1
|
Chen F, Zhang Y, Wang X, Jing M, Zhang L, Pei K, Zhao T, Su K. Protective effect of Astragaloside II against lung injury in COPD based on mTORC1/GSK-3β signaling pathway. Eur J Pharmacol 2025; 988:177214. [PMID: 39706467 DOI: 10.1016/j.ejphar.2024.177214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Astragaloside II (AST II) is one of the principal bioactive components of Astragalus mongholicus Bunge, exhibiting multiple pharmacological properties. However, the therapeutic efficacy of AST II in Chronic Obstructive Pulmonary Disease (COPD) remains to be fully elucidated. The study explored the effects and mechanisms of AST II in a COPD model induced by exposure to cigarette smoke (CS) and lipopolysaccharide (LPS) in mice. METHODS An animal model of COPD was established by intratracheal instillation of LPS and cigarette smoking in mice. Serum samples were collected to determine inflammatory cell infiltration and cytokine levels. Lung tissues were collected for histological, immunofluorescence and Western blot analysis. The RAW264.7 macrophage cell line was employed to investigate the molecular mechanism of AST II in vitro. RESULTS Lung dysfunction, histopathological damage, inflammatory infiltration, and pro-inflammatory factors secretion in COPD mice induced by CS and LPS were mitigated by AST II. AST II exerted an anti-inflammatory effect by enhancing the activation of the mammalian target of rapamycin complex 1 (mTORC1)/glycogen synthase kinase-3β (GSK-3β) signaling pathway, which promoted the binding of CREB-binding protein (CBP) to CREB, thereby antagonizing the binding to nuclear factor-κB (NF-κB) and inhibiting its transcriptional activity. However, AST II did not demonstrate a protective effect against LPS-induced inflammatory damage to RAW264.7 cells when mTORC1 was inhibited by rapamycin. CONCLUSION AST II exhibits potential therapeutic benefits as an alternative medication for COPD and other respiratory inflammatory conditions since it may reduce lung injury and inflammatory response in mice exposed to CS and LPS.
Collapse
Affiliation(s)
- Fengxi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yeqing Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xuejian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mei Jing
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tong Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kelei Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
2
|
Yang Y, Huang S, Liao Y, Wu X, Zhang C, Wang X, Yang Z. Hippuric acid alleviates dextran sulfate sodium-induced colitis via suppressing inflammatory activity and modulating gut microbiota. Biochem Biophys Res Commun 2024; 710:149879. [PMID: 38579536 DOI: 10.1016/j.bbrc.2024.149879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with metabolic disorder and gut dysbiosis. Decreased abundance of hippuric acid (HA) was found in patients with IBD. HA, metabolized directly from benzoic acid in the intestine and indirectly from polyphenols, serves as a marker of polyphenol catabolism. While polyphenols and benzoic acid have been shown to alleviate intestinal inflammation, the role of HA in this context remains unknown. Herein, we investigated the effects and mechanism of HA on DSS-induced colitis mice. The results revealed that HA alleviated clinical activity and intestinal barrier damage, decreased pro-inflammatory cytokine production. Metagenomic sequencing suggested that HA treatment restored the gut microbiota, including an increase in beneficial gut bacteria such as Adlercreutzia, Eubacterium, Schaedlerella and Bifidobacterium_pseudolongum. Furthermore, we identified 113 candidate genes associated with IBD that are potentially under HA regulation through network pharmacological analyses. 10 hub genes including ALB, IL-6, HSP90AA1, and others were identified using PPI analysis and validated using molecular docking and mRNA expression analysis. Additionally, KEGG analysis suggested that the renin-angiotensin system (RAS), NF-κB signaling and Rap1 signaling pathways were important pathways in the response of HA to colitis. Thus, HA may provide novel biotherapy options for IBD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Shiqin Huang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Yangjie Liao
- Department of Gastroenterology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, 415000, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Chao Zhang
- Department of Gastroenterology, Zhuzhou Central Hospital, Zhuzhou, 412001, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China.
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China.
| |
Collapse
|
3
|
Yang L, Yan L, Tan W, Zhou X, Yang G, Yu J, Lu Z, Liu Y, Zou L, Li W, Yu L. Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β. Front Pharmacol 2023; 14:1181319. [PMID: 37456759 PMCID: PMC10338930 DOI: 10.3389/fphar.2023.1181319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3β (GSK-3β) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3β indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3β expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3β mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3β in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3β inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3β, both in vitro and in vivo.
Collapse
Affiliation(s)
- Liling Yang
- Department of Pharmacy, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weifu Tan
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guangli Yang
- Department of Central Laboratory, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyi Zou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Li
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review. Nutrients 2023; 15:nu15051071. [PMID: 36904071 PMCID: PMC10005516 DOI: 10.3390/nu15051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such as the ubiquitin-proteasome system, calpain, and caspase-3. These effectors are responsible for protein breakdown in muscles. Many trials have been conducted with hormones with different results but not with nutritional outcomes. This review examines the effect of hormones and cytokines on muscles. Knowing all the signals and pathways that affect protein synthesis and breakdown can be considered for future therapeutics.
Collapse
|
6
|
Chen CL, Tseng PC, Satria RD, Nguyen TT, Tsai CC, Lin CF. Role of Glycogen Synthase Kinase-3 in Interferon-γ-Mediated Immune Hepatitis. Int J Mol Sci 2022; 23:ijms23094669. [PMID: 35563060 PMCID: PMC9101719 DOI: 10.3390/ijms23094669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase, is a vital glycogen synthase regulator controlling glycogen synthesis, glucose metabolism, and insulin signaling. GSK-3 is widely expressed in different types of cells, and its abundant roles in cellular bioregulation have been speculated. Abnormal GSK-3 activation and inactivation may affect its original bioactivity. Moreover, active and inactive GSK-3 can regulate several cytosolic factors and modulate their diverse cellular functional roles. Studies in experimental liver disease models have illustrated the possible pathological role of GSK-3 in facilitating acute hepatic injury. Pharmacologically targeting GSK-3 is therefore suggested as a therapeutic strategy for liver protection. Furthermore, while the signaling transduction of GSK-3 facilitates proinflammatory interferon (IFN)-γ in vitro and in vivo, the blockade of GSK-3 can be protective, as shown by an IFN-γ-induced immune hepatitis model. In this study, we explored the possible regulation of GSK-3 and the potential relevance of GSK-3 blockade in IFN-γ-mediated immune hepatitis.
Collapse
Affiliation(s)
- Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Chun Tseng
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Thi Thuy Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, Hue University of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Department of Long Term Care Management, Chung Hwa University of Medical Technology, Tainan 703, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| | - Chiou-Feng Lin
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan;
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (R.D.S.); (T.T.N.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-C.T.); (C.-F.L.)
| |
Collapse
|
7
|
Peng S, Gu JH, Dai CL, Iqbal K, Liu F, Gong CX. AKT/GSK-3β signaling is altered through downregulation of mTOR during cerebral Ischemia/Reperfusion injury. Mol Biol Rep 2022; 49:3955-3964. [PMID: 35235160 DOI: 10.1007/s11033-022-07247-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Cellular responses following cerebral ischemia/reperfusion injury are critical to recovery and survival after ischemic stroke. Understanding of these cellular responses can help the design of therapies to protect brain tissue and promote recovery after stroke. One of these cellular responses may be mediated by the AKT (protein kinase B) signal transduction pathway. This study was aimed to investigate the cerebral ischemia-induced alterations of AKT signaling and the upstream molecular pathways. METHODS We modeled cerebral ischemia by middle cerebral artery occlusion in 2-3-month-old male C57BL/6J mice and then analyze the brain samples by using quantitative Western blots and phosphorylation/activation-dependent kinase antibodies. Cerebral ischemia was confirmed by staining of brain slices with 1% 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl, as well as neurological assessments of the mice 24 h after ischemia-reperfusion surgery. RESULTS We found marked downregulation of AKT within 12 h of cerebral ischemia/reperfusion, which leads to overactivation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we found that the downregulation of AKT was mediated by downregulation of mTORC2 (the complex 2 of the mechanistic target of rapamycin) instead of its common upstream kinases, phosphatidylinositol 3-kinase and phosphoinositide-dependent kinase-1. CONCLUSION Our findings provide new insight into the cellular responses to ischemia/reperfusion brain injury and will help develop new treatments targeting the AKT signaling pathway for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shengwei Peng
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America.,Department of Internal Medicine, Hubei University of Science and Technology, 437100, Xianning, Hubei, China.,National Experimental Teaching Demonstration Center of General Practice, Hubei University of Science and Technology, 437100, Xianning, Hubei, China
| | - Jin-Hua Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America.,Department of Clinical Pharmacy, Nantong Maternity and Child Healthcare Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, 10314, Staten Island, New York, United States of America.
