1
|
Søfteland JM, Bagge J, Padma AM, Casselbrant A, Zhu C, Wang Y, Hellström M, Olausson M, Oltean M. Luminal polyethylene glycol solution delays the onset of preservation injury in the human intestine. Am J Transplant 2021; 21:2220-2230. [PMID: 33249756 DOI: 10.1111/ajt.16418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 01/25/2023]
Abstract
The organ damage incurred during the cold storage (CS) of intestinal grafts has short and long-term consequences. Animal studies suggest that additional luminal preservation (LP) with polyethylene glycol (PEG) may alleviate this damage. This study aims to validate these findings using human intestines. Ileal segments, perfused intravascularly with IGL-1 solution, were procured from 32 multiorgan donors and divided into two parts: one containing a PEG 3350-based solution introduced luminally (LP group) and another one without luminal treatment (control). Sampling was performed after 4 h, 8 h, 14 h, and 24 h of CS. Histology was assessed using the Chiu/Park score. Tight junctions (TJ), several inflammatory markers, and transcription factors were examined by immunofluorescence, ddPCR, and western blot. Tissue water content (edema) was also measured. Apoptotic activity was assessed with caspase -2, -3, and -9 assays. LP significantly lowered mucosal injury at all time points. Redistribution of TJ proteins occurred earlier and more severely in the control group. After 24 h of CS, LP intestines showed an emerging unfolding protein response. Increased caspase-3 and -9 activity was found in the control group. The current results indicate that luminal PEG is safe and effective in reducing damage to the intestinal epithelium during CS.
Collapse
Affiliation(s)
- John M Søfteland
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jasmine Bagge
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvind M Padma
- Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Casselbrant
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mats Hellström
- Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Olausson
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Yamamoto H, Aokage T, Igawa T, Hirayama T, Seya M, Ishikawa-Aoyama M, Nojima T, Nakao A, Naito H. Luminal preloading with hydrogen-rich saline ameliorates ischemia-reperfusion injury following intestinal transplantation in rats. Pediatr Transplant 2020; 24:e13848. [PMID: 32997862 DOI: 10.1111/petr.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
Prolonged intestinal cold storage causes considerable mucosal breakdown, which could bolster bacterial translocation and cause life-threatening infection for the transplant recipient. The intestine has an intraluminal compartment, which could be a target for intervention, but has not yet been fully investigated. Hydrogen gas exerts organ protection and has used been recently in several clinical and basic research studies on topics including intestinal transplantation. In this study, we aimed to investigate the cytoprotective efficacy of intraluminally administered hydrogen-rich saline on cold IR injury in intestinal transplantation. Isogeneic intestinal transplantation with 6 hours of cold ischemia was performed on Lewis rats. Hydrogen-rich saline (H2 concentration at 5 ppm) or normal saline was intraluminally introduced immediately before preservation. Graft intestine was excised 3 hours after reperfusion and analyzed. Histopathological analysis of control grafts revealed blunting of the villi and erosion. These mucosal changes were notably attenuated by intraluminal hydrogen. Intestinal mucosa damage caused by IR injury led to considerable deterioration of gut barrier function 3 h post-reperfusion. However, this decline in permeability was critically prevented by hydrogen treatment. IR-induced upregulation of proinflammatory cytokine mRNAs such as IL-6 was mitigated by hydrogen treatment. Western blot revealed that hydrogen treatment regulated loss of the transmembrane protein ZO-1. Hydrogen-rich saline intraluminally administered in the graft intestine modulated IR injury to transplanted intestine in rats. Successful abrogation of intestinal IR injury with a novel strategy using intraluminal hydrogen may be easily clinically applicable and will compellingly improve patient care after transplantation.
