1
|
Mendyk-Bordet AM, Ouk T, Muhr-Tailleux A, Pétrault M, Vallez E, Gelé P, Dondaine T, Labreuche J, Deplanque D, Bordet R. Endothelial Dysfunction and Pre-Existing Cognitive Disorders in Stroke Patients. Biomolecules 2024; 14:721. [PMID: 38927124 PMCID: PMC11202150 DOI: 10.3390/biom14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The origin of pre-existing cognitive impairment in stroke patients remains controversial, with a vascular or a degenerative hypothesis. OBJECTIVE To determine whether endothelial dysfunction is associated with pre-existing cognitive problems, lesion load and biological anomalies in stroke patients. METHODS Patients originated from the prospective STROKDEM study. The baseline cognitive state, assessed using the IQ-CODE, and risk factors for stroke were recorded at inclusion. Patients with an IQ-CODE score >64 were excluded. Endothelial function was determined 72 h after stroke symptom onset by non-invasive digital measurement of endothelium-dependent flow-mediated dilation and calculation of the reactive hyperemia index (RHI). RHI ≤ 1.67 indicated endothelial dysfunction. Different biomarkers of endothelial dysfunction were analysed in blood or plasma. All patients underwent MRI 72 h after stroke symptom onset. RESULTS A total of 86 patients were included (52 males; mean age 63.5 ± 11.5 years). Patients with abnormal RHI have hypertension or antihypertensive treatment more often. The baseline IQ-CODE was abnormal in 33 (38.4%) patients, indicating a pre-existing cognitive problem. Baseline IQ-CODE > 48 was observed in 15 patients (28.3%) with normal RHI and in 18 patients (54.6%) with abnormal RHI (p = 0.016). The RHI median was significantly lower in patients with abnormal IQ-CODE. Abnormal RHI was associated with a significantly higher median FAZEKAS score (2.5 vs. 2; p = 0.008), a significantly higher frequency of periventricular lesions (p = 0.015), more white matter lesions (p = 0.007) and a significantly higher cerebral atrophy score (p < 0.001) on MRI. Vascular biomarkers significantly associated with abnormal RHI were MCP-1 (p = 0.009), MIP_1a (p = 0.042), and homocysteinemia (p < 0.05). CONCLUSIONS A vascular mechanism may be responsible for cognitive problems pre-existing stroke. The measurement of endothelial dysfunction after stroke could become an important element of follow-up, providing an indication of the functional and cognitive prognosis of stroke patients.
Collapse
Affiliation(s)
| | - Thavarak Ouk
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Anne Muhr-Tailleux
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, Nuclear Receptor, Metabolic and Cardiovascular Diseases, F-59000 Lille, France; (A.M.-T.); (E.V.)
| | - Maud Pétrault
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, Nuclear Receptor, Metabolic and Cardiovascular Diseases, F-59000 Lille, France; (A.M.-T.); (E.V.)
| | - Patrick Gelé
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Thibaut Dondaine
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, Inserm, Biostatistic Platform, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Régis Bordet
- Univ. Lille, CHU Lille, Inserm, Lille Neuroscience and Cognition, F-59000 Lille, France
- Univ. Lille, CHU Lille, Inserm, Department of Medical Pharmacology, F-59000 Lille, France
| |
Collapse
|
2
|
Athiraman U, Giri T. Isoflurane preconditioning induced genomic changes in mouse cortex. BJA OPEN 2024; 10:100268. [PMID: 38545566 PMCID: PMC10966196 DOI: 10.1016/j.bjao.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024]
Abstract
Background Altered patterns of genetic expression induced by isoflurane preconditioning in mouse brain have not yet been investigated. The aim of our pilot study is to examine the temporal sequence of changes in the transcriptome of mouse brain cortex produced by isoflurane preconditioning. Methods Twelve-wk-old wild-type (C57BL/6J) male mice were randomly assigned for the experiments. Mice were exposed to isoflurane 2% in air for 1 h and brains were harvested at the following time points-immediately (0 h), and at 6, 12, 24, 36, 48, and 72 h after isoflurane exposure. A separate cohort of mice were exposed to three doses of isoflurane on days 1, 2, and 3 and brains were harvested after the third exposure. The NanoString mouse neuropathology panel was used to analyse isoflurane-induced gene expression in the cortex. The neuropathology panel included 760 genes covering pathways involved in neurodegeneration and other nervous system diseases, and 10 internal reference genes for data normalisation. Results Genes involving several pathways were upregulated and downregulated by isoflurane preconditioning. Interestingly, a biphasic response was noted, meaning, an early expression of genes (until 6 h), followed by a transient pause (until 24 h), and a second wave of genomic response beginning at 36 h of isoflurane exposure was noted. Conclusions Isoflurane preconditioning induces significant alterations in the genes involved in neurodegeneration and other nervous system disorders in a temporal sequence. These data could aid in the identification of molecular mechanisms behind isoflurane preconditioning-induced neuroprotection in various central nervous system diseases.