| |
Collapse
|
8
|
El Aissouq A, Chedadi O, Kasmi R, Elmchichi L, En-nahli F, Goudzal A, Bouachrine M, Ouammou A, Khalil F. Molecular Modeling Studies of C-Glycosylfavone Derivatives as GSK-3β Inhibitors Based on QSAR and Docking Analysis. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Lee JS, Chae MK, Kikkawa DO, Lee EJ, Yoon JS. Glycogen Synthase Kinase-3β Mediates Proinflammatory Cytokine Secretion and Adipogenesis in Orbital Fibroblasts from Patients with Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2021; 61:51. [PMID: 32735324 PMCID: PMC7426624 DOI: 10.1167/iovs.61.8.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose We sought to determine the role of glycogen synthase kinase-3β (GSK-3β) in the pathogenesis of Graves’ orbitopathy(GO). Methods Expression of the GSK-3β gene in whole orbital tissue explants was compared between GO and non-GO donors using quantitative real-time PCR (RT-PCR). The expression of proinflammatory molecules in the presence of the GSK-3β inhibitor CHIR 99021 was analyzed using RT-PCR, western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining, and the levels of peroxisome proliferator activator gamma (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) α and β were determined by western blot. Results The expression of GSK-3β was significantly higher in GO tissues than in control tissues. The addition of CHIR 99021 led to a decrease in the active form of the kinase in which the Y216 residue is phosphorylated. When GO and non-GO fibroblasts were stimulated with IL-1β or TNF-α, IL-6, IL-8, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-1 (COX-1), and monocyte chemoattractant protein 1 (MCP-1) showed increased production, which was blunted when CHIR 99021 was added. The activation of Akt, PI3K, nuclear factor (NF)-κB, Erk, Jnk, and p38 kinase by IL-1β and TNF-α was diminished with CHIR 99021 in GO cells. A decrease in lipid droplets and expression of PPARγ and c/EBPα and -β was noted in fibroblasts treated with CHIR 99021 during adipocyte differentiation. The inhibition of Wnt and β-catenin in adipogenesis was reversed by CHIR 99021. Conclusions GSK-3β plays a significant role in GO pathogenesis. The inhibition of the kinase attenuated the proinflammatory cytokines production and fibroblast differentiation into adipocytes. GSK-3β may be a potential target for anti-inflammatory and anti-adipogenic treatment of GO.
Collapse
|
10
|
Tan X, Liang Z, Li Y, Zhi Y, Yi L, Bai S, Forest KH, Nichols RA, Dong Y, Li QX. Isoorientin, a GSK-3β inhibitor, rescues synaptic dysfunction, spatial memory deficits and attenuates pathological progression in APP/PS1 model mice. Behav Brain Res 2020; 398:112968. [PMID: 33069740 DOI: 10.1016/j.bbr.2020.112968] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/13/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
β-Amyloid (Aβ) elevation, tau hyperphosphorylation, and neuroinflammation are major hallmarks of Alzheimer's disease (AD). Glycogen synthase kinase-3β (GSK-3β) is a key protein kinase implicated in the pathogenesis of AD. Blockade of GSK-3β is an attractive therapeutic strategy for AD. Isoorientin, a 6-C-glycosylflavone, was previously shown to be a highly selective inhibitor of GSK-3β, while exerting neuroprotective effects in neuronal models of AD. In the present study, we evaluated the in vivo effects of isoorientin on GSK-3β, tau phosphorylation, Aβ deposition, neuroinflammatory response, long-term potentiation, and spatial memory in amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice using biochemical, electrophysiological, and behavioral tests. Chronic oral administration of isoorientin to APP/PS1 mice at 8 months of age attenuated multiple AD pathogenic hallmarks in the brains, including GSK-3β overactivation, tau hyperphosphorylation, Aβ deposition, and neuroinflammation. For neuroinflammation, isoorientin treatment reduced the number of activated microglia associated with Aβ-positive plaques, and in parallel reduced the levels of pro-inflammatory factors in the brains of APP/PS1 mice. Strikingly, isoorientin reversed deficits in synaptic long-term potentiation and spatial memory relevant to cognitive functions. Together, the findings suggest that isoorientin is a brain neuroprotector and may be a promising drug lead for treatment of AD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoqin Tan
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Zhibin Liang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Yingui Li
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yingkun Zhi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lang Yi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shasha Bai
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kelly H Forest
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - Robert A Nichols
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| |
Collapse
|
11
|
Abdel-Wahab BA, Ali FEM, Alkahtani SA, Alshabi AM, Mahnashi MH, Hassanein EHM. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacol Immunotoxicol 2020; 42:493-503. [PMID: 32865051 DOI: 10.1080/08923973.2020.1811307] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The fact that methotrexate (MTX) is hepatotoxic is an important reason to limit its clinical use. Rebamipide (REB) has antioxidant and anti-inflammatory properties and is useful for the treatment of gastro-duodenal ulcers. This study investigated the impact and protective mechanisms of REB against MTX-induced hepatotoxicity in rats. MATERIALS AND METHODS Animals were divided into four groups of six rats each: a control group, REB group (REB 100 mg/kg/day, orally), MTX control group (20 mg/kg, single i.p.), and MTX + REB group. RESULTS The administration of MTX induced marked hepatic injury in the form of hepatocyte inflammatory swelling, degeneration, apoptosis, and focal necrosis. In parallel, our biochemical investigations revealed a marked hepatic dysfunction associated with the disturbance of the oxidant/antioxidant balance in the group treated with only MTX. Moreover, MTX led to the down-regulation of the hepatic Nrf2 and Bcl-2 expressions along with a marked elevation in the hepatic NF-κβ-p65, GSK-3β, JAK1, STAT3, PUMA, and Bax expressions. On the other hand, co-treatment with REB significantly ameliorated the aforementioned histopathological, biochemical, and molecular defects caused by MTX treatment. CONCLUSION the outcomes of the present study showed REB's ability to protect from hepatic injury induced by MTX, possibly through its antioxidant, anti-inflammatory, and anti-apoptotic properties. These effects could be attributed to REB's ability to modulate, at least in part, the Nrf2/GSK-3β,NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2signaling pathways.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali M Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
12
|
Slim C, Zaouali MA, Nassrallah H, Ammar HH, Majdoub H, Bouraoui A, Abdennebi HB. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int J Biol Macromol 2020; 155:498-507. [PMID: 32243932 DOI: 10.1016/j.ijbiomac.2020.03.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
The necessity to increase the efficiency of organ preservation has pushed physicians to consider the use of pharmacological additives in preservation solutions to minimize ischemia reperfusion injury. Here, we evaluated the effect of fucoidan, sulfated polysaccharide from brown seaweed, as an additive to IGL-1 (Institut Georges Lopez) preservation solution. Livers from Wistar rats were preserved for 24 h at 4 °C in IGL-1 solution, enriched or not with fucoidan (100 mg/L). Thereafter, they were subjected to reperfusion (2 h, at 37 °C) using an isolated perfused rat liver model. The addition of fucoidan to IGL-1 solution reduced hepatic injury (AST, ALT) and improved liver function compared to IGL-1 solution without fucoidan. In addition, we noted a significant increase in the phosphorylation of AMPK, AKT protein kinase and GSK3-β, leading to a reduction in VDAC phosphorylation, as well as a reduction in apoptosis (caspase 3), mitochondrial damage, oxidative stress and endoplasmic reticulum (ER) stress markers. Furthermore, ERK1/2 and P38 MAPKs phosphorylation significantly decreased after supplementation of IGL-1 solution with fucoidan. In conclusion, the supplementation of IGL-1 solution with fucoidan maintained liver graft integrity and function through the prevention of the ER stress, oxidative stress and mitochondrial dysfunction. Fucoidan could be considered as potential natural therapeutic agent to alleviate graft injury.