Collapse
Affiliation(s)
- Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takuro Igawa
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Michiko Ishikawa-Aoyama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| |
Collapse
|
3
|
Creatine-loading preserves intestinal barrier function during organ preservation. Cryobiology 2018; 84:69-76. [PMID: 30076796 DOI: 10.1016/j.cryobiol.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022]
Abstract
We have developed a novel, intraluminal preservation solution that is tailored to the metabolic requirements of the intestine. This organ-specific solution addresses many of the problems associated with low temperature organ storage including energy, oxidative and osmotic stresses. However, conservation of energy levels remains one of the most difficult obstacles to overcome due to the inherent sensitivity of the mucosa to ischemia. Creatine-loading has become a popular and scientifically proven method of augmenting energy reserves in athletes performing anaerobic burst work activities. We hypothesized that if we could develop a method that was able to augment cellular energy levels, the structure and function of the mucosa would be more effectively preserved. The purpose of this study was to determine if creatine-loading is a feasible and effective strategy for preserving the intestine. Our data indicate that creatine loading has significant impact on energy levels during storage with corresponding improvements in mucosal structure and function. Both of our rodent models, a) continuous perfusion for 4 h and b) a single flush with our intraluminal preservation solution supplemented with 50 mM creatine, demonstrated significant improvements in creatine phosphate, ATP, Energy Charge and ATP/AMP following cold storage (P < 0.05). Notably, after 10 h creatine phosphate was 324% greater in Creatine-treated tissues compared to Controls (P < 0.05). Preferential utilization of glutathione in the Creatine group was effective at controlling oxidative injury after 10 h storage (P < 0.05). Improvements in barrier function and electrophysiology with creatine-treatment reflected superior mucosal integrity after 10 h storage; Permeability and Transepithelial resistance measurements remained at fresh tissue values. This was in stark contrast to Control tissues in which permeability rose to >300% of fresh tissue values (P < 0.005) and transepithelial resistance dropped by 95% (P < 0.005). After 10 h storage, Park's grading of histologic injury reflected extensive villus denudation (grade 4) in control tissues compared to healthy tissue (grade 0) in the Creatine group. This study demonstrates that a strategy of creatine supplementation of our intraluminal preservation solution facilitates the preservation of the intestinal mucosa during storage.
Collapse
|
4
|
Intestinal preservation for transplantation: current status and alternatives for the future. Curr Opin Organ Transplant 2015; 20:308-13. [PMID: 25944227 DOI: 10.1097/mot.0000000000000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Among transplantable abdominal organs the intestine has the shortest cold storage time, raising significant medical and logistical challenges. Herein, established and innovative, emerging concepts in intestinal preservation are summarized. RECENT FINDINGS The method of intestinal preservation using an in-situ vascular perfusion followed by static storage remained unchanged for almost 30 years, despite suboptimal results. Advanced preservation injury occurs within 12 h and is little influenced by the type of solution used. Recent reports indicate that several customized luminal solutions containing various amino acids and macromolecules may delay its development. In addition, gaseous interventions in the storage solutions or in the lumen seem promising and easily applicable tools that may further reduce the ischemia-reperfusion injury and safely prolong the preservation time. Rodent models are not entirely suitable for direct translation to clinical practice as the development of preservation injury is faster than in humans. SUMMARY The limitations of intestinal preservation originate in the methods (vascular perfusion and static storage) rather than in the solutions used. Several additional strategies promise to prolong the cold storage and reduce its impact on the intestinal graft and deserve further exploration in large animals and clinical studies.
Collapse
|
5
|
Schlachter K, Kokotilo MS, Carter J, Thiesen A, Ochs A, Khadaroo RG, Churchill TA. Redefining the properties of an osmotic agent in an intestinal-specific preservation solution. World J Gastroenterol 2010; 16:5701-9. [PMID: 21128319 PMCID: PMC2997985 DOI: 10.3748/wjg.v16.i45.5701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of dextrans of various molecular weights (Mw) during a 12 h cold storage time-course on energetics, histology and mucosal infiltration of fluorescein isothiocyanate (FITC)-dextran.
METHODS: Rodent intestines were isolated and received a standard University of Wisconsin vascular flush followed by intraluminal administration of a nutrient-rich preservation solution containing dextrans of varying Mw: Group D1, 73 kdal; Group D2, 276 kdal; Group D3, 534 kdal; Group D4, 1185 kdal; Group D5, 2400 kdal.
