1
|
Omori K, Qi M, Salgado M, Gonzalez N, Hui LT, Chen KT, Rawson J, Miao L, Komatsu H, Isenberg JS, Al-Abdullah IH, Mullen Y, Kandeel F. A scalable human islet 3D-culture platform maintains cell mass and function long-term for transplantation. Am J Transplant 2024; 24:177-189. [PMID: 37813189 DOI: 10.1016/j.ajt.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained β cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lauren T Hui
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
The challenge of HLA donor specific antibodies in the management of pancreatic islet transplantation: an illustrative case-series. Sci Rep 2022; 12:12463. [PMID: 35864198 PMCID: PMC9304358 DOI: 10.1038/s41598-022-16782-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Islet transplantation is a unique paradigm in organ transplantation, since multiple donors are required to achieve complete insulin-independence. Preformed or de novo Donor Specific Antibodies (DSA) may target one or several donor islets, which adds complexity to the analysis of their impact. Adult patients with type 1 diabetes transplanted with pancreatic islets between 2005 and 2018 were included in a single-center observational study. Thirty-two recipients with available sera tested by solid-phase assays for anti-HLA antibodies during their whole follow-up were analyzed. Twenty-five recipients were islet-transplantation-alone recipients, and 7 islet-after-kidney recipients. Seven recipients presented with DSA at any time during follow-up (two with preformed DSA only, one with preformed and de novo DSA, 4 with de novo DSA only). Only islet-transplantation-alone recipients presented with de novo DSA. Three clinical trajectories were identified according to: 1/the presence of preformed DSA, 2/early de novo DSA or 3/late de novo DSA. Only late de novo DSA were associated with unfavorable outcomes, depicted by a decrease of the β-score. Islet transplantation with preformed DSA, even with high MFI values, is associated with favorable outcomes in our experience. On the contrary, de novo DSA, and especially late de novo DSA, may be associated with allograft loss.
Collapse
|
3
|
Buron F, Reffet S, Badet L, Morelon E, Thaunat O. Immunological Monitoring in Beta Cell Replacement: Towards a Pathophysiology-Guided Implementation of Biomarkers. Curr Diab Rep 2021; 21:19. [PMID: 33895937 DOI: 10.1007/s11892-021-01386-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Grafted beta cells are lost because of recurrence of T1D and/or allograft rejection, two conditions diagnosed with pancreas graft biopsy, which is invasive and impossible in case of islet transplantation. This review synthetizes the current pathophysiological knowledge and discusses the interest of available immune biomarkers. RECENT FINDINGS Despite the central role of auto-(recurrence of T1D) and allo-(T-cell mediated rejection) immune cellular responses, the latter are not directly monitored in routine. In striking contrast, there have been undisputable progresses in monitoring of auto and alloantibodies. Except for pancreas recipients in whom anti-donor HLA antibodies can be directly responsible for antibody-mediated rejection, autoantibodies (and alloantibodies in islet recipients) have no direct pathogenic effect. However, their fluctuation offers a surrogate marker for the activation status of T cells (because antibody generation depends on T cells). This illustrates the necessity to understand the pathophysiology when interpreting a biomarker and selecting the appropriate treatment.
Collapse
Affiliation(s)
- Fanny Buron
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France
| | - Sophie Reffet
- Department of Endocrinology and Diabetes, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Lionel Badet
- Department of Urology and Transplantation surgery, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69003, Lyon, France.
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France.
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.
| |
Collapse
|
4
|
Han EX, Wang J, Kural M, Jiang B, Leiby KL, Chowdhury N, Tellides G, Kibbey RG, Lawson JH, Niklason LE. Development of a Bioartificial Vascular Pancreas. J Tissue Eng 2021; 12:20417314211027714. [PMID: 34262686 PMCID: PMC8243137 DOI: 10.1177/20417314211027714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.