Collapse
Affiliation(s)
- Chérifa Slim
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Tunisia
| | - Hana Nassrallah
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hiba Hadj Ammar
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratoire du Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| |
Collapse
|
13
|
Liu D, Gu Y, Pang Q, Han Q, Li A, Wu W, Zhang X, Shi Q, Zhu L, Yu H, Zhang Q. Vitamin C inhibits lipid deposition through GSK-3β/mTOR signaling in the liver of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:383-394. [PMID: 31782040 DOI: 10.1007/s10695-019-00727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, the mechanism that VC inhibits lipid deposition through GSK-3β/mTOR signaling was investigated in the liver of Danio rerio. The results indicated that 0.5- and 1.0-g/kg VC treatments activated mTOR signaling by inhibiting GSK-3β expression. The mRNA expression of FAS, ACC, and ACL, as well as the content of TG, TC, and NEFA, was decreased by 0.5- and 1.0-g/kg VC treatments. Moreover, to confirm GSK-3β playing a key role in regulating TSC2 and mTOR, GSK-3β RNA was interfered and the activity of GSK-3β was inhibited by 25- and 50-mg/L LiCl treatments, respectively. The results indicated that GSK-3β inactivation played a significant role in inducing mTOR signaling and inhibiting lipid deposition. VC treatments could induce mTOR signaling by inhibiting GSK-3β, and mTOR further participated in regulating lipid deposition by controlling lipid profile in the liver of zebrafish.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China.
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Yaqi Gu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qiang Han
- Research and Development Office, Sunwin Biotech Shandong Co., Ltd., Weifang, 262737, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Xiuzhen Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Qilong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Lanlan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang, 261061, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, China
| |
Collapse
|
14
|
Rogan MR, Patterson LL, Wang JY, McBride JW. Bacterial Manipulation of Wnt Signaling: A Host-Pathogen Tug-of-Wnt. Front Immunol 2019; 10:2390. [PMID: 31681283 PMCID: PMC6811524 DOI: 10.3389/fimmu.2019.02390] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
The host-pathogen interface is a crucial battleground during bacterial infection in which host defenses are met with an array of bacterial counter-mechanisms whereby the invader aims to make the host environment more favorable to survival and dissemination. Interestingly, the eukaryotic Wnt signaling pathway has emerged as a key player in the host and pathogen tug-of-war. Although studied for decades as a regulator of embryogenesis, stem cell maintenance, bone formation, and organogenesis, Wnt signaling has recently been shown to control processes related to bacterial infection in the human host. Wnt signaling pathways contribute to cell cycle control, cytoskeleton reorganization during phagocytosis and cell migration, autophagy, apoptosis, and a number of inflammation-related events. Unsurprisingly, bacterial pathogens have evolved strategies to manipulate these Wnt-associated processes in order to enhance infection and survival within the human host. In this review, we examine the different ways human bacterial pathogens with distinct host cell tropisms and lifestyles exploit Wnt signaling for infection and address the potential of harnessing Wnt-related mechanisms to combat infectious disease.
Collapse
Affiliation(s)
- Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Wang Y, Liu Y, Sun K, Wei Y, Fu L, Hou Z, Yi X, Ma D, Wang W, Jin X. The differential neuroprotection of HSP70-hom gene single nucleotide polymorphisms: In vitro (neuronal hypoxic injury model) and in vivo (rat MCAO model) studies. Gene 2019; 710:354-362. [PMID: 31170438 DOI: 10.1016/j.gene.2019.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/12/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022]
Abstract
To investigate the effect of HSP70-hom+2437 single nucleotide polymorphisms (SNPs) on hypoxia and ischemia condition, we constructed the neuronal hypoxic injury model and the rat middle cerebral artery occlusion (MCAO) model to compare the inhibition rate of neurons and detect the infarct volume as well as the expression of related apoptotic proteins in order to explore the possible mechanisms. The neuroblastoma cells SHSY5Y were divided into the OE (transfected with the C allele) group, OEmu (transfected with the T allele) group and negative control (NC, transfected with the empty lentiviral vector CON195) group. Varying degrees of hypoxia were induced by deferoxamine (DFO). The inhibition rate of hypoxic neurons and the expression of related apoptotic proteins were detected in the three genotype groups. While in the rat MCAO model, we built five groups including the sham group, the blank control group (injected with physiological saline), the negative control group (injected with lentivirus and physiological saline), the C allele group and the T allele group (injected with lentivirus overexpressing C and T allele). The MCAO model operation was then underwent in all five groups, the infarct volume by TTC staining and the expression of related apoptotic proteins were detected after 24 h. The results in neuronal hypoxic injury model showed a significant difference in the inhibition rate between the three groups (P < 0.05), and the average inhibition rates for the OEmu, OE and NC groups were 13.2%, 19.2% and 23.3%, respectively. The inhibition rates also differed between lower and higher DFO concentrations (P < 0.05). Compared with the NC group, Bax decreased significantly in the OE and OEmu groups, whereas PI3K and HSPA1L (HSP70-hom) increased. However, the expression of Bax in the OEmu group decreased significantly more than in the OE group, whereas PI3K and HSPA1L levels showed no difference between the two groups. Corresponding with the results above, overexpressing HSP70-hom could reduce the infarct volume of ischemic injury by TTC staining in rat MCAO model and the T allele group also had less infarct volume than C allele group. Compared with the sham group, blank control group and negative control group, Bax decreased significantly in the C and T allele groups, while HSPA1L and p- AKT increased. Furthermore, the expression of Bax in the T allele group decreased significantly more than that in the C allele group, while there were no significant differences in HSPA1L and p-AKT levels between the two groups. Therefore, the overexpression of HSP70-hom+2437 could play a protective role in hypoxic neurons and ischemic brain tissue by upregulating the expression of HSPA1L and PI3K/p-AKT and downregulating the expression of BAX. The neuroprotective effect of the T allele was stronger than that of the C allele, which may be related to the strengthened downregulation of BAX.
Collapse
Affiliation(s)
- Yipeng Wang
- Medical Examination Center, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yihuan Liu
- Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Kailin Sun
- Medical Examination Center, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yunhong Wei
- Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Linyao Fu
- Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Xuanzi Yi
- Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Dongyan Ma
- Medical Examination Center, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Wenju Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.
| | - Xingfang Jin
- Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.
| |
Collapse
|
16
|
Gu Y, Gao L, Han Q, Li A, Yu H, Liu D, Pang Q. GSK-3β at the Crossroads in Regulating Protein Synthesis and Lipid Deposition in Zebrafish. Cells 2019; 8:cells8030205. [PMID: 30823450 PMCID: PMC6468354 DOI: 10.3390/cells8030205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
In this study, the mechanism by which GSK-3β regulates protein synthesis and lipid deposition was investigated in zebrafish (Danio rerio). The vector of pEGFP-N1-GSK-3β was constructed and injected into the muscle of zebrafish. It was found that the mRNA and protein expression of tuberous sclerosis complex 2 (TSC2) was significantly increased. However, the mRNA and protein expression of mammalian target of rapamycin (mTOR), p70 ribosomal S6 kinase 1 (S6K1), and 4E-binding protein 1 (4EBP1) was significantly decreased by the pEGFP-N1-GSK-3β vector in the muscle of zebrafish. In addition, the mRNA and protein expression of β-catenin, CCAAT/enhancer binding protein α (C/EBPα), and peroxisome proliferators-activated receptor γ (PPARγ) was significantly decreased, but the mRNA expression of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL), and HMG-CoA reductase (HMGCR) was significantly increased by the pEGFP-N1-GSK-3β vector. The activity of FAS, ACC, ACL, and HMGCR as well as the content of triglyceride (TG), total cholesterol (TC), and nonesterified fatty acids (NEFA) were significantly increased by the pEGFP-N1-GSK-3β vector in the muscle of zebrafish. The content of free amino acids Arg, Lys, His, Phe, Leu, Ile, Val, and Thr was significantly decreased by the pEGFP-N1-GSK-3β vector. The results indicate that GSK-3β may participate in regulating protein synthesis via TSC2/mTOR signaling and regulating lipid deposition via β-catenin in the muscle of zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Yaqi Gu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Qiang Han
- Sunwei Biotech Shandong Co., Ltd., Weifang 261205, China.
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang 261061, China.