Collapse
Affiliation(s)
- Umeshkumar Athiraman
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
- Department of Neurological Surgery, Washington University, St. Louis, MO, USA
| | - Tusar Giri
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
3
|
Yang H, Hu Z, Gao X, Su J, Jiang H, Yang S, Zhang Q, Ni W, Gu Y. Safety and efficacy of remote ischemic conditioning in adult moyamoya disease patients undergoing revascularization surgery: a pilot study. Front Neurol 2023; 14:1200534. [PMID: 37576009 PMCID: PMC10419176 DOI: 10.3389/fneur.2023.1200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and purpose Revascularization surgery for patients with moyamoya disease (MMD) is very complicated and has a high rate of postoperative complications. This pilot study aimed to prove the safety and efficacy of remote ischemic conditioning (RIC) in adult MMD patients undergoing revascularization surgery. Methods A total of 44 patients with MMD were enrolled in this single-center, open-label, prospective, parallel randomized study, including 22 patients assigned to the sham group and 22 patients assigned to the RIC group. The primary outcome was the incidence of major neurologic complications during the perioperative period. Secondary outcomes were the modified Rankin Scale (mRS) score at discharge, at 90 days post-operation, and at 1 year after the operation. The outcome of safety was the incidence of adverse events associated with RIC. Blood samples were obtained to monitor the serum concentrations of cytokines (VEGF, IL-6). Results No subjects experienced adverse events during RIC intervention, and all patients could tolerate the RIC intervention in the perioperative period. The incidence of major neurologic complications was significantly lower in the RIC group compared with the control group (18.2% vs. 54.5%, P = 0.027). The mRS score at discharge in the RIC group was also lower than the control group (0.86 ± 0.99 vs. 1.18 ± 1.22, P = 0.035). In addition, the serum IL-6 level increased significantly at 7 days after bypass surgery in the control group and the serum level of VEGF at 7 days post-operation in the RIC group. Conclusion In conclusion, our study demonstrated the neuroprotective effect of RIC by reducing perioperative complications and improving cerebral blood flow in adult MMD patients undergoing revascularization surgery. Thus, RIC seems to be a potential treatment method for MMD. Clinical trial registration ClinicalTrials.gov, identifier: NCT05860946.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Zhenzhen Hu
- Department of Nursing, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanqiang Jiang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoxuan Yang
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Qing Zhang
- Department of Nursing, Huashan Hospital North, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
5
|
Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, Hermann DM. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci 2020; 14:26. [PMID: 32116567 PMCID: PMC7029732 DOI: 10.3389/fncel.2020.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
In contrast to lipopolysaccharide (LPS)-induced preconditioning, which has repeatedly been examined in the past, the effects of post-ischemic LPS-induced sepsis, although clinically considerably more important, have not systemically been studied. We exposed mice to transient intraluminal middle cerebral artery occlusion (MCAO) and examined the effects of intraperitoneal LPS (0.1 or 1 mg/kg) which was administered 24 h post-ischemia. Post-ischemic glial reactivity, neuronal survival and neurological outcome were differently modulated by the higher and the lower LPS dose. Although both doses promoted neuronal survival after 72 h, the underlying mechanisms were not similar. Mice receiving 1 mg/kg LPS exhibited transient hypothermia at 1 and 3 hours post sepsis (hps), followed by reduced focal neurological deficits at 24, 48 and 72 hps. The lower dose (0.1 mg/kg) did not induce hypothermia, but reduced microglia/macrophage activation with the appearance of an anti-inflammatory CD206 positive cell phenotype in the brain parenchyma. Together, our results indicate a novel, dose-dependent modulation of microglial cells that is intricately involved in brain protection.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Ben Schmermund
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Yachao Qi
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Effects of Combined Remote Ischemic Pre-and Post-Conditioning on Neurologic Complications in Moyamoya Disease Patients Undergoing Superficial Temporal Artery-Middle Cerebral Artery Anastomosis. J Clin Med 2019; 8:jcm8050638. [PMID: 31075871 PMCID: PMC6572043 DOI: 10.3390/jcm8050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis is the most commonly used treatment for Moyamoya disease. During the perioperative period, however, these patients are vulnerable to ischemic injury or hyperperfusion syndrome. This study investigated the ability of combined remote ischemic pre-conditioning (RIPC) and remote ischemic post-conditioning (RIPostC) to reduce the occurrence of major neurologic complications in Moyamoya patients undergoing STA-MCA anastomosis. The 108 patients were randomly assigned to a RIPC with RIPostC group (n = 54) or a control group (n = 54). Patients in the RIPC with RIPostC group were treated with four cycles of 5-min ischemia and 5-min reperfusion before craniotomy and after STA-MCA anastomosis (RIPostC). The incidence of postoperative neurologic complications and the duration of hospital stay were determined. The overall incidence of neurologic complication was significantly higher in the control group than in the RIPC with RIPostC group (13 vs. 3, p = 0.013). The duration of hospital stay was significantly longer in the control group than in the RIPC with RIPostC group (17.8 (11.3) vs. 13.8 (5.9) days, p = 0.023). Combined remote ischemic pre- and post-conditioning can be effective in reducing neurologic complications and the duration of hospitalization in Moyamoya patients undergoing STA-MCA anastomosis.
Collapse
|
7
|
Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D. Remote Ischemic Conditioning in Cerebral Diseases and Neurointerventional Procedures: Recent Research Progress. Front Neurol 2018; 9:339. [PMID: 29867745 PMCID: PMC5964135 DOI: 10.3389/fneur.2018.00339] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia and stroke are increasing in prevalence and are among the leading causes of morbidity and mortality in both developed and developing countries. Despite the progress in endovascular treatment, ischemia/reperfusion (IR) injury is an important contributor to post-surgical mortality and morbidity affecting a wide range of neurointerventional procedures. However, pharmacological recruitment of effective cerebral protective signaling has been largely disappointing to date. In remote ischemic conditioning (RIC), repetitive transient mechanical obstruction of vessels at a limb remote from the IR injury site protects vital organs from IR injury and confers infarction size reduction following prolonged arterial occlusion. Results of pharmacologic agents appear to be species specific, while RIC is based on the neuroprotective influences of phosphorylated protein kinase B, signaling proteins, nitric oxide, and transcriptional activators, the benefits of which have been confirmed in many species. Inducing RIC protection in patients undergoing cerebral vascular surgery or those who are at high risk of brain injury has been the subject of research and has been enacted in clinical settings. Its simplicity and non-invasive nature, as well as the flexibility of the timing of RIC stimulus, also makes it feasible to apply alongside neurointerventional procedures. Furthermore, despite nonuniform RIC protocols, emerging literature demonstrates improved clinical outcomes. The aims of this article are to summarize the potential mechanisms underlying different forms of conditioning, to explore the current translation of this paradigm from laboratory to neurovascular diseases, and to outline applications for patient care.
Collapse
Affiliation(s)
- Geng Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Mayo Clinic, Rochester, MN, United States
| | - Ming Hua Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Hai Tao Lu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
8
|
Corrigan F, Arulsamy A, Collins-Praino LE, Holmes JL, Vink R. Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun 2017; 64:124-139. [PMID: 28412141 DOI: 10.1016/j.bbi.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
A history of repeated concussion has been linked to the later development of neurodegeneration, which is associated with the accumulation of hyperphosphorylated tau and the development of behavioral deficits. However, the role that exogenous factors, such as immune activation, may play in the development of neurodegeneration following repeated mild traumatic brain injury (rmTBI) has not yet been explored. To investigate, male Sprague-Dawley rats were administered three mTBIs 5days apart using the diffuse impact-acceleration model to generate ∼100G. Sham animals underwent surgery only. At 1 or 5days following the last injury rats were given the TLR4 agonist, lipopolysaccharide (LPS, 0.1mg/kg), or saline. TLR4 activation had differential effects following rmTBI depending on the timing of activation. When given at 1day post-injury, LPS acutely activated microglia, but decreased production of pro-inflammatory cytokines like IL-6. This was associated with a reduction in neuronal injury, both acutely, with a restoration of levels of myelin basic protein (MBP), and chronically, preventing a loss of both MBP and PSD-95. Furthermore, these animals did not develop behavioral deficits with no changes in locomotion, anxiety, depressive-like behavior or cognition at 3months post-injury. Conversely, when LPS was given at 5days post-injury, it was associated acutely with an increase in pro-inflammatory cytokine production, with an exacerbation of neuronal damage and increased levels of aggregated and phosphorylated tau. At 3months post-injury, there was a slight exacerbation of functional deficits, particularly in cognition and depressive-like behavior. This highlights the complexity of the immune response following rmTBI and the need to understand how a history of rmTBI interacts with environmental factors to influence the potential to develop later neurodegeneration.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Alina Arulsamy
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Joshua L Holmes
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
9
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
11
|
The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci 2016; 6:brainsci6010006. [PMID: 26901230 PMCID: PMC4810176 DOI: 10.3390/brainsci6010006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Normal brain function is highly dependent on oxygen and nutrient supply and when the demand for oxygen exceeds its supply, hypoxia is induced. Acute episodes of hypoxia may cause a depression in synaptic activity in many brain regions, whilst prolonged exposure to hypoxia leads to neuronal cell loss and death. Acute inadequate oxygen supply may cause anaerobic metabolism and increased respiration in an attempt to increase oxygen intake whilst chronic hypoxia may give rise to angiogenesis and erythropoiesis in order to promote oxygen delivery to peripheral tissues. The effects of hypoxia on neuronal tissue are exacerbated by the release of many inflammatory agents from glia and neuronal cells. Cytokines, such as TNF-α, and IL-1β are known to be released during the early stages of hypoxia, causing either local or systemic inflammation, which can result in cell death. Another growing body of evidence suggests that inflammation can result in neuroprotection, such as preconditioning to cerebral ischemia, causing ischemic tolerance. In the following review we discuss the effects of acute and chronic hypoxia and the release of pro-inflammatory cytokines on synaptic transmission and plasticity in the central nervous system. Specifically we discuss the effects of the pro-inflammatory agent TNF-α during a hypoxic event.
