sulfonylureas preserve this cardioprotection.
Collapse
|
26
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Ischemic preconditioning protects the pig liver by preserving the mitochondrial structure and downregulating caspase-3 activity. J INVEST SURG 2009; 22:88-97. [PMID: 19283610 DOI: 10.1080/08941930802712995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND DATA The beneficial effects of ischemic preconditioning (IPC) on hepatic ischemia-reperfusion injury (I/RI) have been described. However, the way in which IPC causes the changes in mitochondrial ultrastructure seen in hepatic I/RI is not well understood. OBJECTIVE The objective of the present study was to determine whether IPC protects the liver from changes in mitochondrial structure and caspase 3 activity in the early phase of post-ischemic injury. METHODS A pig model consisting of 90 min of hepatic ischemia and 180 min of reperfusion was employed. Eighteen female pigs were randomly divided into three groups: sham-operated, non-preconditioned, and ischemic preconditioned (10 min ischemia followed by 10 min reperfusion). Serum concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and thiobarbituric acid reactive substances (TBARS), as well as bile flow, were measured. Liver biopsies were taken after reperfusion for histological, immunohistochemical (anti-caspase 3), and ultrastructural examinations. RESULTS The IPC procedure increased bile flow (p < 0.01), reduced serum AST level (p < 0.01), and reduced serum concentration of TBARS at 180 min of reperfusion (p = 0.05). Ischemic-preconditioned liver cells had less caspase 3 activity than the non-preconditioning group (p < 0.01), and changes in mitochondrial ultrastructure were reduced (p < 0.01). CONCLUSION IPC exerts a powerful protective effect against hepatic I/RI in the early phase of reperfusion, which may be mediated by preservation of mitochondrial structure and inhibition of caspase-3 activity.
Collapse
|
27
|
Favreau F, Rossard L, Zhang K, Desurmont T, Manguy E, Belliard A, Fabre S, Liu J, Han Z, Thuillier R, Papadopoulos V, Hauet T. Expression and modulation of translocator protein and its partners by hypoxia reoxygenation or ischemia and reperfusion in porcine renal models. Am J Physiol Renal Physiol 2009; 297:F177-90. [PMID: 19386723 DOI: 10.1152/ajprenal.90422.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is an 18-kDa drug- and cholesterol-binding protein localized to the outer mitochondrial membrane and implicated in a variety of cell and mitochondrial functions. To determine the role of TSPO in ischemia-reperfusion injury (IRI), we used both in vivo and in vitro porcine models: an in vivo renal ischemia model where different conservation modalities were tested and an in vitro model where TSPO-transfected porcine proximal tubule LLC-PK(1) cells were exposed to hypoxia and oxidative stress. The expression of TSPO and its partners in steroidogenic cells, steroidogenic acute regulatory protein (StAR) and cytochrome P-450 side chain cleavage CYP11A1, as well as the impact of TSPO overexpression and exposure to TSPO ligands in vitro in hypoxia-ischemia conditions were investigated. Hypoxia induced caspase activation, reduction of ATP content, and LLC-PK(1) cell death. Transfection and overexpression of TSPO rescued the cells from the detrimental effects of hypoxia and reoxygenation. Moreover, TSPO overexpression was accompanied by a reduction of H(2)O(2)-induced necrosis. TSPO drug ligands did not affect TSPO-mediated functions. In vivo, TSPO expression was modulated by IRI and during regeneration particularly in proximal tubule cells, which do not express this protein at the basal level. Under the same conditions, StAR and CYP11A1 protein and gene expression was reduced without apparent relation to TSPO changes. Pregnenolone was identified and measured in the pig kidney. Pregnenolone synthesis was not affected by the experimental conditions used. Taken together, these results indicate that changes in TSPO expression in kidney regenerating tissue could be important for renal protection and maintenance of kidney function.