Collapse
Affiliation(s)
- Edward X Han
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Juan Wang
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Mehmet Kural
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Department of Vascular Surgery, The
First Hospital of China Medical University, Shenyang, China
| | - Katherine L Leiby
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Nazar Chowdhury
- Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA
| | - George Tellides
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Surgery, Yale School of
Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare
System, West Haven, CT, USA
| | - Richard G Kibbey
- Department of Internal Medicine
(Endocrinology), Yale University, New Haven, CT, USA
- Department of Cellular & Molecular
Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey H Lawson
- Department of Surgery, Duke
University, Durham, NC, USA
- Humacyte Inc., Durham, NC, USA
| | - Laura E Niklason
- Department of Biomedical Engineering,
Yale School of Engineering and Applied Science, New Haven, CT, USA
- Vascular Biology and Therapeutics
Program, Yale School of Medicine, New Haven, CT, USA
- Department of Anesthesiology, Yale
School of Medicine, New Haven, CT, USA
- Humacyte Inc., Durham, NC, USA
| |
Collapse
|
5
|
Chen CC, Pouliquen E, Broisat A, Andreata F, Racapé M, Bruneval P, Kessler L, Ahmadi M, Bacot S, Saison-Delaplace C, Marcaud M, Van Huyen JPD, Loupy A, Villard J, Demuylder-Mischler S, Berney T, Morelon E, Tsai MK, Kolopp-Sarda MN, Koenig A, Mathias V, Ducreux S, Ghezzi C, Dubois V, Nicoletti A, Defrance T, Thaunat O. Endothelial chimerism and vascular sequestration protect pancreatic islet grafts from antibody-mediated rejection. J Clin Invest 2017; 128:219-232. [PMID: 29202467 DOI: 10.1172/jci93542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Humoral rejection is the most common cause of solid organ transplant failure. Here, we evaluated a cohort of 49 patients who were successfully grafted with allogenic islets and determined that the appearance of donor-specific anti-HLA antibodies (DSAs) did not accelerate the rate of islet graft attrition, suggesting resistance to humoral rejection. Murine DSAs bound to allogeneic targets expressed by islet cells and induced their destruction in vitro; however, passive transfer of the same DSAs did not affect islet graft survival in murine models. Live imaging revealed that DSAs were sequestrated in the circulation of the recipients and failed to reach the endocrine cells of grafted islets. We used murine heart transplantation models to confirm that endothelial cells were the only accessible targets for DSAs, which induced the development of typical microvascular lesions in allogeneic transplants. In contrast, the vasculature of DSA-exposed allogeneic islet grafts was devoid of lesions because sprouting of recipient capillaries reestablished blood flow in grafted islets. Thus, we conclude that endothelial chimerism combined with vascular sequestration of DSAs protects islet grafts from humoral rejection. The reduced immunoglobulin concentrations in the interstitial tissue, confirmed in patients, may have important implications for biotherapies such as vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Chien-Chia Chen
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France
| | - Eric Pouliquen
- Edouard Herriot University Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Alexis Broisat
- French National Institute of Health and Medical Research (INSERM) Unit 1039, Grenoble, France; Bioclinical Radiopharmaceutical Laboratory, Joseph Fourier University (Grenoble 1), Grenoble, France
| | - Francesco Andreata
- French National Institute of Health and Medical Research (INSERM) Unit 1148, Laboratory of Vascular Translational Science, F-75018, Paris, France; Paris Diderot University, Paris, France
| | - Maud Racapé
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, Paris, France
| | - Patrick Bruneval
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, Paris, France
| | - Laurence Kessler
- Department of Diabetology, University Hospital, Strasbourg, France; Federation of Translational Medicine of Strasbourg, University of Strasbourg, Strasbourg, France.,Groupe Rhin-Rhône-Alpes-Genève pour la Greffe d'Ilots de Langerhans (GRAGIL) Consortium
| | - Mitra Ahmadi
- French National Institute of Health and Medical Research (INSERM) Unit 1039, Grenoble, France; Bioclinical Radiopharmaceutical Laboratory, Joseph Fourier University (Grenoble 1), Grenoble, France
| | - Sandrine Bacot
- French National Institute of Health and Medical Research (INSERM) Unit 1039, Grenoble, France; Bioclinical Radiopharmaceutical Laboratory, Joseph Fourier University (Grenoble 1), Grenoble, France
| | - Carole Saison-Delaplace
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France.,Edouard Herriot University Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Marina Marcaud
- Edouard Herriot University Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Jean-Paul Duong Van Huyen
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, Paris, France
| | - Alexandre Loupy
- Paris Translational Research Centre for Organ Transplantation, Paris Descartes University, Paris, France.,Department of Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean Villard
