1
|
Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 2017; 8:e2643. [PMID: 28252642 PMCID: PMC5386560 DOI: 10.1038/cddis.2017.64] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Vasilev DS, Dubrovskaya NM, Nalivaeva NN, Zhuravin IA. Regulation of caspase-3 content and activity in rat cortex in norm and after prenatal hypoxia. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Lim AL, Taylor DA, Malone DT. A two-hit model: behavioural investigation of the effect of combined neonatal MK-801 administration and isolation rearing in the rat. J Psychopharmacol 2012; 26:1252-64. [PMID: 22361477 DOI: 10.1177/0269881111430751] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study combined two neurodevelopmental manipulations, neonatal MK-801 treatment and isolation rearing, to produce a 'two-hit' model and determine whether two hits induce a more robust behavioural phenotype of an animal model of aspects of schizophrenia compared with individual manipulations alone. The effect of clozapine was also assessed. Male Sprague-Dawley rats received 0.2 mg/kg MK-801 or saline intraperitoneally (i.p.) once daily on postnatal days (PNDs) 7-10 and were assigned to group or isolation rearing at weaning (PND 21). From PND 77, they received a vehicle or 5 mg/kg clozapine (i.p.) treatment regimen and were subjected to three prepulse inhibition (PPI) tests, a locomotor activity assessment and a novel object recognition task. MK-801-treated rats reared in isolation displayed robust PPI disruptions which were consistently manifested in all three tests. PPI deficits were also detected in saline-treated rats reared in isolation but not in all tests. Only the two-hit rats demonstrated hyperlocomotion and impaired object recognition memory. Clozapine restored PPI anomalies in the two-hit rats. The two-hit model showed greater psychotic-like effects than either neonatal MK-801 or isolation rearing alone. The preliminary predictive validity shown with clozapine suggests this model may be useful for predicting the efficacy of putative antipsychotics.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | | | | |
Collapse
|
4
|
Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, Carnes A, Kim J, Shing E, Haddad T, Phillips A. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience 2012; 210:384-92. [PMID: 22406413 DOI: 10.1016/j.neuroscience.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Studies using animal models have shown that general anesthetics such as ketamine trigger widespread and robust apoptosis in the infant rodent brain. Recent clinical evidence suggests that the use of general anesthetics on young children (at ages equivalent to those used in rodent studies) can promote learning deficits as they mature. Thus, there is a growing need to develop strategies to prevent this injury. In this study, we describe a number of independent approaches to address therapeutic intervention. Postnatal day 7 (P7) rats were injected with vehicle (sterile PBS) or the NMDAR antagonist ketamine (20 mg/kg). After 8 h, we prepared brains for immunohistochemical detection of the pro-apoptotic enzyme activated caspase-3 (AC3). Focusing on the somatosensory cortex, AC3-positive cells were then counted in a non-biased stereological manner. We found AC3 levels were markedly increased in ketamine-treated animals. In one study, microarray analysis of the somatosensory cortex from ketamine-treated P7 pups revealed that expression of activity dependent neuroprotective protein (ADNP) was enhanced. Thus, we injected P7 animals with the ADNP peptide fragment NAPVSIPQ (NAP) 15 min before ketamine administration and found we could dose-dependently reverse the injury. In separate studies, pretreatment of P6 animals with 20 mg/kg vitamin D(3) or a nontoxic dose of ketamine (5 mg/kg) also prevented ketamine-induced apoptosis at P7. In contrast, pretreatment of P7 animals with aspirin (30 mg/kg) 15 min before ketamine administration actually increased AC3 counts in some regions. These data show that a number of unique approaches can be taken to address anesthesia-induced neurotoxicity in the infant brain, thus providing MDs with a variety of alternative strategies that enhance therapeutic flexibility.
Collapse
Affiliation(s)
- C P Turner
- Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav Brain Res 2011; 227:276-86. [PMID: 22085878 DOI: 10.1016/j.bbr.2011.10.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
Animal models contribute significantly to advancing the understanding of schizophrenia neurobiology, in addition to being an important tool for the screening of antipsychotic potential of new compounds. However, the entire spectrum or all the symptoms manifested in schizophrenia cannot be straightforwardly reproduced in animals due to the complexity of the disorder, difference in mental capacities and behaviours, and the ability to quantify or measure the changes. Blockade of the NMDA receptor by the use of MK-801, a non-competitive NMDA receptor antagonist, during the early postnatal period has been proposed to be an experimental model which induces behavioural changes that mimic several aspects of the disorder. The long term behavioural profile arising from this early life manipulation is reviewed herein, with a specific focus on behaviours relevant to a schizophrenia-like condition. Some of the reported neurochemical changes are also compiled. Although this method may be suitable to model some aspects of schizophrenia in rodents, there are unmet areas which need to be addressed, notably the characterisation of its predictive value.
Collapse
|
6
|
Gutierrez S, Carnes A, Finucane B, Musci G, Oelsner W, Hicks L, Russell GB, Liu C, Turner CP. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature? Neuroscience 2010; 168:253-62. [PMID: 20298758 DOI: 10.1016/j.neuroscience.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature.