RESULTS: Using FITC-labeled dextrans, fluorescent micrographs demonstrated varying degrees of mucosal infiltration; lower Mw (groups D1-D3: 73-534 kdal) dextrans penetrated the mucosa as early as 2 h, whereas the largest dextran (D5: 2400 kdal) remained captive within the lumen and exhibited no permeability even after 12 h. After 12 h, median injury grades ranged from 6.5 to 7.5 in groups D1-D4 (73-1185 kdal) representing injury of the regenerative cryptal regions and submucosa; this was in contrast to group D5 (2400 kdal) which exhibited villus denudation (with intact crypts) corresponding to a median injury grade of 4 (P < 0.05). Analysis of tissue energetics reflected a strong positive correlation between Mw and adenosine triphosphate (r2 = 0.809), total adenylates (r2 = 0.865) and energy charge (r2 = 0.667).
CONCLUSION: Our data indicate that dextrans of Mw > 2400 kdal act as true impermeant agents during 12 h ischemic storage when incorporated into an intraluminal preservation solution.
Collapse
|
6
|
Kokotilo MS, Schlachter K, Carter J, Thiesen A, Khadaroo RG, Churchill TA. Comparing the effects of Dextran 70 and Hydroxyethyl starch in an intestinal storage solution. Cryobiology 2010; 61:254-62. [DOI: 10.1016/j.cryobiol.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
|
7
|
Roskott AMC, Nieuwenhuijs VB, Dijkstra G, Koudstaal LG, Leuvenink HGD, Ploeg RJ. Small bowel preservation for intestinal transplantation: a review. Transpl Int 2010; 24:107-31. [PMID: 21083772 DOI: 10.1111/j.1432-2277.2010.01187.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intestinal transplantation has become the therapy of choice for patients with intestinal failure and life-threatening complications from total parenteral nutrition. Results, however, remain inferior as compared with other transplant types with the quality of the organ graft as the most important factor of outcome after transplantation. The intestine is extremely sensitive to ischemia. Unfortunately, a relatively long ischemic preservation period is inevitable. The current standard in organ preservation [cold storage (CS) with University of Wisconsin solution] was developed for kidney/liver preservation and is suboptimal for the intestinal graft despite good results for other organs. This review aimed at appraising the results from the use of previously applied and recently developed preservation solutions and techniques to identify key areas for improvement. As the studies available do not reveal the most effective method for intestinal preservation, an optimal strategy will result from a synergistic effect of different vital elements identified from a review of published material from the literature. A key factor is the composition of the solution using a low-viscosity solution to facilitate washout of blood, including amino acids to improve viability, impermeants and colloids to prevent edema, and buffer for pH-homeostasis. Optimizing conditions include a vascular flush before CS and luminal preservation. The most effective composition of the luminal solution and a practical, clinically applicable optimal technique are yet to reach finality. Short-duration oxygenated arterial and/or luminal perfusion have to be considered. Thus, a tailor-made approach to luminal preservation solution and technique need further investigation in transplant models and the human setting to develop the ultimate technique meeting the physiologic demands of the intestinal graft during preservation.
Collapse
|
8
|
Reduced Ischemia-Reoxygenation Injury in Rat Intestine After Luminal Preservation With a Tailored Solution. Transplantation 2010; 90:622-9. [DOI: 10.1097/tp.0b013e3181ebf796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Optimizing the concentration of hydroxyethylstarch in a novel intestinal-specific preservation solution. Cryobiology 2010; 61:236-42. [PMID: 20727872 DOI: 10.1016/j.cryobiol.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/27/2010] [Accepted: 08/12/2010] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Our lab has developed an effective nutrient-rich solution that facilitates energy production and control of oxidative stress during static cold storage of the intestine; however, the requirement for oncotic agents, such as hydroxyethylstarch (HES), has not been evaluated. This study investigated the effectiveness and requirement for HES in an intraluminal preservation solution during a clinically relevant period of cold storage. METHODS Rat intestines were procured, including an intravascular flush with University of Wisconsin solution followed by a 'back table' intraluminal flush with a nutrient-rich preservation solution containing varying amounts of HES (n=6 per group): Group 1, 0%; Group 2, 2.5%; Group 3, 5%; Group 4, 10%. Energetics, oxidative stress, and morphology were assessed over a 24h time-course of cold storage. RESULTS Overall, the 5% HES solution, Group 3, demonstrated superior energetic status (ATP and total adenylates) compared to all groups, P<0.05. Malondialdehyde levels indicated a reduction in oxidative stress in Groups 3 and 4 (P<0.05). After 12h, median modified Parks' grades for Groups 2 and 3 were significantly lower than Groups 1 and 4, P<0.05. CONCLUSION Our data suggests that when employing an intraluminal preservation solution for static organ storage, oncotic support is a fundamental requirement; 5% HES is optimal.