Collapse
|
12
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Kim YW, Zipfel GJ, Ogilvy CS, Pricola KL, Welch BG, Shakir N, Patel B, Reavey-Cantwell JF, Kelman CR, Albuquerque FC, Kalani MYS, Hoh BL. Preconditioning effect on cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 2014; 74:351-8; discussion 358-9. [PMID: 24378827 DOI: 10.1227/neu.0000000000000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent experimental evidence indicates that endogenous mechanisms against cerebral vasospasm can be induced via preconditioning. OBJECTIVE To determine whether these vascular protective mechanisms are also present in vivo in humans with aneurysmal subarachnoid hemorrhage. METHODS A multicenter retrospective cohort of patients with aneurysmal subarachnoid hemorrhage was examined for ischemic preconditioning stimulus: preexisting steno-occlusive cerebrovascular disease (CVD) and/or previous cerebral infarct. Generalized estimating equation models were performed to determine the effect of the preconditioning stimulus on the primary end points of radiographic vasospasm, symptomatic vasospasm, and vasospasm-related delayed cerebral infarction and the secondary end point of discharge modified Rankin Scale score. RESULTS Of 1043 patients, 321 (31%) had preexisting CVD and 437 (42%) had radiographic vasospasm. Patients with preexisting CVD were less likely to develop radiographic vasospasm (odds ratio = 0.67; 95% confidence interval = 0.489-0.930; P = .02) but had no differences in other end points. In terms of the secondary end point, patients with preexisting CVD did not differ significantly from patients without preexisting CVD in mortality or unfavorable outcome in multivariate analyses, although patients with preexisting CVD were marginally more likely to die (P = .06). CONCLUSION This retrospective case-control study suggests that endogenous protective mechanisms against cerebral vasospasm-a preconditioning effect-may exist in humans, although these results could be the effect of atherosclerosis or some combination of preconditioning and atherosclerosis. Additional studies investigating the potential of preconditioning in aneurysmal subarachnoid hemorrhage are warranted.
Collapse
Affiliation(s)
- Young Woo Kim
- *Department of Neurosurgery, Bucheon St. Mary's Hospital, Catholic University of Korea, Bucheon, Republic of Korea; ‡Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri; §Neurovascular Service, Massachusetts General Hospital, Boston, Massachusetts; ¶Department of Radiology, UT Southwestern Medical Center, Dallas, Texas; ‖Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia; #Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; **Department of Neurosurgery, University of Florida, Gainesville, Florida
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
15
|
Effects of the PPAR-α agonist fenofibrate on acute and short-term consequences of brain ischemia. J Cereb Blood Flow Metab 2014; 34:542-51. [PMID: 24398933 PMCID: PMC3948136 DOI: 10.1038/jcbfm.2013.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/09/2023]
Abstract
In stroke, there is an imperative need to develop disease-modifying drugs able to (1) induce neuroprotection and vasculoprotection, (2) modulate recovery and brain plasticity, and (3) limit the short-term motor and cognitive consequences. We hypothesized that fenofibrate, a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, could exert a beneficial effect on immediate and short-term poststroke consequences related to its pleiotropic mechanisms. Rats or mice were subjected to focal ischemia to determine the effects of acute treatment by fenofibrate on (i) motor and memory impairment, (2) both cerebral and vascular compartments, (3) inflammation, (4) neurogenesis, and (5) amyloid cascade. We show that fenofibrate administration results in both neuronal and vascular protection and prevents the short-term motor and cognitive poststroke consequences by interaction with several mechanisms. Modulation of PPAR-α generates beneficial effects in the immediate poststroke consequences by mechanisms involving the interactions between polynuclear neutrophils and the vessel wall, and microglial activation. Fenofibrate modulates mechanisms involved in neurorepair and amyloid cascade. Our results suggest that PPAR-α agonists could check the key points of a potential disease-modifying effect in stroke.
Collapse
|
16
|
Abstract
A transient, ischemia-resistant phenotype known as "ischemic tolerance" can be established in brain in a rapid or delayed fashion by a preceding noninjurious "preconditioning" stimulus. Initial preclinical studies of this phenomenon relied primarily on brief periods of ischemia or hypoxia as preconditioning stimuli, but it was later realized that many other stressors, including pharmacologic ones, are also effective. This review highlights the surprisingly wide variety of drugs now known to promote ischemic tolerance, documented and to some extent mechanistically characterized in preclinical animal models of stroke. Although considerably more experimentation is needed to thoroughly validate the ability of any currently identified preconditioning agent to protect ischemic brain, the fact that some of these drugs are already clinically approved for other indications implies that the growing enthusiasm for translational success in the field of pharmacologic preconditioning may be well justified.