Collapse
Affiliation(s)
- Frederic Favreau
- Inserm, U927, Faculté de Médecine, Université de Poitiers, 86021 Poitiers Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Persistent inhibition of mitochondrial permeability transition by preconditioning during the first hours of reperfusion. Shock 2009; 30:552-6. [PMID: 18317409 DOI: 10.1097/shk.0b013e31816a1c1c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) opening is a crucial event in cardiomyocyte death after I/R. We questioned whether preconditioning (PC) may inhibit mPTP opening during ischemia and/or during reperfusion and whether this effect would persist as reperfusion evolves. Anesthetized New Zealand white rabbits underwent a test ischemia followed by reperfusion. Ischemia lasted either 10 or 30 min, whereas reperfusion duration varied from 5 to 20, 60 and up to 240 min. For each duration of ischemia and reperfusion, animals were randomized as either control or PC. Preconditioning was induced by 5 min of ischemia followed by 5 min of reperfusion. Mitochondria were isolated from myocardium at risk for assessment of the calcium retention capacity (CRC) (potentiometric technique) used here as an index of sensitivity of the mPTP to Ca2+ loading. In controls, the CRC was moderately reduced after ischemia alone, but reperfusion severely and time-dependently accelerated further CRC reduction. Preconditioning failed to modify mPTP opening during ischemia alone, but significantly improved CRC during reperfusion. This protective effect persisted as reperfusion evolved. These data suggest that (a) reperfusion strikingly increases the susceptibility to Ca2+-induced mPTP opening, and that (b) PC inhibits mPTP opening at reflow and throughout the first hours of reperfusion.
Collapse
|
29
|
Abstract
Abstract This is a review paper that provides an overview of current information on programmed cell death in haemorrhagic shock, including the identification of different molecular receptor signals. A PubMed search for all dates was undertaken using the search terms apoptosis, trauma and haemorrhagic shock. Original research, sentinel and review papers from peer-reviewed journals were included for identification of key concepts. Haemorrhagic shock remains a primary cause of death in civilian and military trauma. Apoptosis is accelerated following haemorrhagic shock. Many methods are used to detect and quantify apoptosis. Fluid resuscitation regimens vary in their effect on the extent of apoptosis. Investigators are examining the effects of haemorrhagic shock and fluid resuscitation on apoptotic signalling pathways. Molecular information is becoming available and being applied to the care of patients experiencing haemorrhagic shock, making it essential for nurses and other health care providers to consider the mechanisms and consequences of apoptosis.
Collapse
Affiliation(s)
- William J Mach
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| | - Amanda R Knight
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| | - James A Orr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
30
|
|
31
|
Lahm T, Crisostomo PR, Markel TA, Wang M, Lillemoe KD, Meldrum DR. The critical role of vascular endothelial growth factor in pulmonary vascular remodeling after lung injury. Shock 2007; 28:4-14. [PMID: 17510598 DOI: 10.1097/shk.0b013e31804d1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pulmonary vascular endothelial cell plays a crucial role in the regulation of the pulmonary vascular tone and in the maintenance of the barrier function and integrity of the alveolar-capillary membrane. It also plays a major role in coagulation, fibrinolysis, and angiogenesis and participates in inflammatory reactions. Vascular endothelial growth factor (VEGF) is a central growth and survival factor for the endothelial cell. Particularly high levels of VEGF are expressed in the lungs, reflecting the critical role of VEGF for lung development and structural integrity of the adult lung. Vascular endothelial growth factor exerts a variety of physiological and pathophysiological actions in the lung. Recent evidence suggests its involvement in the pathogenesis of lung diseases such as bronchopulmonary dysplasia, acute lung injury, emphysema, and pulmonary hypertension. To summarize the critical effects of VEGF on the pulmonary endothelial cell in the pathogenesis of these diseases, the purposes of this review are to (1) discuss the biological activities and intracellular signaling pathways of VEGF in the lung; (2) summarize the regulatory mechanisms involved in VEGF expression; (3)address the effects of VEGF on endothelial cells in hyperoxia-induced and other forms of lung injury; (4) highlight the endothelial effects of VEGF in the pathogenesis of emphysema; and (5) explore the role of VEGF in the pathogenesis of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Tim Lahm