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
17
|
Discovery and anti-inflammatory evaluation of benzothiazepinones (BTZs) as novel non-ATP competitive inhibitors of glycogen synthase kinase-3β (GSK-3β). Bioorg Med Chem 2018; 26:5479-5493. [PMID: 30293796 DOI: 10.1016/j.bmc.2018.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has been identified to promote inflammation and its inhibitors have also been proven to treat some inflammatory mediated diseases in animal models. Non-ATP competitive inhibitors inherently have better therapeutical value due to their higher specificity than ATP competitive ones. In this paper, we designed and synthesized a series of new BTZ derivatives as non-ATP competitive GSK-3β inhibitors. Kinetic analysis revealed two typical compounds 6j and 3j showed the different non-ATP competitive mechanism of substrate competition or allosteric modulation to GSK-3β, respectively. As expected, the two compounds showed good specificity in a panel test of 16 protein kinases, even to the closest enzymes, like CDK-1/cyclin B and CK-II. The in vivo results proved that both compounds can greatly attenuate the LPS-induced acute lung injury (ALI) and diminish inflammation response in mice by inhibiting the mRNA expression of IL-1β and IL-6. Western blot analysis demonstrated that they negatively regulated GSK-3β, and the mechanism of the observed beneficial effects of the inhibitors may involve both the increased phosphorylation of the Ser9 residue on GSK-3β and protein expression of Sirtuin 1 (SIRT1). The results support that such novel BTZ compounds have a protective role in LPS-induced ALI, and might be attractive candidates for further development of inflammation pharmacotherapy, which greatly thanks to their inherently high selectivities by the non-ATP competitive mode of action. Finally, we proposed suggesting binding modes by Docking study to well explain the impacts of compounds on the target site.
Collapse
|
18
|
Yu X, Wang X, Zeng S, Tuo X. Protective effects of primary neural stem cell treatment in ischemic stroke models. Exp Ther Med 2018; 16:2219-2228. [PMID: 30186461 PMCID: PMC6122422 DOI: 10.3892/etm.2018.6466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Strokes are a major cause of neurological disability. Stem cell replacement therapy is a potential novel strategy of treating patients that have experienced strokes. The present study examined the protective role of neural stem cell (NSC) administration in oxygen-glucose deprivation (OGD) injury and ischemic stroke animal models. Primary cultured embryonic NSCs and brain microvascular endothelial cells were indirectly co-cultured for in vitro testing. A rat model of embolic middle cerebral artery occlusion (MCAO) was used to assess the morphological and functional changes that occur following treatment with NSCs. The role of the phosphoinositide 3-kinase/protein kinase b/glycogen synthase kinase 3β (PI3K/Akt/GSK-3β) signaling pathway in the neuroprotective effects of NSC treatment was also determined. It was demonstrated in vivo and in vitro that NSC administration may attenuate the brain injury caused by stroke. Furthermore, the results suggest that activation of PI3k/Akt/GSK-3β signaling pathway serves a role in attenuating OGD injury. Inflammation, synaptic remodeling and autophagy may be improved following NSC treatment and behavioral testing suggests that treatment with NSCs improves functional recovery in rats following MCAO.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Gerontology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaoqing Wang
- Department of Neurology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiping Tuo
- Department of Gerontology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Activation of the Wnt/β-Catenin Pathway by an Inflammatory Microenvironment Affects the Myogenic Differentiation Capacity of Human Laryngeal Mucosa Mesenchymal Stromal Cells. Stem Cells Dev 2018; 27:771-782. [DOI: 10.1089/scd.2017.0200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Jiang H, Ma Y, Fu L, Wang J, Wang L, Fan M, Huang K, Zhang Y, Peng H. Influence of lipopolysaccharides on autophagy and inflammation in pancreatic islet cells of mice fed by high-fat diet. EUR J INFLAMM 2018. [DOI: 10.1177/1721727x17754180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to confirm whether chronic low-grade inflammation could induce autophagy and damage in islet cells. The high-fat diet (HF) and low-dose lipopolysaccharides (LPS) were used to simulate chronic inflammation. Islet function was observed, the expression of autophagy-related proteins and the activity of glucose synthase kinase 3β (GSK-3β) were detected, and the role of autophagy in islet injury induced by inflammation was explored. Higher blood glucose was observed in HF group and LPS group compared with control (C) group, and there was no significant difference between LPS group and LiCl group. The apoptotic pancreatic islet cells in the LPS group were higher than in the HF and C groups, and the in the LiCl group they were higher than in the C group and lower than in the LPS group. Compared with the C group, LC3II/I ratio in the HF group was increased ( P < 0.05), in LPS and LiCl groups it was lower than in the HF group, and in LiCl group it was higher than in the LPS group. There was no significant difference between HF group and C group with regard to the ratio of p-GSK-3β/GSK-3β, but in the LiCl group it was higher than in the LPS group. The results demonstrated that low-grade inflammation might cause autophagy flux impaired through activation of GSK-3β, and induced islet cells damage. LiCl could play a role in protecting islet cells through autophagy enhancement.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yujin Ma
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liujun Fu
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jie Wang
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Linlei Wang
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Menglin Fan
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ke Huang
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yingyu Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Huifang Peng
- Department of Endocrinology, Key Laboratory of Endocrinology Genetic and Metabolic Diseases of Luoyang, Clinical Medicine Research Center for Endocrine and Metabolic Disease of Luoyang, Academician Workstation for Diabetic Kidney Disease Research of Henan Province, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
21
|
Mateus V, Rocha J, Alves P, Mota-Filipe H, Sepodes B, Pinto R. Thiadiazolidinone-8 Ameliorates Inflammation Associated with Experimental Colitis in Mice. Pharmacology 2017; 101:35-42. [PMID: 28965119 DOI: 10.1159/000471808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022]
Abstract
Thiadiazolidinone-8 (TDZD-8) is an effective thiadiazolidinone derivate that is able to suppress the expression of inflammatory cytokines; it also presents tissue protective actions by glycogen synthase kinase (GSK)-3β inhibition, promoting thus an anti-inflammatory effect. Since inflammatory bowel disease is a chronic disease with reduced quality of life, where currently available therapies are only able to induce or maintain the patient in remission, it is crucial to investigate new pharmacological approaches. The main objective of this study was to evaluate the effect of TDZD-8 in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Male CD-1 mice with TNBS-induced colitis were treated with a daily dose of TDZD-8 5 mg/kg/day IP during 4 days. The anti-inflammatory properties of TDZD-8 in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and myeloperoxidase, as well as by the significant increase of the anti-inflammatory cytokine, IL-10. These treated mice also presented a reduction in fecal hemoglobin and alkaline phosphatase, suggesting a beneficial effect of TDZD-8. Furthermore, renal and hepatic biomarkers remained stabilized after treatment. In conclusion, TDZD-8 reduces the inflammatory response associated with TNBS-induced colitis in mice, and modulation of GSK-3β seems to be an interesting pharmacological target in colitis.
Collapse
Affiliation(s)
- Vanessa Mateus
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Gao W, Zhao B, Liu L, Yuan Q, Wu X, Xia Z. Myocardial ischemic post-conditioning protects the lung against myocardial ischemia/reperfusion-induced damage by activating GSK-3β. Acta Cir Bras 2017; 32:376-387. [PMID: 28591367 DOI: 10.1590/s0102-865020170050000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate whether modulating GSK-3β could attenuate myocardial ischemia reperfusion injury (MIRI) induced acute lung injury (ALI) and analyze the underlying mechanism. Methods: Male SD rats were subjected to MIRI with or without myocardial ischemic post-conditioning in the presence or absence of GSK-3β inhibitor. GSK-3β inhibitor was injected peritoneally 10min before MIRI. Lung W/D weight ratio, MPO, PMNs, histopathological changes, TUNEL, Bax, Bcl-2, IL-6, IL-8, IL-10, GSK-3β, and caspase-3 were evaluated in the lung tissues of all rats. Results: After MIRI, lung injury was significantly increased manifested as significant morphological changes and increased leukocytes in the interstitial capillaries, Lung W/D ratio, MPO, and PMN in BALF, which was associated with enhanced inflammation evidenced by increased expressions of IL-6, IL-8 and reduced expression of IL-10. MIRI significantly increased cell apoptosis in the lung as increased levels of apoptotosis, Bax, cleaved caspase-3, and reduced expression of Bcl-2 was observed, which was concomitant with reduced p-GSK-3β. All these changes were reversed/prevented by ischemic post-conditioning, while these beneficial effects of ischemic post-conditioning were abolished by GSK-3β inhibition. Conclusion: Myocardial ischemia reperfusion injury induces acute lung injury by induction of inflammation and cell apoptosis. Ischemic post-conditioning protects the lung from ALI following MIRI by increasing p-GSK-3β.
Collapse
Affiliation(s)
- Wenwei Gao
- Doctor of Medicine, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China. Conception and design of the study, acquisition and interpretation of data, manuscript writing
| | - Bo Zhao
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Conception and design of the study, critical revision
| | - Lian Liu
- Master of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Quan Yuan
- Master of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Xiaojing Wu
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Zhongyuan Xia
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Design and supervised all phases of the study
| |
Collapse
|
23
|
Yi L, Huang X, Guo F, Zhou Z, Chang M, Huan J. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury. Front Cell Infect Microbiol 2017; 7:357. [PMID: 28824887 PMCID: PMC5543036 DOI: 10.3389/fcimb.2017.00357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.