Collapse
|
10
|
Preserving the gut: give it what it wants. Transplantation 2010; 89:274-6. [PMID: 20145516 DOI: 10.1097/tp.0b013e3181c69126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ferencz A, Racz B, Tamas A, Reglodi D, Lubics A, Nemeth J, Nedvig K, Kalmar-Nagy K, Horvath OP, Weber G, Roth E. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation. J Mol Neurosci 2008; 37:168-76. [PMID: 18651248 DOI: 10.1007/s12031-008-9132-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/31/2008] [Indexed: 02/06/2023]
Abstract
Tissue injury caused by cold preservation and reperfusion remains an unsolved problem during small-bowel transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present and plays a central role in the intestinal physiology. This study investigated effect of PACAP-38 on the oxidative stress and tissue damage in autotransplanted intestine. Sham-operated, ischemia/reperfusion, and autotransplanted groups were established in Wistar rats. In ischemia/reperfusion groups, 1 h (group A), 2 h (group B), and 3 h (group C) ischemia followed by 3 h of reperfusion was applied. In autotransplanted groups, total orthotopic intestinal autotransplantation was performed. Grafts were preserved in University of Wisconsin (UW) solution and in UW containing 30 microg PACAP-38 for 1, 2, 3, and 6 h. Reperfusion lasted 3 h in all groups. Endogenous PACAP-38 concentration was measured by radioimmunoassay. To determine oxidative stress parameters, malondialdehyde, reduced glutathione, and superoxide dismutase were measured in tissue samples. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. Concentration of endogenous PACAP-38 significantly decreased in groups B and C compared to sham-operated group. Preservation solution containing PACAP-38 ameliorated bowel tissue oxidative injury induced by cold ischemia and reperfusion. Histological results showed that preservation caused destruction of the mucous, submucous, and muscular layers, which were further deteriorated by the end of reperfusion. In contrast, PACAP-38 significantly protected the intestinal structure. Ischemia/reperfusion decreased the endogenous PACAP-38 concentration in the intestinal tissue. Administration of PACAP-38 mitigated the oxidative injury and histological lesions in small-bowel autotransplantation model.
Collapse
Affiliation(s)
- Andrea Ferencz
- Department of Surgical Research and Techniques, University of Pécs, Medical Faculty, Kodály Zoltán Street 20, 7624, Pecs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alleviating intestinal ischemia-reperfusion injury in an in vivo large animal model: developing an organ-specific preservation solution. Transplantation 2008; 85:878-84. [PMID: 18360271 DOI: 10.1097/tp.0b013e318166a42f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION This study investigated the role of a novel nutrient-rich preservation solution in alleviating intestinal ischemia-reperfusion (IR) injury in a large animal model. MATERIALS AND METHODS Porcine intestines were treated in vivo with the following intraluminal flush solutions: group 1, none; group 2, University of Wisconsin solution; group 3, an amino acid-based solution, previously shown to be effective in reducing IR injury in rodent models. Intestinal ischemia was induced in vivo for 60 min, followed by 180 min reperfusion. Key metabolic aspects were assessed in relation to two fundamental kinase mechanisms that govern cell fate, AMP kinase, and Jun kinase. RESULTS After 180 min reperfusion, groups 1 and 2 exhibited clefting, denudation, and mucosal hemorrhage, whereas injury was markedly reduced in group 3 (median grades 4.5 and 5 vs. 0; P<0.05). In contrast to groups 1 and 2, group 3 tissues exhibited a full recovery of adenylates (ATP, total adenylates) and an effective control of oxidative stress throughout reperfusion. Neutrophil-mediated inflammation was abrogated in group 3. An up-regulation of two key enzymes (glutaminase and alanine aminotransferase) provided a mechanism for the superior recovery of energetics and the preservation of mucosal integrity in group 3. A strong activation of AMP-activated protein kinase resulting in the up-regulation of a primary proapoptotic kinase mechanism, Jun kinase, was evident in groups 1 and 2. DISCUSSION A strategy of intraluminal administration of a nutrient-rich solution represents a potential therapy for alleviating intestinal IR injury; these findings suggest a more effective method for the ischemic storage of intestine.