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hsieh YC, Frink M, Choudhry MA, Bland KI, Chaudry IH. Metabolic modulators following trauma sepsis: Sex hormones. Crit Care Med 2007; 35:S621-9. [PMID: 17713419 DOI: 10.1097/01.ccm.0000278603.18687.4f] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The development of metabolic perturbations following severe trauma/sepsis leading to decreased energy production, hyperglycemia, and lipolysis is often rapid. Gender is increasingly recognized as a major factor in the outcome of patients suffering from trauma/sepsis. Moreover, sex hormones influence energy, glucose, and lipid metabolism. Metabolic modulators, such as peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha, which are required for mitochondrial energy production and fatty acid oxidation, are regulated by the estrogen receptor-beta and consequently contribute to cardioprotection following trauma hemorrhage. Additionally, sex steroids regulate inflammatory cytokines that cause hypermetabolism/catabolism via acute phase response, leading to increased morbidity and mortality. MEASUREMENTS This article examines the following: (1) the evidence for gender differences; (2) energy, glucose, and lipid metabolism and the acute phase protein response; (3) the mechanisms by which gender/sex hormones affect the metabolic modulators; and (4) the tissue-specific effect of sex hormone receptors and the effect of genomic and nongenomic pathways of sex hormones following trauma. RESULTS AND CONCLUSIONS The available information indicates that sex steroids not only modulate the immune/cardiovascular responses but also influence various metabolic processes following trauma. Thus, alteration or modulation of the prevailing hormone milieu at the time of injury appears to be a novel therapeutic adjunct for improving outcome after injury.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
33
|
Fraker C, Timmins MR, Guarino RD, Haaland PD, Ichii H, Molano D, Pileggi A, Poggioli R, Presnell SC, Inverardi L, Zehtab M, Ricordi C. The use of the BD oxygen biosensor system to assess isolated human islets of langerhans: oxygen consumption as a potential measure of islet potency. Cell Transplant 2007; 15:745-58. [PMID: 17269445 DOI: 10.3727/000000006783981440] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The measurement of cellular oxygen consumption rate (OCR) is a potential tool for the assessment of metabolic potency of isolated islets of Langerhans prior to clinical transplantation. We used a commercially available 96-well plate fluoroprobe, the BD Oxygen Biosensor System (OBS), to estimate OCR in 27 human islet preparations, and compared these results to those of concurrent mouse transplantations. OCR was estimated both from the dO2 at steady state and from the transient rate of change of dO2 during the initial culture period immediately after seeding ("dO2 slope"). To demonstrate the validity of the OBS-derived values, it was shown that they scaled linearly with islet equivalent number/DNA concentration and with each other. These measurements were obtained for each preparation of islets incubated in media supplemented with either low (2.2 mM) or high (22 mM) glucose. Concurrently, one to three athymic nude mice were transplanted with 2,000 IEQs under the kidney capsule. The OCR Index, defined as the ratio of the DNA-normalized "dO2 slope" in high glucose to that in low glucose, proved highly predictive of mouse transplant results. Of the 69 mice transplanted, those receiving islets where the OCR Index exceeded 1.27 were 90% likely to reverse within 3 days, whereas those receiving islets with an OCR Index below 1.27 took significantly longer, often failing to reverse at all over a 35-day time period. These results suggest that the OBS could be a useful tool for the pretransplant assessment of islet cell potency.
Collapse
Affiliation(s)
- Chris Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Carlson DE, Nguyen PX, Soane L, Fiedler SM, Fiskum G, Chiu WC, Scalea TM. HYPOTENSIVE HEMORRHAGE INCREASES CALCIUM UPTAKE CAPACITY AND BCL-XL CONTENT OF LIVER MITOCHONDRIA. Shock 2007; 27:192-8. [PMID: 17224795 DOI: 10.1097/01.shk.0000238067.77202.a8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We tested the hypothesis that the response of mitochondrial uptake of calcium and content of Bcl proteins to reversible hemorrhagic shock increases the vulnerability for hepatocellular death. Pentobarbital-anesthetized rats were bled to a mean arterial pressure of 30 to 40 mmHg for 1 h. A subset was then resuscitated (isotonic sodium chloride solution, three times shed volume). Liver mitochondria were isolated at the end of hemorrhage and 1.5 h after the onset of resuscitation. Resuscitation accelerated mitochondrial respiration in the presence of adenosine diphosphate (state 3) above control (P<0.01). The respiratory control ratio ([RCR] state 3/state 4) was calculated using the respiratory rate in the presence of carboxyatractyloside (state 4). The RCR was depressed at the end of hemorrhage and recovered completely in response to resuscitation (P<0.05). The mitochondrial capacity for calcium uptake increased at the end of hemorrhage and remained greater than control (P<0.01) after resuscitation when plasma ornithine carbamoyltransferase (an index of hepatocellular injury) was greater than control (P<0.05). At this time, the capacity for calcium uptake was correlated with plasma ornithine carbamoyltransferase (r=0.819, P<0.01). Mitochondrial content of Bcl-xL, an antiapoptotic protein, was increased at the end of hemorrhage (P<0.03) with no further change after resuscitation and no change in mitochondrial Bak, a proapoptotic protein. Thus, mitochondrial mechanisms are triggered early during reversible hypovolemia that may limit the intensity of intracellular calcium signaling and its potential to cause cellular injury and death.