Collapse
Affiliation(s)
- Lei Yi
- Department of Orthopedics, Shanghai Fengxian Central Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South CampusShanghai, China.,Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
24
|
Zaouali MA, Panisello A, Lopez A, Castro C, Folch E, Carbonell T, Rolo A, Palmeira CM, Garcia-Gil A, Adam R, Roselló-Catafau J. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int J Mol Sci 2017; 18:ijms18030591. [PMID: 28282906 PMCID: PMC5372607 DOI: 10.3390/ijms18030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the involvement of glycogen synthase kinase-3β (GSK3β) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3β and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3β. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3β and VDAC, contributing to ER stress reduction and cell death prevention.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
- Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia.
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Arnau Panisello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Emma Folch
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Anabela Rolo
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos Marques Palmeira
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | | | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| |
Collapse
|
25
|
Zhao B, Gao WW, Liu YJ, Jiang M, Liu L, Yuan Q, Hou JB, Xia ZY. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus. Neural Regen Res 2017; 12:1632-1639. [PMID: 29171428 PMCID: PMC5696844 DOI: 10.4103/1673-5374.217337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wen-Wei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ya-Jing Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Quan Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia-Bao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
27
|
Inhibition of glycogen synthase kinase-3β attenuates organ injury and dysfunction associated with liver ischemia-reperfusion and thermal injury in the rat. Shock 2016; 43:369-78. [PMID: 25394244 DOI: 10.1097/shk.0000000000000298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine-threonine kinase discovered decades ago to have an important role in glycogen metabolism. Today, we know that this kinase is involved in the regulation of many cell functions, including insulin signaling, specification of cell fate during embryonic development, and the control of cell division and apoptosis. Insulin and TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) are inhibitors of GSK-3β that have been shown to possess organ-protective effects in inflammatory-mediated organ injury models. We aimed to evaluate the cytoprotective effect of GSK-3β inhibition on rat models of liver ischemia-reperfusion and thermal injury. In the liver ischemia-reperfusion model, TDZD-8 and insulin were administered at 5 mg/kg (i.v.) and 1.4 IU/kg (i.v.), respectively, 30 min before induction of ischemia and led to the significant reduction of the serum concentration of aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, and lactate dehydrogenase. Beneficial effects were found to be independent from blood glucose levels. In the thermal injury model, TDZD-8 was administered at 5 mg/kg (i.v.) 5 min before induction of injury and significantly reduced multiple organ dysfunction markers (liver, neuromuscular, and lung). In the lung, TDZD-8 reduced the histological signs of tissue injury, inflammatory markers (cytokines), and neutrophil chemotaxis/infiltration; reduced GSK-3β, nuclear factor-κB, and Akt activation; reduced caspase-3 and metalloproteinase-9 activation. Our study provides a new insight on the beneficial effects of GSK-3β inhibition on systemic inflammation and further elucidates the mechanism and pathway crosstalks by which TDZD-8 reduces the multiple organ injury elicited by thermal injury.
Collapse
|
28
|
Abstract
Background: Diabetes aggravates brain injury after cerebral ischemia/reperfusion (I/R). Objective: To investigate whether limb I/R causes cerebral injury in a rat diabetes model and whether glycogen synthase kinase-3β (GSK-3β) is involved. Methods: Male adult Sprague-Dawley rats were assigned into streptozotocin-induced diabetes (n = 30; blood glucose ≥16.7 mmol/L) or control (n = 20) groups, further subdivided into diabetes I/R (3-hour femoral artery/vein clamping), diabetes-I/R + TDZD-8 (I/R plus GSK-3β inhibitor), diabetes-sham, control-sham and control-I/R groups (n = 10 each). Cortical and hippocampal morphology (hematoxylin/eosin); hippocampal CA1 apoptosis (TUNEL assay); cleaved caspase-3 (apoptosis), and Iba1 (microglial activation) protein expression (immunohistochemistry); phosphorylated/total GSK-3β and nuclear factor-κB (NF-κB) protein levels (Western blotting); and serum and brain tissue tumor necrosis factor (TNF)-α levels (enzyme-linked immunosorbent assay) were analyzed. Results: The diabetes-I/R group showed greater cortical and hippocampal injury, apoptosis, cleaved caspase-3 expression and Iba1 expression than the control-I/R group; TDZD-8 reduced injury/apoptosis and cleaved caspase-3/Iba1 expressions. The diabetes-I/R group had lower p-GSK-3β and p-NF-κBp65 expression than the control-I/R group (P < 0.05); TDZD-8 increased p-GSK-3β expression but decreased p-NF-κBp65 expression (P < 0.05). The diabetes-I/R group showed higher elevation of serum and brain tissue TNF-α than the control-I/R group (P < 0.05); TDZD-8 reduced TNF-α production. Conclusions: Diabetes exacerbates limb I/R-induced cerebral damage and activates NF-κB and GSK-3β.
Collapse
|
29
|
Singh SP, Tao S, Fields TA, Webb S, Harris RC, Rao R. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech 2015; 8:931-40. [PMID: 26092126 PMCID: PMC4527294 DOI: 10.1242/dmm.020511] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. Summary: GSK3 promotes renal fibrosis by activation of TGF-β signaling, and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.
Collapse
Affiliation(s)
- Shailendra P Singh
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Shixin Tao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Timothy A Fields
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Sydney Webb
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reena Rao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| |
Collapse
|
30
|
GSK-3β inhibition attenuates CLP-induced liver injury by reducing inflammation and hepatic cell apoptosis. Mediators Inflamm 2014; 2014:629507. [PMID: 25525303 PMCID: PMC4265684 DOI: 10.1155/2014/629507] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/25/2014] [Indexed: 02/04/2023] Open
Abstract
Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK-) 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP), and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB) but enhanced the transcriptional activity of cAMP response element binding protein (CREB) in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.
Collapse
|
31
|
Xing XS, Liu F, He ZY. Akt regulates β-catenin in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 2014; 11:3122-8. [PMID: 25435199 DOI: 10.3892/mmr.2014.3000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the effects of the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway on the Wnt/β‑catenin signaling pathway in rats with focal cerebral ischemia‑reperfusion injury. A total of 96 rat focal cerebral ischemia‑reperfusion models, established according to a modified version of Longa's method, were randomly divided into four groups: Sham‑operated (S), cerebral ischemia‑reperfusion injury (I), cerebral ischemia‑reperfusion + basic fibroblast growth factor (bFGF) post‑processing and, finally, cerebral ischemia‑reperfusion + bFGF post‑processing + PI3K inhibitor LY294002 (LY). Each group consisted of 24 rats and each group was divided into four subgroups according to the indicated reperfusion times of 12, 24, 48 and 72 h. The morphological changes of the cortical tissue and the cellular apoptosis were determined using hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase dUTP nick end labeling method, respectively. The expression levels of phosphorylated (p‑)Akt, glycogen synthase kinase‑3β (GSK‑3β) mRNA and β‑catenin in the cortical tissue were detected at different time‑points. The number of apoptotic cells and the expression levels of p‑Akt, GSK‑3β mRNA and β‑catenin in the I and LY groups were significantly higher compared with those in the S group (P<0.05). In the bFGF group, the number of apoptotic cells and the mRNA expression levels of GSK‑3β were significantly decreased, whereas the expression levels of p‑Akt and β‑catenin were significantly increased compared with those in the I and LY groups (P<0.05). In cerebral ischemia‑reperfusion injury, the PI3K/Akt signaling pathway regulated β‑catenin, the main member of the Wnt signaling pathway, via GSK‑3β, providing information to assist in further investigation of the mechanism of β‑catenin in ischemia‑reperfusion injury.