- Department of Immunology and Allergy and Department of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Sandrine Demuylder-Mischler
- Department of Surgery, Islet Isolation, and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Thierry Berney
- Groupe Rhin-Rhône-Alpes-Genève pour la Greffe d'Ilots de Langerhans (GRAGIL) Consortium.,Department of Surgery, Islet Isolation, and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Emmanuel Morelon
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France.,Edouard Herriot University Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France.,Groupe Rhin-Rhône-Alpes-Genève pour la Greffe d'Ilots de Langerhans (GRAGIL) Consortium.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Meng-Kun Tsai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | | | - Alice Koenig
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, Lyon, France
| | | | - Catherine Ghezzi
- French National Institute of Health and Medical Research (INSERM) Unit 1039, Grenoble, France; Bioclinical Radiopharmaceutical Laboratory, Joseph Fourier University (Grenoble 1), Grenoble, France
| | - Valerie Dubois
- French National Blood Service (EFS), HLA Laboratory, Lyon, France
| | - Antonino Nicoletti
- French National Institute of Health and Medical Research (INSERM) Unit 1148, Laboratory of Vascular Translational Science, F-75018, Paris, France; Paris Diderot University, Paris, France
| | - Thierry Defrance
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France
| | - Olivier Thaunat
- French National Institute of Health and Medical Research (INSERM) Unit 1111, Lyon, France.,Edouard Herriot University Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France.,Groupe Rhin-Rhône-Alpes-Genève pour la Greffe d'Ilots de Langerhans (GRAGIL) Consortium.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
6
|
Delaune V, Toso C, Benhamou PY, Wojtusciszyn A, Kessler L, Slits F, Demuylder-Mischler S, Pernin N, Lablanche S, Orci LA, Oldani G, Morel P, Berney T, Lacotte S. Alloimmune Monitoring After Islet Transplantation: A Prospective Multicenter Assessment of 25 Recipients. Cell Transplant 2016; 25:2259-2268. [PMID: 27302287 DOI: 10.3727/096368916x692023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Islet transplantation is an effective treatment for selected patients with type 1 diabetes. However, an accurate test still lacks for the early detection of graft rejection. Blood samples were prospectively collected in four university centers (Geneva, Grenoble, Montpellier, and Strasbourg). Peripheral blood mononuclear cells were stimulated with donor splenocytes in the presence of interleukin-2. After 24 h of incubation, interferon- (IFN-) ELISpot analysis was performed. After a total of 5 days of incubation, cell proliferation was assessed by fluorescence-activated cell sorting (FACS) analysis for Ki-67. Immunological events were correlated with adverse metabolic events determined by loss of 1 point of -score and/or an increased insulin intake 10%. Twenty-five patients were analyzed; 14 were recipients of islets alone, and 11 combined with kidney. Overall, 76% (19/25) reached insulin independence at one point during a mean follow-up of 30.7 months. IFN- ELISpot showed no detectable correlation with adverse metabolic events [area under the curve (AUC)=0.57]. Similarly, cell proliferation analysis showed no detectable correlation with adverse metabolic events (CD3+/CD4+ AUC=0.54; CD3+/CD8+ AUC=0.55; CD3/CD56+ AUC=0.50). CD3/CD56+ cell proliferation was significantly higher in patients with combined kidney transplantation versus islet alone (6 months, p=0.010; 12 months, p=0.016; and 24 months, p=0.018). Donor antigen-stimulated IFN- production and cell proliferation do not predict adverse metabolic events after islet transplantation. This suggests that the volume of transplanted islets is too small to produce a detectable systemic immune response and/or that alloimmune rejection is not the sole reason for the loss of islet graft function.
Collapse
|
7
|
Monti P, Vignali D, Piemonti L. Monitoring Inflammation, Humoral and Cell-mediated Immunity in Pancreas and Islet Transplants. Curr Med Chem 2015; 11:135-43. [PMID: 25777058 PMCID: PMC5398085 DOI: 10.2174/1573399811666150317125820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is caused by the chronic autoimmune destruction of insulin producing beta cells. Beta cell replacement therapy through whole pancreas or islet transplantation is a therapeutic option for patients in which a stable glucose control is not achievable with exogenous insulin therapy. Long-term insulin independence is, however, hampered by the recipient immune response that includes activation of inflammatory pathways and specific allo- and autoimmunity. The identification and monitoring of soluble and cellular biomarkers are of critical relevance for the prediction of graft damage, for the evaluation of responses to immune-modulating therapy, and for target pathways identification to generate novel drugs or therapeutic approaches. The final objective of immune monitoring is to find ways to improve the outcome of pancreas and islet transplantation. In this review, we discuss the available tools to monitor the innate, humoral and cellular responses after islet and pancreas transplantation, and the most relevant findings generated by these measurements.