Collapse
Affiliation(s)
- Drew E Carlson
- Program in Trauma and Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang M, Tsai BM, Crisostomo PR, Meldrum DR. Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 2006; 25:454-9. [PMID: 16680009 DOI: 10.1097/01.shk.0000209536.68682.90] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cardiogenic shock from myocardial ischemia is the leading cause of death of both men and women. Although adult progenitor cells have emerged as a potential therapy for heart disease, reports indicate that transplanted adult progenitor cells may not differentiate into heart muscle. We hypothesized that pretreatment with adult progenitor cells may protect myocardium from acute ischemic damage. Treatment immediately before an ischemic event removes the possibility that differentiation to heart muscle may account for the observed effects. In the present study, we determined that adult progenitor cells from three different sources (human bone marrow, rat bone marrow, and human adipose tissue) immediately protect native myocardium against ischemia and decrease myocardial proinflammatory and proapoptotic signaling. Postischemic recovery of adult progenitor cell-pretreated hearts was significantly better than that of control hearts. This was correlated with a 50% decrease in proinflammatory cytokine production. The use of a differentiated cell control had no such effect. Therefore, adult progenitor cell pretreatment improved postischemic myocardial function, decreased myocardial production of inflammatory mediators, and limited proapoptotic signaling. These results represent the first demonstration that pretreatment with progenitor cells is myocardial protective. These findings may not only have mechanistic implications regarding the benefit of progenitor cells but may also have clinical therapeutic implications before planned ischemic events.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University Medical Center, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
36
|
Abstract
This study examined the effect of ischemic preconditioning (IPC) in protecting against a hepatic ischemia/reperfusion (I/R) injury, with particular focus on mitochondrial damage. Rat liver was preconditioned by 10 min of ischemia and 10 min of reperfusion. Immediately after IPC, liver was subjected to 90 min of sustained ischemia followed by 5 h of reperfusion. The hepatic I/R increased serum aminotransferase activity and mitochondrial lipid peroxidation 5 h after reperfusion. IPC attenuated these increases. Whereas the mitochondrial glutathione content and glutamate dehydrogenase activities were lower in the I/R group, these decreases were attenuated by IPC. During IPC, the tissue peroxide levels increased after 10 min of ischemia and were normalized after 10 min of reperfusion. In association with the IPC-derived transient increase in the peroxide levels, the significant production of peroxides observed at 10 min of reperfusion after 90 min of ischemia was attenuated. Furthermore, whereas the mitochondria isolated from rat liver after 5 h of reperfusion were rapidly swollen, the swelling rate was attenuated in the mitochondria from rat liver subjected to IPC before the sustained ischemia. The hepatic ATP and adenosine levels were 38% and 46% lower during the reperfusion, respectively. These decreases were attenuated by IPC. Thus, these results suggest that IPC protects the mitochondria against the deleterious effects of I/R, and this protection is associated with the reduced oxidative stress.