Collapse
|
17
|
TLR-3 receptor activation protects the very immature brain from ischemic injury. J Neuroinflammation 2013; 10:104. [PMID: 23965176 PMCID: PMC3765441 DOI: 10.1186/1742-2094-10-104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background We have shown that preconditioning by lipopolysaccharide (LPS) will result in 90% reduction in ischemic brain damage in P7 rats. This robust LPS neuroprotection was not observed in P3 or P5 pups (corresponding to human premature infant). LPS is a known Toll-like receptor 4 (TLR-4) ligand. We hypothesized that TLRs other than TLR-4 may mediate preconditioning against cerebral ischemic injury in the developing brain. Methods TLR-2, TLR-3, TLR-4, and TLR-9 expression was detected in brain sections from P3, P5, and P7 rats by immuno-staining. In subsequent experiments, P5 rats were randomly assigned to TLR-3 specific agonist, poly I:C, or saline treated group. At 48 h after the injections, hypoxic-ischemic (HI) injury was induced by unilateral carotid artery ligation followed by hypoxia for 65 min. Brains were removed 1 week after HI injury and infarct volumes were compared in H&E stained sections between the two groups. Results TLR-2 and TLR-3 were highly expressed in brains of P3 and P5 but not in P7 rats. The number of TLR-4 positive cells was lower in P3 and P5 compared to P7 brains (P <0.05). TLR-3 was predominately expressed in P5 pups (P <0.05). There was no significant difference in TLR-9 expression in the three age groups. There was a significant reduction in infarct volume (P = 0.01) in poly I:C compared to saline pre-treated P5 pups. Pre-treatment with poly I:C downregulated NF-κB and upregulated IRF3 expression in P5 rat ischemic brains. Pre-treatment with poly I:C did not offer neuroprotection in P7 rat brains. Conclusion TLRs expression and function is developmentally determined. Poly I:C-induced preconditioning against ischemic injury may be mediated by modulation of TLR-3 signaling pathways. This is the first study to show that TLR-3 is expressed in the immature brain and mediates preconditioning against ischemic injury.
Collapse
|
18
|
Halder SK, Matsunaga H, Ishii KJ, Akira S, Miyake K, Ueda H. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia. J Neurochem 2013; 126:243-60. [DOI: 10.1111/jnc.12262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Sebok K. Halder
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hayato Matsunaga
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science; WPI Immunology Frontier Research Center; Osaka University, Osaka Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center; Department of Host Defense; Research Institute for Microbial Diseases; Osaka University; Osaka Japan
| | - Kensuke Miyake
- Division of Innate Immunity; The Institute of Medical Science; University of Tokyo; Tokyo Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
19
|
Longhi L, Gesuete R, Perego C, Ortolano F, Sacchi N, Villa P, Stocchetti N, De Simoni MG. Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab 2011; 31:1919-29. [PMID: 21468087 PMCID: PMC3185879 DOI: 10.1038/jcbfm.2011.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated the occurrence of endotoxin (lipopolysaccharide, LPS) preconditioning in traumatic brain injury (TBI), evaluating the time window of LPS-induced protection, its persistence, and the associated molecular mechanisms. Mice received 0.1 mg/kg LPS or saline intraperitoneally and subsequently TBI (by controlled cortical impact brain injury) at various time intervals. Mice receiving LPS 3, 5, or 7 days before TBI showed attenuated motor deficits at 1 week after injury compared with mice receiving saline. Those receiving LPS 5 days before injury had also a reduced contusion volume (7.9±1.3 versus 12±2.3 mm(3)) and decreased cell death. One month after injury, the protective effect of LPS on contusion volume (14.5±1.2 versus 18.2±1.2 mm(3)) and neurologic function was still present. Traumatic brain injury increased glial fibrillary acidic protein, CD11b, CD68, tumor necrosis factor-α, interleukin (IL)-10, and IL-6 mRNA expression 24 hours after injury. Lipopolysaccharide administered 5 (but not 9) days before injury increased the expression of CD11b (233%) and of interferon β (500%) in uninjured mice, while it reduced the expression of CD68 (by 46%) and increased that of IL-6 (by 52%) in injured mice. Lipopolysaccharide preconditioning conferred a long-lasting neuroprotection after TBI, which was associated with a modulation of microglia/macrophages activity and cytokine production.
Collapse
Affiliation(s)
- Luca Longhi
- Department of Anesthesia and Critical Care Medicine, University of Milano, Neurosurgical Intensive Care Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol 2011; 589:4147-55. [PMID: 21708907 DOI: 10.1113/jphysiol.2011.209718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain responds to noxious stimulation with protective signalling. Over the last decades, a number of experimental strategies have been established to study endogenous brain protection. Pre-, per-, post- and remote 'conditioning' are now widely used to unravel the underlying mechanisms of endogenous neuroprotection. Some of these strategies are currently being tested in clinical trials to protect the human brain against anticipated damage or to boost protective responses during or after injury. Here we summarize the principles of 'conditioning' research and current efforts to translate this knowledge into effective treatment of patients. Conditioning to induce protected brain states provides an experimental window into endogenous brain protection and can lead to the discovery of drugs mimicking the effects of conditioning. Mechanisms of endogenous brain tolerance can be activated through a wide variety of stimuli that signal 'danger' to the brain. These danger signals lead to the induction of regulator and effector mechanisms, which suppress death and induce survival pathways, decrease metabolism, as well as increase substrate delivery. We conclude that preclinical research on endogenous brain protection has greatly benefited from conditioning strategies, but that clinical applications are challenging, and that we should not prematurely rush into ill-designed and underpowered clinical trials.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (CSB), Department of Neurology and Experimental Neurology, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
21
|
Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, Han BH, Zipfel GJ. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 2011; 42:776-82. [PMID: 21317271 DOI: 10.1161/strokeaha.110.607200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Vasospasm-induced delayed cerebral ischemia remains a major source of morbidity in patients with aneurysmal subarachnoid hemorrhage (SAH). We hypothesized that activating innate neurovascular protective mechanisms by preconditioning (PC) may represent a novel therapeutic approach against SAH-induced vasospasm and neurological deficits and, secondarily, that the neurovascular protection it provides is mediated by endothelial nitric oxide synthase (eNOS). METHODS Wild-type mice were subjected to hypoxic PC or normoxia followed 24 hours later by SAH. Neurological function was analyzed daily; vasospasm was assessed on post-surgery Day 2. Nitric oxide availability, eNOS expression, and eNOS activity were also assessed. In a separate experiment, wild-type and eNOS-null mice were subjected to hypoxic PC or normoxia followed by SAH and assessed for vasospasm and neurological deficits. RESULTS PC nearly completely prevented SAH-induced vasospasm and neurological deficits. It also prevented SAH-induced reduction in nitric oxide availability and increased eNOS activity in mice with and without SAH. PC-induced protection against vasospasm and neurological deficits was lost in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester and in eNOS-null mice. CONCLUSIONS Endogenous protective mechanisms against vasospasm exist, are powerful, and can be induced by PC. eNOS-derived nitric oxide is a critical mediator of PC-induced neurovascular protection. These data provide strong "proof-of-principle" evidence that PC represents a promising new strategy to reduce vasospasm and delayed cerebral ischemia after SAH.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:2. [PMID: 20298534 PMCID: PMC2830184 DOI: 10.1186/2040-7378-2-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/21/2010] [Indexed: 12/31/2022]
Abstract
Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells.