Collapse
Affiliation(s)
- Paolo Monti
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | | | | |
Collapse
|
8
|
Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol 2014; 2014:451035. [PMID: 24883060 PMCID: PMC4021753 DOI: 10.1155/2014/451035] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022] Open
Abstract
Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.
Collapse
Affiliation(s)
- Mazhar A. Kanak
- Institute for Biomedical Studies, Baylor University, Waco, TX 76712, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | - Faisal Kunnathodi
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | | | - Marlon F. Levy
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| | - Bashoo Naziruddin
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| |
Collapse
|
9
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing beta-cells are destroyed. Islet or pancreas transplantation can restore insulin secretion and are established therapies for subgroups of T1D patients. Long-term insulin-independence is, however, hampered by recurrent autoimmunity and rejection. Accurate monitoring of these immune events is therefore of critical relevance for the timely detection of deleterious immune responses. The identification of relevant immune biomarkers of allo- and autoreactivity has allowed a more accurate monitoring of disease progression and responses to therapy at early stages, allowing proper therapeutic intervention, and possibly improvements in the success rate of islet and pancreas transplantation. This review describes the tools established and validated to monitor immune correlates of auto- and alloreactivity that associate with clinical outcome and identifies challenges that current immunosuppression strategies trying to preserve islet graft function face.
Collapse
Affiliation(s)
- J R F Abreu
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, P.O. Box 9600, NL-2300Rc, Leiden, The Netherlands
| | | |
Collapse
|
10
|
Piemonti L, Everly MJ, Maffi P, Scavini M, Poli F, Nano R, Cardillo M, Melzi R, Mercalli A, Sordi V, Lampasona V, Espadas de Arias A, Scalamogna M, Bosi E, Bonifacio E, Secchi A, Terasaki PI. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes 2013; 62:1656-64. [PMID: 23274902 PMCID: PMC3636624 DOI: 10.2337/db12-1258] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-term clinical outcome of islet transplantation is hampered by the rejection and recurrence of autoimmunity. Accurate monitoring may allow for early detection and treatment of these potentially compromising immune events. Islet transplant outcome was analyzed in 59 consecutive pancreatic islet recipients in whom baseline and de novo posttransplant autoantibodies (GAD antibody, insulinoma-associated protein 2 antigen, zinc transporter type 8 antigen) and donor-specific alloantibodies (DSA) were quantified. Thirty-nine recipients (66%) showed DSA or autoantibody increases (de novo expression or titer increase) after islet transplantation. Recipients who had a posttransplant antibody increase showed similar initial performance but significantly lower graft survival than patients without an increase (islet autoantibodies P < 0.001, DSA P < 0.001). Posttransplant DSA or autoantibody increases were associated with HLA-DR mismatches (P = 0.008), induction with antithymocyte globulin (P = 0.0001), and pretransplant panel reactive alloantibody >15% in either class I or class II (P = 0.024) as independent risk factors and with rapamycin as protective (P = 0.006) against antibody increases. DSA or autoantibody increases after islet transplantation are important prognostic markers, and their identification could potentially lead to improved islet cell transplant outcomes.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Hospital Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mallone R, Roep BO. Biomarkers for immune intervention trials in type 1 diabetes. Clin Immunol 2013; 149:286-96. [PMID: 23510725 DOI: 10.1016/j.clim.2013.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/09/2013] [Indexed: 02/07/2023]
Abstract
After many efforts to improve and standardize assays for detecting immune biomarkers in type 1 diabetes (T1D), methods to identify and monitor such correlates of insulitis are coming of age. The ultimate goal is to use these correlates to predict disease progression before onset and regression following therapeutic intervention, which would allow performing smaller and shorter pilot clinical trials with earlier endpoints than those offered by preserved β-cell function or improved glycemic control. Here, too, progress has been made. With the emerging insight that T1D represents a heterogeneous disease, the next challenge is to define patient subpopulations that qualify for personalized medicine or that should be enrolled for immune intervention, to maximize clinical benefit and decrease collateral damage by ineffective or even adverse immune therapeutics. This review discusses the current state of the art, setting the stage for future efforts to monitor disease heterogeneity, progression and therapeutic intervention in T1D.