Collapse
Affiliation(s)
- Woo-Yong Lee
- College of Pharmacy, Sungkyunkwan University, Suwon-si 440-746, South Korea
| | | |
Collapse
|
37
|
Albuszies G, Radermacher P, Vogt J, Wachter U, Weber S, Schoaff M, Georgieff M, Barth E. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Crit Care Med 2005; 33:2332-8. [PMID: 16215389 DOI: 10.1097/01.ccm.0000182817.20977.e9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Septic shock-associated organ dysfunction is attributed to derangements of microcirculatory perfusion and/or impaired cellular oxygen utilization. The hepatosplanchnic organs are regarded to play a pivotal role in the pathophysiology of sepsis-related organ failure. In a murine model of septic shock, we tested the hypothesis whether achieving normotensive, hyperdynamic hemodynamics characterized by a sustained increase in cardiac output would allow maintenance of regional microvascular perfusion and oxygenation and, thus, hepatic metabolic capacity. DESIGN Prospective, controlled, randomized animal study. SETTING University animal research laboratory. SUBJECTS Male C57Bl/6 mice. INTERVENTIONS Fifteen hours after sham operation (n = 11) or cecal ligation and puncture (CLP) (n = 9), mice were anesthetized, mechanically ventilated, and instrumented (central venous and left ventricular pressure-conductance catheter, portal vein and superior mesenteric artery ultrasound flow probes). Animals received continuous intravenous hydroxyethylstarch and norepinephrine to achieve normotensive and hyperdynamic hemodynamics, and glucose was infused to maintain normoglycemia. MEASUREMENTS AND MAIN RESULTS Measurements were recorded 18, 21, and 24 hrs post-CLP. In CLP mice, titration of hemodynamic targets were affiliated superior mesenteric artery and portal vein flow. Using a combined laser-Doppler flowmetry and remission spectrophotometry probe, we found well-maintained gut and liver capillary perfusion as well as intestinal microcirculatory hemoglobin oxygen saturation, whereas hepatic microcirculatory hemoglobin oxygen saturation was even increased. At 24 hrs post-CLP, the rate of de novo gluconeogenesis as derived from hepatic C-glucose isotope enrichment after continuous intravenous 1,2,3,4,5,6-C6-glucose infusion (condensation biosynthesis modeling after gas chromatography-mass spectrometry isotope measurements) was similar in the two experimental groups. CONCLUSIONS During murine septic shock achieving normotensive hyperdynamic hemodynamics with fluid resuscitation and norepinephrine, exogenous glucose requirements together with the lack of norepinephrine-induced increase in the rate of gluconeogenesis mirror impaired metabolic capacity of the liver despite well-maintained hepatosplanchnic microvascular perfusion and oxygenation.
Collapse
Affiliation(s)
- Gerd Albuszies
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hsieh YC, Yang S, Choudhry MA, Yu HP, Rue LW, Bland KI, Chaudry IH. PGC-1 upregulation via estrogen receptors: a common mechanism of salutary effects of estrogen and flutamide on heart function after trauma-hemorrhage. Am J Physiol Heart Circ Physiol 2005; 289:H2665-72. [PMID: 16055512 DOI: 10.1152/ajpheart.00682.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Flutamide, an androgen receptor antagonist, is thought to improve cardiovascular function by blocking the androgen receptor after trauma-hemorrhage (T-H). Although 17β-estradiol (E2) and flutamide improve cardiac function after T-H, whether E2 and flutamide produce their salutary effect via the same or a different mechanism is unknown. We hypothesized that E2 and flutamide mediate their effects via estrogen receptor (ER)-mediated upregulation of peroxisome proliferator-activated receptor coactivator 1 (PGC-1). PGC-1, a key regulator of cardiac mitochondrial function, induces mitochondrial genes by activating transcription factors such as nuclear respiratory factor 2 (NRF-2), which regulates mitochondrial proteins [i.e., mitochondrial transcription factor A (Tfam), cytochrome- c oxidase subunit IV, and β-ATP synthase]. Adult male rats underwent T-H [5-cm midline incision and hemorrhage (blood pressure = 40 mmHg for ∼90 min)] and resuscitation. At the onset of resuscitation, rats received vehicle, flutamide (25 mg/kg), or E2 (50 μg/kg). Another group received the ER antagonist ICI-182780 (3 mg/kg) with or without flutamide. Flutamide or E2 administration after T-H restored depressed cardiac function. Moreover, E2 and flutamide normalized expression of cardiac PGC-1, NRF-2, Tfam, cytochrome- c oxidase subunit IV, and the mitochondrial DNA-encoded gene cytochrome- c oxidase subunit I and β-ATP synthase, mitochondrial ATP, and cytochrome- c oxidase activity. However, if the ER antagonist ICI-182780 was administered with flutamide, flutamide-mediated PGC-1 upregulation was totally abolished. These results indicate that E2 and flutamide upregulate PGC-1 via the ER. Thus PGC-1 upregulation appears to be the common mechanism by which E2 and flutamide mediate their salutary effects on cardiac function after T-H.