Collapse
Affiliation(s)
- Aysan Durukan
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.
| | | |
Collapse
|
23
|
Behavioural and histological effects of preconditioning with lipopolysaccharide in epileptic rats. Neurochem Res 2009; 35:262-72. [PMID: 19728087 DOI: 10.1007/s11064-009-0050-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Sublethal stress stimuli such as systemic endotoxin treatment can induce tolerance of the brain to subsequent ischemic stress, which results in a decreased infarct size. Based on this evidence, we hypothesized that lipopolysaccharide (LPS)-induced preconditioning could protect hippocampal neurons in epileptic rats. To test this hypothesis, the anticonvulsant effect of a low dose of LPS against seizures elicited by pilocarpine hydrochloride was measured. Using the pilocarpine model of temporal lobe epilepsy and LPS-preconditioning, we also investigated hippocampal pathology in the rat brain. Based on the behavioural observations conducted, it can be assumed that the preconditioning procedure used may decrease seizure excitability in epileptic rats. However, determination of the seizure excitability threshold needs to be elaborated. Qualitative and quantitative analyses of histological brain sections in the LPS-preconditioned rats showed markedly decreased intensity of neurodegenerative changes in the CA1, CA3 and DG hippocampal fields. The tendency was observed in all the periods of the pilocarpine model of epilepsy. We suggest that preconditioning with LPS may have neuroprotective effects in the CA1, CA3 and DG hippocampal sectors; however, it has no influence on the course of the seizures in rats in the pilocarpine model of epilepsy.
Collapse
|
24
|
Wacker BK, Park TS, Gidday JM. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 2009; 40:3342-8. [PMID: 19644058 DOI: 10.1161/strokeaha.109.560714] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE The importance of bioactive lipid signaling under physiological and pathophysiological conditions is progressively becoming recognized. The disparate distribution of sphingosine kinase (SphK) isoform activity in normal and ischemic brain, particularly the large excess of SphK2 in cerebral microvascular endothelial cells, suggests potentially unique cell- and region-specific signaling by its product sphingosine-1-phosphate. The present study sought to test the isoform-specific role of SphK as a trigger of hypoxic preconditioning (HPC)-induced ischemic tolerance. METHODS Temporal changes in microvascular SphK activity and expression were measured after HPC. The SphK inhibitor dimethylsphingosine or sphingosine analog FTY720 was administered to adult male Swiss-Webster ND4 mice before HPC. Two days later, mice underwent a 60-minute transient middle cerebral artery occlusion and at 24 hours of reperfusion, infarct volume, neurological deficit, and hemispheric edema were measured. RESULTS HPC rapidly increased microvascular SphK2 protein expression (1.7+/-0.2-fold) and activity (2.5+/-0.6-fold), peaking at 2 hours, whereas SphK1 was unchanged. SphK inhibition during HPC abrogated reductions in infarct volume, neurological deficit, and ipsilateral edema in HPC-treated mice. FTY720 given 48 hours before stroke also promoted ischemic tolerance; when combined with HPC, even greater (and dimethylsphingosine-reversible) protection was noted. CONCLUSIONS These findings indicate hypoxia-sensitive increases in SphK2 activity may serve as a proximal trigger that ultimately leads to sphingosine-1-phosphate-mediated alterations in gene expression that promote the ischemia-tolerant phenotype. Thus, components of this bioactive lipid signaling pathway may be suitable therapeutic targets for protecting the neurovascular unit in stroke.
Collapse
Affiliation(s)
- Bradley K Wacker
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
25
|
Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 2008; 158:1007-20. [PMID: 18809468 DOI: 10.1016/j.neuroscience.2008.07.067] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/31/2022]
Abstract
Stroke and other cerebral vascular diseases are a leading cause of morbidity and mortality in the United States. Despite intensive research to identify interventions that lessen cerebrovascular injury, no major therapies exist. Development of stroke prophylaxis involves an understanding of the mechanisms of damage following cerebral ischemia, and elucidation of the endogenous mechanisms that combat further brain injury. Toll-like receptors (TLRs) are critical components of the innate immune system that have been shown recently to mediate ischemic injury. Paradoxically, TLR ligands administered systemically induce a state of tolerance to subsequent ischemic injury. Herein we suggest that stimulation of TLRs prior to ischemia reprograms TLR signaling that occurs following ischemic injury. Such reprogramming leads to suppressed expression of pro-inflammatory molecules and enhanced expression of numerous anti-inflammatory mediators that collectively confer robust neuroprotection. Our findings indicate that numerous preconditioning stimuli lead to TLR activation, an event that occurs prior to ischemia and ultimately leads to TLR reprogramming. Thus genomic reprogramming of TLR signaling may be a unifying principle of tolerance to cerebral ischemia.
Collapse
Affiliation(s)
- B J Marsh
- Department of Molecular Microbiology and Immunology L220, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
26
|
Park WS, Han J, Earm YE. Physiological role of inward rectifier K+ channels in vascular smooth muscle cells. Pflugers Arch 2008; 457:137-47. [DOI: 10.1007/s00424-008-0512-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
27
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
28
|
Marsh BJ, Stenzel-Poore MP. Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol 2007; 8:8-13. [PMID: 17974478 DOI: 10.1016/j.coph.2007.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/24/2022]
Abstract
Toll-like receptors (TLRs) are a family of evolutionarily conserved molecules that directly detect pathogen invasion or tissue damage and initiate a biological response. TLRs can signal through two primary intracellular pathways and as such can induce either immuno-stimulatory or immuno-modulatory molecules. Both sides of this twin-edged sword are being examined for their therapeutic potential in combating neurological disease. The immuno-stimulatory properties of TLRs are being used to generate tumor-specific immune responses to CNS tumors while the immuno-modulatory properties are being used to suppress damaging inflammatory responses to stroke. Recently, a third component of TLR signaling has begun to emerge--that of direct neuroprotection. Hence, the TLRs offer novel targets for the treatment of neurological disease.
Collapse
Affiliation(s)
- Brenda J Marsh
- Department of Molecular Microbiology and Immunology, L220, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
29
|
Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 2007; 27:1663-74. [PMID: 17327883 DOI: 10.1038/sj.jcbfm.9600464] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lipopolysaccharide (LPS) preconditioning provides neuroprotection against subsequent cerebral ischemic injury. Tumor necrosis factor-alpha (TNFalpha) is protective in LPS-induced preconditioning yet exacerbates neuronal injury in ischemia. Here, we define dual roles of TNFalpha in LPS-induced ischemic tolerance in a murine model of stroke and in primary neuronal cultures in vitro, and show that the cytotoxic effects of TNFalpha are attenuated by LPS preconditioning. We show that LPS preconditioning significantly increases circulating levels of TNFalpha before middle cerebral artery occlusion in mice and show that TNFalpha is required to establish subsequent neuroprotection against ischemia, as mice lacking TNFalpha are not protected from ischemic injury by LPS preconditioning. After stroke, LPS preconditioned mice have a significant reduction in the levels of TNFalpha (approximately threefold) and the proximal TNFalpha signaling molecules, neuronal TNF-receptor 1 (TNFR1), and TNFR-associated death domain (TRADD). Soluble TNFR1 (s-TNFR1) levels were significantly increased after stroke in LPS-preconditioned mice (approximately 2.5-fold), which may neutralize the effect of TNFalpha and reduce TNFalpha-mediated injury in ischemia. Importantly, LPS-preconditioned mice show marked resistance to brain injury caused by intracerebral administration of exogenous TNFalpha after stroke. We establish an in vitro model of LPS preconditioning in primary cortical neuronal cultures and show that LPS preconditioning causes significant protection against injurious TNFalpha in the setting of ischemia. Our studies suggest that TNFalpha is a twin-edged sword in the setting of stroke: TNFalpha upregulation is needed to establish LPS-induced tolerance before ischemia, whereas suppression of TNFalpha signaling during ischemia confers neuroprotection after LPS preconditioning.