Collapse
Affiliation(s)
- Roberto Mallone
- Cochin Institute, INSERM U1016, DeAR Lab Avenir, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, Paris, France.
| | | |
Collapse
|
12
|
Lacotte S, Borot S, Ferrari-Lacraz S, Villard J, Demuylder-Mischler S, Oldani G, Morel P, Mentha G, Berney T, Toso C. Posttransplant Cellular Immune Reactivity against Donor Antigen Correlates with Clinical Islet Transplantation Outcome: Towards a Better Posttransplant Monitoring. Cell Transplant 2012; 21:2339-50. [DOI: 10.3727/096368912x655000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to assess the efficiency of cell-based immune assays in the detection of alloreactivity after islet transplantation and to correlate these results with clinical outcome. Mixed lymphocyte cultures were performed with peripheral blood mononuclear cells from recipients ( n = 14), donors, or third party. The immune reactivity was assessed by the release of IFN-γ (ELISpot), cell proliferation (FACS analysis for Ki67), and cytokine quantification (Bioplex). Islet function correlated with the number of IFN-γ-secreting cells following incubation with donor cells ( p = 0.007, r = –0.50), but not with third party cells ( p = 0.61). Similarly, a high number of donor-specific proliferating cells was associated with a low islet function ( p = 0.006, r = −0.51). Proliferating cells were mainly CD3+CD4+ lymphocytes and CD3-CD56+ natural killer cells (with low levels of CD3+CD8+ lymphocytes). Patients with low islet function had increased levels of CD4+Ki67+cells ( p ≤ 0.0001), while no difference was observed in CD8+Ki67+ and CD56+Ki67+ cells. IFN-γ, IL-5, and IL-17 levels were increased in patients with low islet function, but IL-10 levels tended to be lower. IFN-γ-ELISpot, proliferation, and cytokines were similarly accurate in predicting clinical outcome (AUC = 0.77 ± 0.088, 0.85 ± 0.084, and 0.88 ± 0.074, respectively). Cellular immune reactivity against donor cells correlates with posttransplant islet function. The tested assays have the potential to be of substantial help in the management of islet graft recipients and deserve prospective validation.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie Borot
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Villard
- Transplant Immunology Unit, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Demuylder-Mischler
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Graziano Oldani
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Mentha
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol Rev 2011; 91:79-118. [DOI: 10.1152/physrev.00003.2010] [Citation(s) in RCA: 673] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.
Collapse
Affiliation(s)
- Tom L. Van Belle
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Ken T. Coppieters
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias G. Von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
14
|
Lacotte S, Berney T, Shapiro AJ, Toso C. Immune monitoring of pancreatic islet graft: towards a better understanding, detection and treatment of harmful events. Expert Opin Biol Ther 2010; 11:55-66. [PMID: 21073277 DOI: 10.1517/14712598.2011.536530] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Long-term clinical outcomes of islet transplantation are hampered by rejection and recurrence of autoimmunity, which lead to a gradual decrease in islet function usually taking place over the first five years after transplantation. An accurate monitoring strategy could allow for the detection and treatment of harmful immune events, potentially resulting in higher rates of insulin-independence. AREAS COVERED IN THIS REVIEW This article provides a critical review of the various assays currently available for the assessment of allo- and autoimmunity both prior to and after islet transplantation. The accuracy in predicting clinical outcome is specifically addressed. WHAT THE READER WILL GAIN Most current tests based on the assessment of allo- and auto-immune antibody are of minimal help in clinical practice. Cell-based tests (including the assessment of cytotoxic T lymphocyte precursors, proliferation tests, enzyme-linked immunospot) have the potential to allow earlier and more accurate detection of harmful events. TAKE HOME MESSAGE A specific and accurate immune monitoring has the potential to significantly improve islet transplant outcomes. The development and use of such tests (favouring cell-based tests) should be promoted.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- University of Geneva, Department of Surgery, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- David M Harlan