Collapse
Affiliation(s)
- Xue-Song Xing
- Department of Neurology, Shenyang Medical College, Fengtian Hospital, Shenyang, Liaoning 110024, P.R. China
| | - Fang Liu
- Department of Neurology, Shenyang Medical College, Fengtian Hospital, Shenyang, Liaoning 110024, P.R. China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Lakshmanan J, Zhang B, Nweze IC, Du Y, Harbrecht BG. Glycogen Synthase Kinase 3 Regulates IL-1β Mediated iNOS Expression in Hepatocytes by Down-Regulating c-Jun. J Cell Biochem 2014; 116:133-41. [DOI: 10.1002/jcb.24951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 08/22/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jaganathan Lakshmanan
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Baochun Zhang
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Ikenna C. Nweze
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Yibo Du
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| | - Brian G. Harbrecht
- Hiram C. Polk Jr., MD; Department of Surgery and Price Institute of Surgical Research; School of Medicine; University of Louisville; Louisville 40202 Kentucky
| |
Collapse
|
33
|
Ratilal BO, Rocha JPF, Fernandes AMA, Arroja MMC, Barateiro AP, Brites DMTO, Pinto RMA, Sepodes BMN, Mota-Filipe HD. TDZD-8 pre-treatment in transient middle cerebral artery occlusion. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Vogt JA, Wachter U, Wagner K, Calzia E, Gröger M, Weber S, Stahl B, Georgieff M, Asfar P, Fontaine E, Radermacher P, Leverve XM, Wagner F. Effects of glycemic control on glucose utilization and mitochondrial respiration during resuscitated murine septic shock. Intensive Care Med Exp 2014; 2:19. [PMID: 26266919 PMCID: PMC4678133 DOI: 10.1186/2197-425x-2-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Background This study aims to test the hypothesis whether lowering glycemia improves mitochondrial function and thereby attenuates apoptotic cell death during resuscitated murine septic shock. Methods Immediately and 6 h after cecal ligation and puncture (CLP), mice randomly received either vehicle or the anti-diabetic drug EMD008 (100 μg · g-1). At 15 h post CLP, mice were anesthetized, mechanically ventilated, instrumented and rendered normo- or hyperglycemic (target glycemia 100 ± 20 and 180 ± 50 mg · dL-1, respectively) by infusing stable, non-radioactive isotope-labeled 13C6-glucose. Target hemodynamics was achieved by colloid fluid resuscitation and continuous i.v. noradrenaline, and mechanical ventilation was titrated according to blood gases and pulmonary compliance measurements. Gluconeogenesis and glucose oxidation were derived from blood and expiratory glucose and 13CO2 isotope enrichments, respectively; mathematical modeling allowed analyzing isotope data for glucose uptake as a function of glycemia. Postmortem liver tissue was analyzed for HO-1, AMPK, caspase-3, and Bax (western blotting) expression as well as for mitochondrial respiratory activity (high-resolution respirometry). Results Hyperglycemia lowered mitochondrial respiratory capacity; EMD008 treatment was associated with increased mitochondrial respiration. Hyperglycemia decreased AMPK phosphorylation, and EMD008 attenuated both this effect as well as the expression of activated caspase-3 and Bax. During hyperglycemia EMD008 increased HO-1 expression. During hyperglycemia, maximal mitochondrial oxidative phosphorylation rate was directly related to HO-1 expression, while it was unrelated to AMPK activation. According to the mathematical modeling, EMD008 increased the slope of glucose uptake plotted as a function of glycemia. Conclusions During resuscitated, polymicrobial, murine septic shock, glycemic control either by reducing glucose infusion rates or EMD008 improved glucose uptake and thereby liver tissue mitochondrial respiratory activity. EMD008 effects were more pronounced during hyperglycemia and coincided with attenuated markers of apoptosis. The effects of glucose control were at least in part due to the up-regulation of HO-1 and activation of AMPK. Electronic supplementary material The online version of this article (doi:10.1186/2197-425X-2-19) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josef A Vogt
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Helmhotzstrasse 8-1, Ulm, 89081, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Verhees KJP, Pansters NAM, Baarsma HA, Remels AHV, Haegens A, de Theije CC, Schols AMWJ, Gosens R, Langen RCJ. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res 2013; 14:117. [PMID: 24180420 PMCID: PMC4176095 DOI: 10.1186/1465-9921-14-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover; two crucial processes that determine muscle mass. In the present study we investigated the effect of the selective GSK-3 inhibitor SB216763 on muscle mass in a guinea pig model of lipopolysaccharide (LPS)-induced pulmonary inflammation-associated muscle atrophy. METHODS Guinea pigs were pretreated with either intranasally instilled SB216763 or corresponding vehicle prior to each LPS/saline challenge twice weekly. Pulmonary inflammation was confirmed and indices of muscle mass were determined after 12 weeks. Additionally, cultured skeletal muscle cells were incubated with tumor necrosis factor α (TNF-α) or glucocorticoids (GCs) to model the systemic effects of pulmonary inflammation on myogenesis, in the presence or absence of GSK-3 inhibitors. RESULTS Repeated LPS instillation induced muscle atrophy based on muscle weight and muscle fiber cross sectional area. Intriguingly, GSK-3 inhibition using SB216763 prevented the LPS-induced muscle mass decreases and myofiber atrophy. Indices of protein turnover signaling were unaltered in guinea pig muscle. Interestingly, inhibition of myogenesis of cultured muscle cells by TNF-α or synthetic GCs was prevented by GSK-3 inhibitors. CONCLUSIONS In a guinea pig model of LPS-induced pulmonary inflammation, GSK-3 inhibition prevents skeletal muscle atrophy without affecting pulmonary inflammation. Resistance to inflammation- or GC-induced impairment of myogenic differentiation, imposed by GSK-3 inhibition, suggests that sustained myogenesis may contribute to muscle mass maintenance despite persistent pulmonary inflammation. Collectively, these results warrant further exploration of GSK-3 as a potential novel drug target to prevent or reverse muscle wasting in COPD.
Collapse
Affiliation(s)
- Koen J P Verhees
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre + (MUMC+), PO box 5800, 6202, AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schaale K, Brandenburg J, Kispert A, Leitges M, Ehlers S, Reiling N. Wnt6 Is Expressed in Granulomatous Lesions ofMycobacterium tuberculosis–Infected Mice and Is Involved in Macrophage Differentiation and Proliferation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5182-95. [DOI: 10.4049/jimmunol.1201819] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Kong X, Liu Y, Ye R, Zhu B, Zhu Y, Liu X, Hu C, Luo H, Zhang Y, Ding Y, Jin Y. GSK3β is a checkpoint for TNF-α-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta Gen Subj 2013; 1830:5119-29. [PMID: 23911749 DOI: 10.1016/j.bbagen.2013.07.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The fate and differentiation of mesenchymal stem cells (MSCs) depend on various microenvironmental cues. In chronic inflammatory bone disease, bone regeneration is inhibited. The present study therefore sought to identify the underlying molecule mechanisms. METHODS We isolated periodontal ligament stem cells (PDLSCs), a new population of MSCs, from the periodontal ligament tissues of periodontitis patients and healthy controls (p-PDLSCs and h-PDLSCs). The secretion of inflammatory cytokines, like TNF-α, IL-1β, IL-6 and IL-8, after LPS stimulation was measured by ELISA. The expressions of p-GSK3β and GSK3β in two types of PDLSCs were detected by Western blot. TOPFlash was used to assay the Tcf/Lef transcriptional activity. Knockdown of GSK3β by siRNA and over-expression of GSK3β by adenoviruses were performed to confirm the role of GSK3β in the impaired osteogenic differentiation of PDLSCs under inflammatory microenvironment. RESULTS We demonstrated that p-PDLSCs displayed impaired osteogenic capacity than h-PDLSCs. Upon inflammatory stimulation, monocytes, but not PDLSCs, released inflammatory cytokines among which TNF-α directly act on PDLSCs and suppressed their osteogenic differentiation. TNF-α induced the phosphorylation of GSK3β, the deactivated form of GSK3β, which increased nuclear β-catenin and Lef-1 accumulation, and eventually reduced the Runx2-associated osteogenesis in PDLSCs. Over-expression of GSK3β rescued osteogenesis in TNF-α-stimulated PDLSCs, whereas inactivation of GSK3β was sufficient to liberate the β-catenin/Lef-1/Runx2 pathway. CONCLUSION GSK3β plays an obligatory role in the TNF-α-mediated inhibition of osteogenesis in MSCs. GENERAL SIGNIFICANCE The strategy to target GSK3β may provide a potential approach to bone regeneration in inflammatory microenvironments.