Collapse
|
13
|
Salehi P, Walker J, Madsen KL, Sigurdson GT, Strand BL, Christensen BE, Jewell LD, Churchill TA. Relationship between energetic stress and pro-apoptotic/cytoprotective kinase mechanisms in intestinal preservation. Surgery 2007; 141:795-803. [PMID: 17560256 DOI: 10.1016/j.surg.2007.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 09/20/2006] [Indexed: 01/07/2023]
Abstract
BACKGROUND A recent study from our laboratory documented significant improvements in post-transplant viability in an experimental model of intestinal transplantation when a novel, nutrient-rich preservation solution was used during cold storage. The current study investigated the relationship between energetic/oxidative stress responses and fundamental kinase signaling events during the period of organ storage. This relationship may be a key factor contributing to improved graft viability after storage in a nutrient-rich preservation solution. METHODS Rat small intestine was harvested and flushed intraluminally with University of Wisconsin (UW) solution or an amino acid-rich (AA) solution as follows: Group 1, no luminal flush (clinical control); Group 2, luminal UW solution; Group 3, luminal AA solution. Energetics (ATP, total adenylates), oxidative stress (malondialdehyde), histology, and MAPK (P38, JNK, ERK)/AMPK/Caspase-3 were assessed throughout 12-hour cold storage. RESULTS P38 and JNK were upregulated strongly in Group 2 after 1- and 12-hour storage. Group 3 exhibited a delayed activation and subsequent downregulation of these pre-apoptotic signals. Between 6 to 12 hours, a strong upregulation of ERK was observed in Group 3. AMPK downregulation correlated with a reduction in AMP/ATP ratio, ERK upregulation, and P38/JNK downregulation in Group 3. After 12-hour storage, histology indicated superior preservation of mucosal architecture in Group 3 tissues. CONCLUSIONS A nutrient-rich preservation solution abrogates pre-apoptotic signaling (JNK and P38) and upregulates cytoprotective signals (ERK). Our data support the concept of a concerted effort facilitating cellular protection in response to ischemic stress.
Collapse
Affiliation(s)
- Payam Salehi
- Department of Surgery, Division of Transplantation, University of Illinois, Chicago, Ill., USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Salehi P, Walker J, Madsen K, Churchill TA. Control of oxidative stress in small bowel: relevance to organ preservation. Surgery 2006; 139:317-23. [PMID: 16546495 DOI: 10.1016/j.surg.2005.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oxidative stress during cold small bowel (SB) storage has not been investigated because oxygen is depleted rapidly after procurement. We hypothesized that oxidative catabolism facilitated by a proven amino acid-based (AA) storage solution promotes oxidative stress; furthermore, there is an important role for antioxidant supplementation during cold storage. METHODS SB from Sprague-Dawley rats (n = 6 in each group) were procured according to standardized procedures involving vascular flush with modified University of Wisconsin solution and luminal treatment with an AA-based solution proven previously to aid preservation. SB were assigned randomly to the following antioxidant treatment groups: group 1, none; group 2, superoxide dismutase/catalase; group 3, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, a water-soluble analogue of vitamin E). Energetics, oxidative stress, electrophysiology, and histology were assessed over 24 hours at 4 degrees C. RESULTS The addition of Trolox in group 3 resulted in a significant reduction in malondialdehyde levels compared with all other groups throughout 24 hours of cold storage. Tissue energetics correlated well with reduced oxidative injury; over the first 12 hours, adenosine triphosphate and total adenylates were superior in tissues treated with Trolox (group 3) versus AA solution alone (group 1). Functional assessment showed relatively normal permeability in all groups, however, Trolox-treated tissues showed significantly higher short-circuit current compared with control group (17.7 vs 5.5 microA/cm(2)). Histologic integrity was improved in group 3 after 24 hours of cold storage. CONCLUSIONS Oxidative stress appears to be a determinant in the pathogenesis of mucosal injury during cold storage. Trolox effectively abrogates storage-related oxidative stress in SB.
Collapse
Affiliation(s)
- Payam Salehi
- Surgical-Medical Research Institute, 1074 Dentistry-Pharmacy Building, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | | | | | |
Collapse
|