- National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Diabetes Branch, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
16
|
Kessler L, Parissiadis A, Bayle F, Moreau F, Pinget M, Froelich N, Cazenave JP, Berney T, Benhamou PY, Hanau D. Evidence for humoral rejection of a pancreatic islet graft and rescue with rituximab and IV immunoglobulin therapy. Am J Transplant 2009; 9:1961-6. [PMID: 19522877 DOI: 10.1111/j.1600-6143.2009.02711.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe the decline in islet function, in relation to HLA sensitization, in an islet transplant recipient and the recovery of this function after treatment with anti-CD20 monoclonal antibody and IV immunoglobulins. A 51-year-old woman with type 1 diabetes received one intraportal islet infusion. Following this transplantation, she became insulin independent. A search for HLA antibodies by using an ELISA technique remained consistently negative for HLA class I and II. It was only 2 years after the islet transplantation that this search became positive against class II antigens, reaching a peak of reactivity concomitantly with the appearance of a deterioration of glucose control requiring low-dose insulin therapy. Luminex screening and single-antigen assays then revealed the presence of both nondonor-specific and donor-specific antibodies against HLA class II molecules. This immunization, already present in the pretransplant serum, had increased during the 6 months preceding the clinical deterioration. Since these data nevertheless pointed to antibody-mediated rejection of the islet allograft, treatment with anti-CD20 monoclonal antibody and IV immunoglobulins was initiated. One month later, the search by ELISA for antibodies against HLA class II antigens became negative, the Luminex tests normalizing more gradually. As the result of an improvement in glucose control, the patient was again insulin-free.
Collapse
Affiliation(s)
- L Kessler
- Department of Endocrinology, University Hospital, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roelen DL, Huurman VAL, Hilbrands R, Gillard P, Duinkerken G, van der Meer-Prins PWM, Versteeg-van der Voort Maarschalk MFJ, Mathieu C, Keymeulen B, Pipeleers DG, Roep BO, Claas FHJ. Relevance of cytotoxic alloreactivity under different immunosuppressive regimens in clinical islet cell transplantation. Clin Exp Immunol 2009; 156:141-8. [PMID: 19161445 PMCID: PMC2673752 DOI: 10.1111/j.1365-2249.2008.03812.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2008] [Indexed: 10/21/2022] Open
Abstract
Islet or beta cell transplantation provides a promising cure for type 1 diabetes patients, but insulin-independency decreases frequently over time. Immunosuppressive regimens are implemented attempting to cope with both auto- and alloimmunity after transplantation. We analysed the influence of different immunotherapies on autoreactive and alloreactive T cell patterns and transplant outcome. Patients receiving three different immunosuppressive regimens were analysed. All patients received anti-thymocyte globulin induction therapy. Twenty-one patients received tacrolimus-mycophenolate mofetil maintenance immunosuppression, whereas the other patients received tacrolimus-sirolimus (SIR, n = 5) or SIR only (n = 5). Cellular autoreactivity and alloreactivity (CTL precursor frequency) were measured ex vivo. Clinical outcome in the first 6 months after transplantation was correlated with immunological parameters. C-peptide levels were significantly different between the three groups studied (P = 0.01). We confirm that C-peptide production was correlated negatively with pretransplant cellular autoreactivity and low graft size (P = 0.001, P = 0.007 respectively). Combining all three therapies, cellular autoimmunity after transplantation was not associated with delayed insulin-independence or C-peptide production. In combined tacrolimus-SIR and SIR-treated patients, CTL alloreactivity was associated with less insulin independence and C-peptide production (P = 0.03). The percentage of donors to whom high CTLp frequencies were measured was lower in insulin-independent recipients (P = 0.03). In this cohort of islet cell graft recipients, clinical outcome in the first 6 months after transplantation correlates with the applied immunosuppressive regimen. An association exists between insulin-independence and lower incidence of CTL alloreactivity towards donor human leucocyte antigen. This observational study demonstrates the usefulness of monitoring T cell reactivity against islet allografts to correlate immune function with graft survival.