Collapse
Affiliation(s)
- Holly L Rosenzweig
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 2007; 27:7083-93. [PMID: 17611261 PMCID: PMC6794575 DOI: 10.1523/jneurosci.1645-07.2007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral ischemic preconditioning or tolerance is a powerful neuroprotective phenomenon by which a sublethal injurious stimulus renders the brain resistant to a subsequent damaging ischemic insult. We used lipopolysaccharide (LPS) as a preconditioning stimulus in a mouse model of middle cerebral artery occlusion (MCAO) to examine whether improvements in cerebrovascular function contribute to the protective effect. Administration of LPS 24 h before MCAO reduced the infarct by 68% and improved ischemic cerebral blood flow (CBF) by 114% in brain areas spared from infarction. In addition, LPS prevented the dysfunction in cerebrovascular regulation induced by MCAO, as demonstrated by normalization of the increase in CBF produced by neural activity, hypercapnia, or by the endothelium-dependent vasodilator acetylcholine. These beneficial effects of LPS were not observed in mice lacking inducible nitric oxide synthase (iNOS) or the nox2 subunit of the superoxide-producing enzyme NADPH oxidase. LPS increased reactive oxygen species and the peroxynitrite marker 3-nitrotyrosine in wild-type mice but not in nox2 nulls. The peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) attenuated LPS-induced nitration and counteracted the beneficial effects of LPS on infarct volume, ischemic CBF, and vascular reactivity. Thus, LPS preserves neurovascular function and ameliorates CBF in regions of the ischemic territory at risk for infarction. This effect is mediated by peroxynitrite formed from iNOS-derived NO and nox2-derived superoxide. The data indicate that preservation of cerebrovascular function is an essential component of ischemic tolerance and suggest that combining neuroprotection and vasoprotection may be a valuable strategy for treating ischemic brain injury.
Collapse
Affiliation(s)
- Alexander Kunz
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Laibaik Park
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Takato Abe
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Eduardo F. Gallo
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Josef Anrather
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Ping Zhou
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Costantino Iadecola
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| |
Collapse
|
31
|
Abstract
Adaptation is one of physiology's fundamental tenets, operating not only at the level of species, as Darwin proposed, but also at the level of tissues, cells, molecules and, perhaps, genes. During recent years, stroke neurobiologists have advanced a considerable body of evidence supporting the hypothesis that, with experimental coaxing, the mammalian brain can adapt to injurious insults such as cerebral ischaemia to promote cell survival in the face of subsequent injury. Establishing this protective phenotype in response to stress depends on a coordinated response at the genomic, molecular, cellular and tissue levels. Here, I summarize our current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance'.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
32
|
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors expressed on cells of the innate immune system that allow for the recognition of conserved structural motifs on a wide array of pathogens, referred to as pathogen-associated molecular patterns, as well as some endogenous molecules. The recent emergence of studies examining TLRs in the central nervous system (CNS) indicates that these receptors not only play a role in innate immunity in response to infectious diseases but may also participate in CNS autoimmunity, neurodegeneration, and tissue injury. This review summarizes the experimental evidence demonstrating a role for TLRs in the context of CNS inflammation in both infectious and noninfectious conditions.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
33
|
Davis AEM, Campbell SJ, Wilainam P, Anthony DC. Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci 2006; 22:2441-50. [PMID: 16307587 DOI: 10.1111/j.1460-9568.2005.04447.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic infection often accompanies or precedes acute brain injury, but it remains unclear how the systemic response contributes to outcome. To examine this problem we have microinjected recombinant interleukin-1beta (IL-1beta), a cytokine associated with acute brain injury, into the rat brain parenchyma and either preceded or followed this challenge with the intravenous injection of lipopolysaccharide (LPS), which mimics systemic inflammatory response syndrome. The microinjection of IL-1beta alone into the brain parenchyma gives rise to leukocyte mobilization in the blood, and to the delayed recruitment of neutrophils and monocytes to the brain with no evidence of blood-brain barrier breakdown or overt neuronal cell death. Systemic LPS pre-conditioning resulted in a dose-dependent reduction both in the number of circulating leukocytes and in the number of leukocytes recruited to the brain parenchyma after 12 h. Surprisingly, LPS given two hours after injury was equally effective in reducing the recruitment of leukocytes to the brain, which is more relevant to the management of clinical disease. In a more clinically relevant model of spinal cord injury, intravenous LPS post-conditioning also reduced the numbers of leukocytes mobilized in the blood and recruited to the spinal cord and thus limited the breakdown of the blood-spinal cord barrier. The effects appear to be specific to LPS, as they were not observed after intravenous IL-1beta pre-conditioning. Our studies suggest that individual pro-inflammatory conditioning strategies may protect the injured central nervous system from the damaging consequences of leukocyte recruitment and may provide scope for novel therapeutic intervention.