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Center for Surgical Research, Univ. of Alabama at Birmingham, 1670 Univ. Blvd., Volker Hall, Rm. G094, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Yen DHT, Chan JYH, Huang CI, Lee CH, Chan SHH, Chang AYW. Coenzyme q10 confers cardiovascular protection against acute mevinphos intoxication by ameliorating bioenergetic failure and hypoxia in the rostral ventrolateral medulla of the rat. Shock 2005; 23:353-9. [PMID: 15803059 DOI: 10.1097/01.shk.0000156673.44063.e8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coenzyme Q10 (CoQ10, ubiquinone) is a highly mobile electron carrier in the mitochondrial respiratory chain that also acts as an antioxidant. We evaluated the cardiovascular protective efficacy of CoQ10 at the rostral ventrolateral medulla (RVLM), a medullary site where sympathetic vasomotor tone originates and where the organophosphate poison mevinphos (Mev) acts to elicit cardiovascular intoxication. Experiments were carried out in adult male Sprague-Dawley rats that were maintained under propofol anesthesia. Microinjection bilaterally of Mev (10 nmol) into the RVLM induced progressive hypotension and minor bradycardia, alongside significant depression of the activity of NADH cytochrome c reductase (enzyme marker for Complexes I and III) or cytochrome c oxidase (enzyme marker for Complex IV) in the mitochondrial respiratory chain, reduction in ATP concentration, or tissue hypoxia in the RVLM. On the other hand, the activity of succinate cytochrome c reductase (enzyme marker for Complexes II and III) remained unaltered. The Mev-induced hypotension, bioenergetic failure, or hypoxia was significantly reversed when CoQ10 (4 microg) was coadministered bilaterally into the RVLM with the organophosphate poison. We conclude that CoQ10 confers cardiovascular protection against acute Mev intoxication by acting on the RVLM, whose neuronal activity is intimately related to the "life-and-death" process. We also showed that amelioration of the selective dysfunction of respiratory enzyme Complexes I and IV in the mitochondrial respiratory chain, the reduced ATP level, and the induced tissue hypoxia in the RVLM are among some of the underlying mechanisms for the elicited protection.
Collapse
Affiliation(s)
- David H T Yen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Borutaite V, Moncada S, Brown GC. NITRIC OXIDE FROM INDUCIBLE NITRIC OXIDE SYNTHASE SENSITIZES THE INFLAMED AORTA TO HYPOXIC DAMAGE VIA RESPIRATORY INHIBITION. Shock 2005; 23:319-23. [PMID: 15803054 DOI: 10.1097/01.shk.0000156672.36439.2d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested whether nitric oxide (NO) could synergize with hypoxia to induce damage to the aorta isolated from rat. We found that 4 h of mild hypoxia (5% O2) caused substantial necrosis of isolated rat aortae (measured as lactate dehydrogenase release) if inducible NO synthase (iNOS) had previously been induced by endotoxin plus interferon-gamma. Mild hypoxia caused no significant necrosis in the absence of this inflammatory activation, and inflammatory activation caused little damage at a higher oxygen levels (21% oxygen). An iNOS inhibitor (1400W) prevented the necrosis induced by inflammation plus mild hypoxia, whereas the NO donor diethylenetriamine (DETA)/NO adduct, 0.5 mM) greatly sensitized the noninflammed aorta to necrosis induced by mild hypoxia. NO inhibited aortic respiration to a greater degree at lower oxygen concentrations, consistent with NO inhibition of cytochrome oxidase in competition with oxygen. A specific inhibitor of mitochondrial respiration, myxothiazol, caused necrosis of aortae over a similar time course to NO. DETA/NO plus mild hypoxia-induced cell death was substantially reduced by a glycolytic intermediate 3-phosphoglycerate, suggesting that necrosis resulted from energy depletion secondary to respiratory inhibition. This NO-induced sensitization of aorta to mild hypoxia may be important in sepsis and other pathologies where iNOS is expressed.
Collapse
Affiliation(s)
- Vilmante Borutaite
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | |
Collapse
|