Collapse
Affiliation(s)
- D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berney T, Ferrari-Lacraz S, Bühler L, Oberholzer J, Marangon N, Philippe J, Villard J, Morel P. Long-term insulin-independence after allogeneic islet transplantation for type 1 diabetes: over the 10-year mark. Am J Transplant 2009; 9:419-23. [PMID: 19120085 DOI: 10.1111/j.1600-6143.2008.02481.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Results of islet of Langerhans transplantation have markedly improved in recent years, but most patients still lose insulin independence in the long-term. We report herein the longest (over 11 years) case of insulin independence after allogeneic islet transplantation. The subject had a 27-year history of type 1 diabetes and received a single islet-after-kidney graft of 8800 islet equivalents (IEQ)/kg, pooled from 2 donors. Insulin was discontinued by 3 months posttransplant and the patient has remained off insulin ever since. Yearly follow-up studies have revealed normal metabolic control, including normal oral glucose tolerance test (OGTT). Reasons for success may involve choice of immunosuppression, low metabolic demand and low immune responsiveness as suggested by an excellent HLA matching and a high count of circulating regulatory T cells. This observation is so far an exceptional case, but clearly demonstrates the validity of the concept that long-term insulin independence after allogeneic islet transplantation is an achievable target.
Collapse
Affiliation(s)
- T Berney
- Division of Visceral/Transplant Surgery, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferrari-Lacraz S, Berney T, Morel P, Marangon N, Hadaya K, Demuylder-Mischler S, Pongratz G, Pernin N, Villard J. Low risk of anti-human leukocyte antigen antibody sensitization after combined kidney and islet transplantation. Transplantation 2008; 86:357-9. [PMID: 18645502 DOI: 10.1097/tp.0b013e31817ba628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anti-human leukocyte antigen (HLA) antibody could lead to humoral rejection and a decrease in graft survival after kidney transplantation. A recent report has suggested that islet transplantation alone is associated with a high rate of sensitization. The withdrawal of the immunosuppressive therapy because of the progressive nonfunction of the islets could explain the high rate of sensitization. Because the specific risk of immunization of multiple islet infusions remains unknown, we studied the immunization rate in our cohort of multiple islet infusions transplant recipients. De novo anti-HLA antibodies were analyzed in 37 patients after islets alone (n=8), islet-after-kidney (n=13), and simultaneous islet-kidney (n=16) transplantation by solid phase assays over time. The rate of immunization was 10.8% that is comparable with the risk of immunization after kidney transplantation alone. Multiple islet infusions do not represent a specific risk for the development of anti-HLA antibodies after combined kidney-islets transplantation.
Collapse
Affiliation(s)
- Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit, Service of Immunology and Allergy and Service of Laboratory Medicine, Geneva University Hospital and Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huurman VAL, Hilbrands R, Pinkse GGM, Gillard P, Duinkerken G, van de Linde P, van der Meer-Prins PMW, Versteeg-van der Voort Maarschalk MFJ, Verbeeck K, Alizadeh BZ, Mathieu C, Gorus FK, Roelen DL, Claas FHJ, Keymeulen B, Pipeleers DG, Roep BO. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One 2008; 3:e2435. [PMID: 18560516 PMCID: PMC2426735 DOI: 10.1371/journal.pone.0002435] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/22/2008] [Indexed: 02/04/2023] Open
Abstract
Background Islet cell transplantation can cure type 1 diabetes (T1D), but only a minority of recipients remains insulin–independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. Methodology/Principal Findings Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG) induction and tacrolimus plus mycophenolate mofetil (MMF) maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters - including time until insulin independence, insulin independence at one year, and C-peptide levels over one year- remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively) and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively). Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. Conclusions/Significance In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression. Trial Registration Clinicaltrials.gov NCT00623610
Collapse
Affiliation(s)
- Volkert A. L. Huurman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Gabriëlle G. M. Pinkse
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Pieter Gillard
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven-KUL, Leuven, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Gaby Duinkerken
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Pieter van de Linde
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Petronella M. W. van der Meer-Prins
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | | | - Koen Verbeeck
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Behrooz Z. Alizadeh
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Chantal Mathieu
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven-KUL, Leuven, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Dave L. Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Frans H. J. Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Daniel G. Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart O. Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
- * E-mail:
| |
Collapse
|
21
|
Korsgren O, Lundgren T, Felldin M, Foss A, Isaksson B, Permert J, Persson NH, Rafael E, Rydén M, Salmela K, Tibell A, Tufveson G, Nilsson B. Optimising islet engraftment is critical for successful clinical islet transplantation. Diabetologia 2008; 51:227-32. [PMID: 18040664 DOI: 10.1007/s00125-007-0868-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/17/2007] [Indexed: 12/11/2022]
Abstract
Clinical islet transplantation is currently being explored as a treatment for persons with type 1 diabetes and hypoglycaemia unawareness. Although 'proof-of-principle' has been established in recent clinical studies, the procedure suffers from low efficacy. At the time of transplantation, the isolated islets are allowed to embolise the liver after injection in the portal vein, a procedure that is unique in the area of transplantation. A novel view on the engraftment of intraportally transplanted islets is presented that could explain the low efficacy of the procedure.