Collapse
Affiliation(s)
- Andrew E M Davis
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | | | | | | |
Collapse
|
34
|
Pétrault O, Ouk T, Gautier S, Laprais M, Gelé P, Bastide M, Bordet R. Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion. Br J Pharmacol 2005; 144:1051-8. [PMID: 15700030 PMCID: PMC1576087 DOI: 10.1038/sj.bjp.0706124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The polymorphonuclear neutrophils (PMN) activation and mobilization observed in acute cerebral infarction contribute to the brain tissue damage, but PMN could also be involved in postischemic functional injury of ischemied blood vessel. 2. This study was undertaken to investigate whether pharmacological neutropenia could modify the postischemic endothelial dysfunction in comparison to smooth muscle whose impairment is likely more related to reperfusion and oxidative stress. 3. A cerebral ischemia-reperfusion by endoluminal occlusion of right middle cerebral artery (MCA) was performed 4 days after intravenous administration of vinblastine or 12 h after RP-3 anti-rat neutrophils monoclonal antibody (mAb RP-3) injection into the peritoneal cavity, on male Wistar rats with 1-h ischemia then followed by 24-h reperfusion period. Brain infarct volume was measured by histomorphometric analysis and vascular endothelial and smooth muscle reactivity of MCA was analysed using Halpern myograph. 4. Neutropenia induced a neuroprotective effect as demonstrated by a significant decrease of brain infarct size. In parallel to neuroprotection, neutropenia prevented postischemic impairment of endothelium-dependent relaxing response to acetylcholine. In contrast, smooth muscle functional alterations were not prevented by neutropenia. Ischemia-reperfusion-induced myogenic tone impairment remained unchanged in vinblastine and mAb RP-3-treated rats. Postischemic Kir2.x-dependent relaxation impairment was not prevented in neutropenic conditions. The fully relaxation of smooth muscle response to sodium nitroprusside was similar in all groups. 5. Our results evidenced the dissociate prevention of pharmacologically induced neutropenia on postischemic vascular endothelial and smooth muscle impairment. The selective endothelial protection by neutropenia is parallel to a neuroprotective effect suggesting a possible relationship between the two phenomena.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/prevention & control
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Neutropenia/chemically induced
- Neutropenia/physiopathology
- Rats
- Rats, Wistar
- Vinblastine/toxicity
Collapse
Affiliation(s)
- Olivier Pétrault
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Thavarak Ouk
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Sophie Gautier
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Maud Laprais
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Patrick Gelé
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Michèle Bastide
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
- IUT A, Université Sciences et Techniques de Lille, Villeneuve d'Ascq, France
| | - Régis Bordet
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
- Author for correspondence:
| |
Collapse
|
35
|
Ahishali B, Kaya M, Kalayci R, Uzun H, Bilgic B, Arican N, Elmas I, Aydin S, Kucuk M. Effects of lipopolysaccharide on the blood-brain barrier permeability in prolonged nitric oxide blockade-induced hypertensive rats. Int J Neurosci 2005; 115:151-68. [PMID: 15763998 DOI: 10.1080/00207450590519030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors investigated the effects of lipopolysaccharide (LPS) on the blood-brain barrier (BBB) integrity and the activity of astrocytes during the Nw-nitro-L-arginine methyl ester (L-NAME) hypertension followed by angiotensin (ANG) II in rats. They measured the changes in the BBB permeability using the Evans blue (EB) dye and concomitantly in the levels of TNF-a, IL-1b, and IL-6 in serum and nitric oxide in plasma. The authors performed two tight junction-specific proteins, zonula occludens-1 and occludin, and glial fibrillary acidic protein, by using immunohisto-chemical method. The serum levels of TNF-a, IL-1 IL-6, and the plasma level of nitric oxide significantly increased in LPS-treated rats (p<.01). The EB dye extravasation increased in cerebellum (p<.001) and diencephalon (p<.05) of L-NAME plus ANG II-treated animals. However, LPS reduced the increased EB dye extravasation in the brain regions of L-NAME-induced hypertensive rats treated with ANG II (p<.001). In L-NAME, there was a considerable loss of staining in both zonula occludens-1 and occludin. Staining for zonula occludens-1 and occludin was highly intensive in animals treated with LPS. Glial fibrillary acidic protein staining was seen in a few astrocytes in brains of L-NAME-treated animals. However, this staining showed an increased intensity in the brain sections of animals treated with LPS. This study indicates that, in L-NAME hypertensive rats, ANG II leads to an increase in the extravasation of EB dye to brain as a result of decreased activity of tight junction proteins and astrocytes, and LPS could significantly attenuate the EB dye transport to the brain through the increased activity of tight junction proteins and astrocytes.
Collapse
Affiliation(s)
- B Ahishali
- Department of Histology and Embryology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karikó K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 2004; 24:1288-304. [PMID: 15545925 DOI: 10.1097/01.wcb.0000145666.68576.71] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia triggers acute inflammation, which exacerbates primary brain damage. Activation of the innate immune system is an important component of this inflammatory response. Inflammation occurs through the action of proinflammatory cytokines, such as TNF, IL-1 beta and IL-6, that alter blood flow and increase vascular permeability, thus leading to secondary ischemia and accumulation of immune cells in the brain. Production of these cytokines is initiated by signaling through Toll-like receptors (TLRs) that recognize host-derived molecules released from injured tissues and cells. Recently, great strides have been made in understanding the regulation of the innate immune system, particularly the signaling mechanisms of TLRs. Negative feedback inhibitors of TLRs and inflammatory cytokines have now been identified and characterized. It is also evident that lipid rafts exist in membranes and play a role in receptor-mediated inflammatory signaling events. In the present review, using this newly available large body of knowledge, we take a fresh look at studies of ischemic tolerance. Based on this analysis, we recognize a striking similarity between ischemic tolerance and endotoxin tolerance, an immune suppressive state characterized by hyporesponsiveness to lipopolysaccharide (LPS). In view of this analogy, and considering recent discoveries related to molecular mechanisms of endotoxin tolerance, we postulate that inhibition of TLR and proinflammatory cytokine signaling contributes critically to ischemic tolerance in the brain and other organs. Ischemic tolerance is a protective mechanism induced by a variety of preconditioning stimuli. Tolerance can be established with two temporal profiles: (i) a rapid form in which the trigger induces tolerance to ischemia within minutes and (ii) a delayed form in which development of protection takes several hours or days and requires de-novo protein synthesis. The rapid form of tolerance is achieved by direct interference with membrane fluidity, causing disruption of lipid rafts leading to inhibition of TLR/cytokine signaling pathways. In the delayed form of tolerance, the preconditioning stimulus first triggers the TLR/cytokine inflammatory pathways, leading not only to inflammation but also to simultaneous upregulation of feedback inhibitors of inflammation. These inhibitors, which include signaling inhibitors, decoy receptors, and anti-inflammatory cytokines, reduce the inflammatory response to a subsequent episode of ischemia. This novel interpretation of the molecular mechanism of ischemic tolerance highlights new avenues for future investigation into the prevention and treatment of stroke and related diseases.