Collapse
Affiliation(s)
- Xiangwei Kong
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China; Department of Stomatology, Nanjing Bayi Hospital, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen CL, Lin CF, Wan SW, Wei LS, Chen MC, Yeh TM, Liu HS, Anderson R, Lin YS. Anti–Dengue Virus Nonstructural Protein 1 Antibodies Cause NO-Mediated Endothelial Cell Apoptosis via Ceramide-Regulated Glycogen Synthase Kinase-3β and NF-κB Activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1744-52. [DOI: 10.4049/jimmunol.1201976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Abe T, Zhou P, Jackman K, Capone C, Casolla B, Hochrainer K, Kahles T, Ross ME, Anrather J, Iadecola C. Lipoprotein receptor-related protein-6 protects the brain from ischemic injury. Stroke 2013; 44:2284-2291. [PMID: 23743975 DOI: 10.1161/strokeaha.113.001320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Loss-of-function mutations of the lipoprotein receptor-related protein-6 (LRP6), a coreceptor in the Wingless-related integration site-β-catenin prosurvival pathway, have been implicated in myocardial ischemia and neurodegeneration. However, it remains to be established whether LRP6 is also involved in ischemic brain injury. We used LRP6+/- mice to examine the role of this receptor in the mechanisms of focal cerebral ischemia. METHODS Focal cerebral ischemia was induced by transient occlusion of the middle cerebral artery. Motor deficits and infarct volume were assessed 3 days later. Glycogen-synthase-kinase-3β (GSK-3β) phosphorylation was examined by Western blotting with phosphospecific antibodies, and the mitochondrial membrane potential changes induced by Ca2+ were also assessed. RESULTS LRP6+/- mice have larger stroke and more severe motor deficits, effects that were independent of intraischemic cerebral blood flow, vascular factors, or cytosolic β-catenin levels. Rather, LRP6 haploinsufficiency increased the activating phosphorylation and decreased the inhibitory phosphorylation of GSK-3β, a kinase involved in proinflammatory signaling and mitochondrial dysfunction. Accordingly, postischemic inflammatory gene expression was enhanced in LRP6+/- mice. Furthermore, the association of mitochondria with activated GSK-3β was increased in LRP6+/- mice, resulting in a reduction in the Ca2+ handling ability of mitochondria. The mitochondrial dysfunction was reversed by pharmacological inhibition of GSK-3β. CONCLUSIONS LRP6 activates an endogenous neuroprotective pathway that acts independently of β-catenin by controlling GSK-3β activity and preventing its deleterious mitochondrial and proinflammatory effects. The findings raise the possibility that emerging treatment strategies for diseases attributable to LRP6 loss-of-function mutations could also lead to new therapeutic avenues for ischemic stroke.
Collapse
Affiliation(s)
- Takato Abe
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Ping Zhou
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Katherine Jackman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Carmen Capone
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Barbara Casolla
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Karin Hochrainer
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Timo Kahles
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | | | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| |
Collapse
|
40
|
Feng Y, Xia Y, Yu G, Shu X, Ge H, Zeng K, Wang J, Wang X. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2
O2. J Neurochem 2013; 126:234-42. [DOI: 10.1111/jnc.12285] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/30/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ye Feng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yiyuan Xia
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Guang Yu
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiji Shu
- Department of Pathology & Pathophysiology; School of Medicine; Jianghan University; Wuhan China
| | - Haoliang Ge
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Kuan Zeng
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianzhi Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaochuan Wang
- Department of Pathophysiology; Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
41
|
Gong JH, Gong JP, Li JZ, He K, Li PZ, Jiang XW. Glycogen synthase kinase 3 inhibitor attenuates endotoxin-induced liver injury. J Surg Res 2013; 184:1035-44. [PMID: 23721934 DOI: 10.1016/j.jss.2013.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/05/2013] [Accepted: 04/22/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND/AIMS Endotoxin (lipopolysaccharide, LPS)-induced acute liver injury was attenuated by endotoxin tolerance (ET), which is characterized by phosphatidylinositol 3-kinase pathway/Akt signaling. Glycogen synthase kinase 3 (GSK-3) acts downstream of phosphatidylinositol 3-kinase pathway/Akt and GSK-3 inhibitor protects against organic injury. This study evaluates the hypothesis that ET attenuated LPS-induced liver injury through inhibiting GSK-3 functional activity and downstream signaling. METHODS Sprague-Dawley rats with or without low-dose LPS pretreatment were challenged with or without large dose of LPS and subsequently received studies. Serum tumor necrosis factor-alpha, interleukin-10, alanine aminotransferase, lactate dehydrogenase, and total bilirubin levels were analyzed, morphology of liver tissue was performed, glycogen content, myeloperoxidase content, phagocytosis activity of Kupffer cells, and the expression and inhibitory phosphorylation as well as kinase activity of GSK-3 were examined. Survival after LPS administration was also determined. RESULTS LPS induced significant increases of serum TNF-α, alanine aminotransferase, lactate dehydrogenase, and total bilirubin (P < 0.05), which were companied by obvious alterations in liver: the injury of liver tissue, the decrease of glycogen, the infiltration of neutrophils, and the enhancement of phagocytosis of Kupffer cells (P < 0.05). LPS pretreatment significantly attenuated these alterations, promoted the inhibitory phosphorylation of GSK-3 and inhibited its kinase activity, and improved the survival rate (P < 0.05). CONCLUSIONS ET attenuated LPS-induced acute liver injury through inhibiting GSK-3 functional activity and its downstream signaling.
Collapse
Affiliation(s)
- Jun-hua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
42
|
Dong M, Hu N, Hua Y, Xu X, Kandadi MR, Guo R, Jiang S, Nair S, Hu D, Ren J. Chronic Akt activation attenuated lipopolysaccharide-induced cardiac dysfunction via Akt/GSK3β-dependent inhibition of apoptosis and ER stress. Biochim Biophys Acta Mol Basis Dis 2013; 1832:848-63. [PMID: 23474308 DOI: 10.1016/j.bbadis.2013.02.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/03/2023]
Abstract
Sepsis is characterized by systematic inflammation and contributes to cardiac dysfunction. This study was designed to examine the effect of protein kinase B (Akt) activation on lipopolysaccharide-induced cardiac anomalies and underlying mechanism(s) involved. Mechanical and intracellular Ca²⁺ properties were examined in myocardium from wild-type and transgenic mice with cardiac-specific chronic Akt overexpression following LPS (4 mg/kg, i.p.) challenge. Akt signaling cascade (Akt, phosphatase and tensin homologue deleted on chromosome ten, glycogen synthase kinase 3 beta), stress signal (extracellular-signal-regulated kinases, c-Jun N-terminal kinases, p38), apoptotic markers (Bcl-2 associated X protein, caspase-3/-9), endoplasmic reticulum (ER) stress markers (glucose-regulated protein 78, growth arrest and DNA damage induced gene-153, eukaryotic initiation factor 2α), inflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6) and autophagic markers (Beclin-1, light chain 3B, autophagy-related gene 7 and sequestosome 1) were evaluated. Our results revealed that LPS induced marked decrease in ejection fraction, fractional shortening, cardiomyocyte contractile capacity with dampened intracellular Ca²⁺ release and clearance, elevated reactive oxygen species (ROS) generation and decreased glutathione and glutathione disulfide (GSH/GSSG) ratio, increased ERK, JNK, p38, GRP78, Gadd153, eIF2α, BAX, caspase-3 and -9, downregulated B cell lymphoma 2 (Bcl-2), the effects of which were significantly attenuated or obliterated by Akt activation. Akt activation itself did not affect cardiac contractile and intracellular Ca²⁺ properties, ROS production, oxidative stress, apoptosis and ER stress. In addition, LPS upregulated levels of Beclin-1, LC3B and Atg7, while suppressing p62 accumulation. Akt activation did not affect Beclin-1, LC3B, Atg7 and p62 in the presence or absence of LPS. Akt overexpression promoted phosphorylation of Akt and GSK3β. In vitro study using the GSK3β inhibitor SB216763 mimicked the response elicited by chronic Akt activation. Taken together, these data showed that Akt activation ameliorated LPS-induced cardiac contractile and intracellular Ca²⁺ anomalies through inhibition of apoptosis and ER stress, possibly involving an Akt/GSK3β-dependent mechanism.
Collapse
Affiliation(s)
- Maolong Dong
- Department of Burn and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Regulatory role of GSK-3 β on NF- κ B, nitric oxide, and TNF- α in group A streptococcal infection. Mediators Inflamm 2013; 2013:720689. [PMID: 23533310 PMCID: PMC3603300 DOI: 10.1155/2013/720689] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β (GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3β in GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3β occurred after GAS infection, and inhibition of GSK-3β reduced iNOS expression and NO production. Furthermore, GSK-3β inhibitors reduced NF-κB activation and subsequent TNF-α production, which indicates that GSK-3β acts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3β inhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-α and improved the survival rate. The inhibition of GSK-3β to moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.