Collapse
Affiliation(s)
- O Korsgren
- Department of Radiology, Oncology and Clinical Immunology, Division of Clinical Immunology, Rudbeck Laboratory, C11, University Hospital, SE 751 85, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Cholongitas E, Papatheodoridis GV, Zappoli P, Giannakopoulos A, Patch D, Marelli L, Shusang V, Kalambokis G, Shirling G, Rolando N, Burroughs AK. Combined HLA-DR and -DQ disparity is associated with a stable course of ulcerative colitis after liver transplantation for primary sclerosing cholangitis. Liver Transpl 2007; 13:552-7. [PMID: 17394153 DOI: 10.1002/lt.21077] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Combined disparity of human leukocyte antigen (HLA)-DR and -DQ between mother and fetus is associated with less severe ulcerative colitis (UC) during pregnancy. We evaluated whether donor-recipient HLA disparity after liver transplantation (LT) affects UC in patients with primary sclerosing cholangitis (PSC). Sixty-nine consecutive patients with PSC underwent LT; all underwent colonoscopy before LT; 48 had UC before and 3 had de novo UC after LT. Clinical and laboratory data, activity and treatment of UC, post-LT cytomegalovirus infection, and disparity of HLA-A, -B, -DR, and -DQ for each donor-recipient pair were evaluated. Pre-LT quiescent UC was present in 26 patients. Post-LT UC activity was evaluated in 36 of 51 patients with UC who had not undergone pre-LT colectomy and who had >12 months' post-LT survival. Of these, 16 were stable, 17 had worsened, and 3 had de novo UC. Seven required colectomy (4 for dysplasia or cancer) after LT. Post-LT cytomegalovirus viremia was neither associated with worse UC activity (P = 0.58) nor de novo UC. Disparity with respect to HLA-A, -B, -DR, and -DQ was found in 58%, 27%, 44%, and 39% donor-recipient pairs, respectively. Post-LT UC course was similar with respect to single HLA disparity. However, disparity in none or only one HLA-DR or -DQ was significantly associated with worse activity compared with patients with disparity at both (65% vs. 0%, P = 0.009). Logistic regression found that the disparity for both -DR and -DQ was the only factor statistically significantly associated with post-LT UC activity. We conclude that disparity in both HLA-DR and -DQ between donor and recipient is associated with stable UC activity after LT.
Collapse
Affiliation(s)
- Evangelos Cholongitas
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, Hampstead, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The Edmonton trials have brought about a marked improvement in the short-term rate of success of islet transplantation with rates of insulin-independence of 80% at 1-year being reported by several institutions worldwide. Unfortunately, this rate consistently decreases to 10-15% by 5 years post-transplantation. Several mechanisms have been proposed to explain this apparent 'islet exhaustion', but are difficult to pinpoint in a given patient. Understanding the reasons for islet graft exhaustion and its kinetics is a prerequisite for the improvement of islet transplantation outcome. In this regard, efficient monitoring tools for the islet graft have been conspicuously lacking and are required to detect islet damage and diagnose its mechanisms in a timely fashion, so as to initiate salvage therapy such as antirejection treatment. Tools for the monitoring of the islet graft include follow-up of metabolic function but mostly indicate dysfunction when it is too late to take action. Progress is likely to arise in the fields of immune monitoring, molecular monitoring and islet imaging, notably thanks to magnetic resonance (MR) or positron emission tomography (PET) technologies.
Collapse
Affiliation(s)
- T Berney
- Cell Isolation and Transplantation Center, Division of Visceral and Transplant Surgery, Geneva University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|