Collapse
Affiliation(s)
- Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
37
|
Pétrault O, Bastide M, Cotelle N, Gelé P, Gautier S, Laprais M, Vamecq J, Duriez P, Bordet R. The neuroprotective effect of the antioxidant flavonoid derivate di-tert-butylhydroxyphenyl is parallel to the preventive effect on post-ischemic Kir2.x impairment but not to post-ischemic endothelial dysfunction. Naunyn Schmiedebergs Arch Pharmacol 2004; 370:395-403. [PMID: 15502971 DOI: 10.1007/s00210-004-0966-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
In the rat model of transient cerebral ischemia induced by intraluminal occlusion of the middle cerebral artery, we investigated the respective roles of ischemia and reperfusion in endothelium-dependent relaxation and smooth muscle relaxation related to the inward rectifier potassium current (Kir2.x), using the Halpern arteriography technique and/or patch-clamp technique. We first demonstrated that reperfusion is necessary to induce a significant impairment of smooth muscle Kir2.x, since ischemia alone has no effect on Kir2.x current density and function. In addition, we demonstrated that both ischemia and reperfusion are necessary for the occurrence of maximal post-ischemic endothelial dysfunction. The crucial role of reperfusion in post-ischemic vascular impairment prompted us to characterize the effect of a new antioxidant synthetic flavonoid derivate, 3'5'di- tert-butylhydroxyphenyl (dt-BC), on both neuronal and vascular injuries. Dt-BC (10 mg/kg) induced a neuroprotective effect as demonstrated by a significant decrease in infarct size, while there was no protective effect with the doses of 3 mg/kg and 30 mg/kg. Parallel to neuroprotection, dt-BC at a dose of 10 mg/kg, but not with doses of 3 mg/kg and 30 mg/kg, prevented post-ischemic impairment of smooth muscle Kir2.x current density and function, while dt-BC had no effect on the post-ischemic alteration of endothelial function whatever doses are used. These data demonstrate the potential of a new synthetic flavonoid derivate to induce neurovascular protection and support a possible relationship between vascular and neuronal protection via pharmacological modulation of oxidative stress.
Collapse
Affiliation(s)
- Olivier Pétrault
- EA 1046-Laboratoire de Pharmacologie, Faculté de Médecine de l'Université de Lille 2, Centre Hospitalier, Universitaire de Lille, 1 place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 2004; 35:2576-81. [PMID: 15375302 DOI: 10.1161/01.str.0000143450.04438.ae] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Tolerance to ischemic brain injury is induced by several preconditioning stimuli, including lipopolysaccharide (LPS). A small dose of LPS given systemically confers ischemic protection in the brain, a process that appears to involve activation of an inflammatory response before ischemia. We postulated that LPS preconditioning modulates the cellular inflammatory response after cerebral ischemia, resulting in neuroprotection. METHODS Mice were treated with LPS (0.2 mg/kg) 48 hours before ischemia induced by transient middle cerebral artery occlusion (MCAO). The infarct was measured by 2,3,5-triphenyltetrazolium chloride staining. Microglia/macrophage responses after MCAO were assessed by immunofluorescence and flow cytometry. The effect of MCAO on white blood cells in the brain and peripheral circulation was measured by flow cytometry 48 hours after MCAO. RESULTS LPS preconditioning induced significant neuroprotection against MCAO. Administration of low-dose LPS before MCAO prevented the cellular inflammatory response in the brain and blood. Specifically, LPS preconditioning suppressed neutrophil infiltration into the brain and microglia/macrophage activation in the ischemic hemisphere, which was paralleled by suppressed monocyte activation in the peripheral blood. CONCLUSIONS LPS preconditioning induces neuroprotection against ischemic brain injury in a mouse model of stroke. LPS preconditioning suppresses the cellular inflammatory response to ischemia in the brain and circulation. Diminished activation of cellular inflammatory responses that ordinarily exacerbate ischemic injury may contribute to neuroprotection induced by LPS preconditioning.
Collapse
Affiliation(s)
- Holly L Rosenzweig
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gautier S, Petrault O, Gele P, Laprais M, Bastide M, Bauters A, Deplanque D, Jude B, Caron J, Bordet R. Involvement of Thrombolysis in Recombinant Tissue Plasminogen Activator-Induced Cerebral Hemorrhages and Effect on Infarct Volume and Postischemic Endothelial Function. Stroke 2003; 34:2975-9. [PMID: 14615621 DOI: 10.1161/01.str.0000101914.62066.7b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and Purpose—
In a model of mechanical focal ischemia, we investigated the involvement of thrombolysis products (TLP) in recombinant tissue plasminogen activator (rtPA)-induced intracerebral complications and the effects on infarct volume and postischemic endothelial function.
Methods—
Hemorrhage incidence and severity were evaluated by histomorphometric analysis in male spontaneously hypertensive rats (SHR) subjected to 60-minute intraluminal middle cerebral artery (MCA) occlusion and receiving intravenously 5 hours later either saline, rtPA (3, 10, or 30 mg/kg), or rtPA (10 mg/kg) associated with TLP (rtPA+TLP). In addition, MCA reactivity was assessed in rtPA- or rtPA+TLP-treated SHR versus control Wistar-Kyoto rats or SHR.
Results—
No hemorrhage was observed visually in SHR receiving saline. In contrast, rtPA administration induced hemorrhagic complications in infarcted areas in a dose-independent manner. Administration of rtPA+TLP solution, containing a high concentration of plasmin, did not affect hemorrhage incidence but significantly increased hemorrhage severity (8.8±2.3 petechiae versus 3.0±1.0 petechiae in rtPA group;
P
<0.001). This increased severity was associated with a significant increase of both infarct volume (182±10 versus 144±15 mm
3
in rtPA group;
P
<0.01) and postischemic impairment of MCA endothelium-dependent relaxation (9±0.5% versus 13±1% in rtPA group;
P
<0.05).
Conclusions—
Treatment with rtPA led to intracerebral hemorrhages, in contrast to saline-treated animals, and the presence of TLP increased the severity of these hemorrhages, in parallel with increased infarct volume and worsened endothelial function.
Collapse
Affiliation(s)
- Sophie Gautier
- Laboratoire de Pharmacologie, Faculté de Médecine, Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci 2003. [PMID: 12867511 DOI: 10.1523/jneurosci.23-15-06264.2003] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The treatment of ischemic strokes is limited to the prevention of cerebrovascular risk factors and to the modulation of the coagulation cascade during the acute phase. A new therapeutic strategy could be to preventively protect the brain against noxious biological reactions induced by cerebral ischemia such as oxidative stress and inflammation to minimize their neurological consequences. Here, we show that a peroxisome proliferator-activated receptor (PPAR-alpha) activator, fenofibrate, protects against cerebral injury by anti-oxidant and anti-inflammatory mechanisms. A 14 d preventive treatment with fenofibrate reduces susceptibility to stroke in apolipoprotein E-deficient mice as well as decreases cerebral infarct volume in C57BL/6 wild-type mice. The neuroprotective effect of fenofibrate is completely absent in PPAR-alpha-deficient mice, suggesting that PPAR-alpha activation is involved as a mechanism of the protection against cerebral injury. Furthermore, this neuroprotective effect appears independently of any improvement in plasma lipids or glycemia and is associated with (1) an improvement in middle cerebral artery sensitivity to endothelium-dependent relaxation unrelated to an increase in nitric oxide synthase (NOS) type III expression, (2) a decrease in cerebral oxidative stress depending on the increase in numerous antioxidant enzyme activities, and (3) the prevention of ischemia-induced expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in cerebral vessels without any change in NOS II expression. These data demonstrate that PPAR-alpha could be a new pharmacological target to preventively reduce the deleterious neurological consequences of stroke in mice and suggest that PPAR-alpha activators could preventively decrease the severity of stroke in humans.
Collapse
|