Collapse
|
44
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
45
|
Stollenwerk MM, Lasson Å, Andersson R. Active site–inactivated factor VIIa inhibits nuclear factor kappa B activation in intestinal ischemia and reperfusion. J Surg Res 2012; 178:692-9. [PMID: 22920553 DOI: 10.1016/j.jss.2012.07.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/19/2012] [Accepted: 07/20/2012] [Indexed: 11/17/2022]
|
46
|
Baban B, Liu JY, Mozaffari MS. Pressure overload regulates expression of cytokines, γH2AX, and growth arrest- and DNA-damage inducible protein 153 via glycogen synthase kinase-3β in ischemic-reperfused hearts. Hypertension 2012; 61:95-104. [PMID: 23108649 DOI: 10.1161/hypertensionaha.111.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growth arrest- and DNA-damage inducible protein 153 (GADD153) regulates both apoptosis and inflammatory response. Importantly, glycogen synthase kinase-3β (GSK-3β) may provide a mechanistic link for cellular expression of GADD153, inflammatory response, and cell death. We previously showed that pressure overload exacerbates myocardial ischemia reperfusion injury associated with significant reduction in phosphorylated (inactive) GSK-3β. This raises the possibility that pressure overload, through a GSK-3β-dependent mechanism, increases GADD153 expression, thereby upregulating inflammatory cytokine production and contributing to worsening of myocardial ischemia reperfusion injury. Accordingly, Langendorff-perfused rat hearts were subjected to global ischemia reperfusion protocol in the absence or presence of the GSK-3β inhibitor, lithium chloride (1 mmol/L), with perfusion pressure set at 80 or 160 cmH(2)O; normoxic hearts served as controls. Compared with normoxia, an ischemia reperfusion insult increased expressions of proinflammatory cytokines, γH2AX, and GADD153 in association with increased cell death. In the ischemic-reperfused hearts, pressure overload did the following: (1) reduced interleukin-10 but increased interleukin-17 (cardiomyocytes), without affecting interleukin-23; (2) increased expressions of γH2AX and GADD153; (3) decreased 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) aggregates but increased JC-1 monomers (suggestive of reduced mitochondrial membrane potential, ψ(m)); and (4) increased annexin V immunostaining as well as apoptotic and necrotic cell death. Treatment with lithium chloride caused a robust increase in interleukin-10, preserved ψ(m), and markedly decreased all other parameters with the effect being most prominent for hearts perfused at the high pressure. In conclusion, pressure overload, via a GSK-3β-dependent mechanism, exacerbates cell death in the isolated ischemic-reperfused heart involving regulation of inflammatory response, DNA injury, and GADD153 expression.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
47
|
Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y. Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1414-25. [PMID: 22863953 PMCID: PMC3463628 DOI: 10.1016/j.ajpath.2012.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK) 3β has been identified as a regulator of immune responses. We demonstrated previously that GSK3β inhibition in human brain microvascular endothelial cells (BMVECs) reduced monocyte adhesion/migration across BMVEC monolayers. Herein, we tested the idea that GSK3β inhibition in monocytes can diminish their ability to engage the brain endothelium and migrate across the blood-brain barrier. Pretreatment of primary monocytes with GSK3β inhibitors resulted in a decrease in adhesion (60%) and migration (85%), with similar results in U937 monocytic cells. Monocyte-BMVEC interactions resulted in diminished barrier integrity that was reversed by GSK3β suppression in monocytic cells. Because integrins mediate monocyte rolling/adhesion, we detected the active conformational form of very late antigen 4 after stimulation with a peptide mimicking monocyte engagement by vascular cell adhesion molecule-1. Peptide stimulation resulted in a 14- to 20-fold up-regulation of the active form of integrin in monocytes that was suppressed by GSK3β inhibitors (40% to 60%). Because small GTPases, such as Rac1, control leukocyte movement, we measured active Rac1 after monocyte activation with relevant stimuli. Stimulation enhanced the level of active Rac1 that was diminished by GSK3β inhibitors. Monocytes treated with GSK3β inhibitors showed increased levels of inhibitory sites of the actin-binding protein, cofilin, and vasodilator-stimulated phosphoprotein-regulating conformational changes of integrins. These results indicate that GSK3β inhibition in monocytes affects active integrin expression, cytoskeleton rearrangement, and adhesion via suppression of Rac1-diminishing inflammatory leukocyte responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Die L, Yan P, Jun Jiang Z, Min Hua T, Cai W, Xing L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol Immunol 2012; 52:38-49. [PMID: 22580404 DOI: 10.1016/j.molimm.2012.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 12/25/2022]
Abstract
Bone-forming osteoblasts have been recently reported capable of expressing the critical co-stimulatory molecule CD40 upon exposure to bacterial infection, which supports the unappreciated role of osteoblasts in modulating bone inflammation. Recent studies highlight the anti-inflammatory potential of glycogen synthase kinase-3β (GSK-3β) inhibitors; however, their effect on osteoblasts remains largely unclear. In the present study, we showed that treatment with SB216763, a highly specific GSK-3β inhibitor, resulted in a dose-dependent decrease in the mRNA and protein expression of CD40, as well as production of pro-inflammatory cytokines IL-6, TNF-α and IL-1β, in the Porphyromonas gingivalis-lipopolysaccharide (LPS)-stimulated murine osteoblastic-like MC3T3-E1 cells. Furthermore, inhibition of GSK-3β remarkably represses the LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway by suppressing IκBα phosphorylation, NF-κBp65 nuclear translocation, and NF-κBp65 DNA binding activity. Closer investigation by immunoprecipitation assay revealed that β-catenin can physically interact with NF-κBp65. The negative regulation effect of GSK-3β inhibitor on CD40 expression is mediated through β-catenin, for siRNA of β-catenin attenuated the GSK-3β inhibitor-induced repression of NF-κB activation and, consequently, the expression of CD40 and production of pro-inflammatory cytokines in LPS-stimulated MC3T3-E1 cells. Thus our results elucidate the molecular mechanisms whereby GSK-3β inhibitor prevents the LPS-induced CD40 expression on osteoblasts and provide supportive evidence of the potential role of GSK-3β inhibitors in suppressing the immune function of osteoblasts in inflammatory bone diseases.
Collapse
Affiliation(s)
- Liu Die
- Sichuan University, State Key Laboratory of Oral Disease, West China College of Stomatology, 14 Renminnan Road, Chengdu 610041, Sichuan, China.
| | | | | | | | | | | |
Collapse
|
49
|
Tsai CC, Huang WC, Chen CL, Hsieh CY, Lin YS, Chen SH, Yang KC, Lin CF. Glycogen synthase kinase-3 facilitates con a-induced IFN-γ-- mediated immune hepatic injury. THE JOURNAL OF IMMUNOLOGY 2011; 187:3867-77. [PMID: 21873526 DOI: 10.4049/jimmunol.1100770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune hepatic injury induced by Con A results primarily from IFN-γ-mediated inflammation, followed by hepatic cell death. Glycogen synthase kinase (GSK)-3, which acts proapoptotically and is proinflammatory, is also important for facilitating IFN-γ signaling. We hypothesized a pathogenic role for GSK-3 in Con A hepatic injury. Con A stimulation caused GSK-3 activation in the livers of C57BL/6 mice. Inhibiting GSK-3 reduced Con A hepatic injury, including hepatic necrosis and apoptosis, inflammation, infiltration of T cells and granulocytes, and deregulated expression of adhesion molecule CD54. Con A induced hepatic injury in an IFN-γ receptor 1-dependent manner. Con A/IFN-γ induced activation and expression of STAT1 in a GSK-3-dependent manner. GSK-3 facilitated IFN-γ-induced inducible NO synthase, but had limited effects on CD95 upregulation and CD95-mediated hepatocyte apoptosis in vitro. Notably, inhibiting GSK-3 decreased Con A-induced IFN-γ production in both wild-type and IFN-γ receptor 1-deficient C57BL/6 mice. In Con A-activated NKT cells, GSK-3 was also activated and was required for nuclear translocation of T-box transcription factor Tbx21, a transcription factor of IFN-γ, but it was not required for CD95 ligand expression or activation-induced cell death. These results demonstrate the dual and indispensable role of GSK-3 in Con A hepatic injury by facilitating IFN-γ-induced hepatopathy.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Martinez A, Gil C, Perez DI. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer's disease treatment. Int J Alzheimers Dis 2011; 2011:280502. [PMID: 21760986 PMCID: PMC3132520 DOI: 10.4061/2011/280502] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3), a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD) being probably the link between β-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.
Collapse
Affiliation(s)
- Ana Martinez
- Instituto de Química Médica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | |
Collapse
|