Collapse
Affiliation(s)
- S Gutierrez
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Postnatal exposure to MK801 induces selective changes in GAD67 or parvalbumin. Exp Brain Res 2009; 201:479-88. [DOI: 10.1007/s00221-009-2059-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023]
|
8
|
Neonatal exposure to MK801 promotes prepulse-induced delay in startle response time in adult rats. Exp Brain Res 2009; 197:215-22. [PMID: 19565228 DOI: 10.1007/s00221-009-1906-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The acoustic startle reflex in rats can be inhibited if a prepulse stimulus is presented just before the startle stimulus (prepulse inhibition; PPI). When postnatal day 7 (P7) rats are exposed to agents that block the NMDA receptor (NMDAR), robust apoptosis is observed within hours and is thought to be followed at later ages by a significant loss of PPI. To understand these observations further, we exposed rat pups to vehicle or the NMDAR antagonist MK801 (1 mg/kg) at P6, P8, and P10. We then examined animals for PPI at P28 and P56. Compared to vehicle controls, we found no evidence for PPI deficits in the MK801-treated group, although we did observe prepulse-induced delay in response time at P56 (but not at P28). In a parallel study, we also performed histological analysis of brain sections for evidence of the pro-apoptotic marker activated caspase-3, 8 h after vehicle or MK801 injection into P6 animals. We found that there was a robust increase in this marker of cell death in the inferior colliculus of MK801 compared to vehicle-treated animals. Thus, transient blockade of the NMDAR during the postnatal period not only promotes early apoptosis in a brain region critical for acoustic processing but also leads to auditory deficits at a later age, suggesting that injury-induced loss of collicular neurons leads to network reorganization in the auditory system that is progressive in nature.
Collapse
|
9
|
Lema Tomé CM, Miller R, Bauer C, Smith C, Blackstone K, Leigh A, Busch J, Turner CP. Decline in age-dependent, MK801-induced injury coincides with developmental switch in parvalbumin expression: somatosensory and motor cortex. Dev Psychobiol 2009; 50:665-79. [PMID: 18688810 DOI: 10.1002/dev.20325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MK801-induced activation of caspase-3 is developmentally regulated, peaking at postnatal day (P) 7 and decreasing with increasing postnatal age thereafter. Further, at P7, cells displaying activation of caspase-3 lack expression of calcium binding proteins (CaBPs). To further explore this relationship, we investigated postnatal expression of calbindin (CB), calretinin (CR) and parvalbumin (PV) in two brain regions susceptible to MK801-induced injury, the somatosensory cortex (S1) and layer II/III of motor cortex (M1/M2). Expression of CB and especially PV was low to absent prior to P7 but substantially increased from P7 through to P21 and adulthood. In contrast, CR expression was more variable at early developmental ages, stabilized to lower levels after P7 and showed a marked decline by P21. The results suggest that not only does calcium buffering capacity increase developmentally but also acquisition of enhanced buffering may be one mechanism by which neurons survive agent-induced alterations in calcium homeostasis.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Turner CP, Debenedetto D, Liu C. NMDAR blockade-induced neonatal brain injury: Reversal by the calcium channel agonist BayK 8644. Neurosci Lett 2008; 450:292-5. [PMID: 19070650 DOI: 10.1016/j.neulet.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/22/2008] [Accepted: 12/03/2008] [Indexed: 01/12/2023]
Abstract
We have previously shown that P7 rat pups injected with the N-methyl-d-aspartate receptor (NMDAR) blocker MK801 displayed robust apoptotic injury within hours after injection. Further studies from our lab suggest that loss of calcium cannot be compensated for when vulnerable neurons lack calcium buffering capabilities. Thus, to elevate calcium in these neurons prior to MK801 exposure, we injected P7 rats with the calcium channel agonist BayK 8644. Whereas BayK 8644 did not induce apoptosis by itself, it was found to block MK801-induced injury in a dose-dependent manner. Reversal of MK801 toxicity was complete in the caudate-putamen, partial in the somatosensory cortex but was not observed in the retrosplenial cortex. These results suggest that postnatal brain injury resulting from agents that block the NMDAR, which include commonly used anesthetics as well as drugs of abuse, may be prevented in vulnerable neurons by compensatory increases in calcium prior to exposure to these antagonists.
Collapse
|
11
|
Yang CR, Svensson KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: The therapeutic potentials for schizophrenia. Pharmacol Ther 2008; 120:317-32. [DOI: 10.1016/j.pharmthera.2008.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/12/2008] [Indexed: 12/20/2022]
|
12
|
Wedzony K, Fijal K, Mackowiak M, Chocyk A, Zajaczkowski W. Impact of postnatal blockade of N-methyl-d-aspartate receptors on rat behavior: A search for a new developmental model of schizophrenia. Neuroscience 2008; 153:1370-9. [DOI: 10.1016/j.neuroscience.2008.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/11/2008] [Accepted: 03/08/2008] [Indexed: 11/25/2022]
|
13
|
Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008; 32:1014-23. [PMID: 18471877 DOI: 10.1016/j.neubiorev.2008.03.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/18/2008] [Accepted: 03/28/2008] [Indexed: 01/17/2023]
Abstract
The research of the glutamatergic system in schizophrenia has advanced with the use of non-competitive antagonists of glutamate NMDA receptors (phencyclidine, ketamine, and dizocilpine), which change both human and animal behaviour and induce schizophrenia-like manifestations. Models based on both acute and chronic administration of these substances in humans and rats show phenomenological validity and are suitable for searching for new substances with antipsychotic effects. Nevertheless, pathophysiology of schizophrenia remains unexplained. In the light of the neurodevelopmental model of schizophrenia based on early administration of NMDA receptor antagonists it seems that increased cellular destruction by apoptosis or changes in function of glutamatergic NMDA receptors in the early development of central nervous system are decisive for subsequent development of psychosis, which often does not manifest itself until adulthood. Chronic administration of antagonists initializes a number of adaptation mechanisms, which correlate with findings obtained in patients with schizophrenia; therefore, this model is also suitable for research into pathophysiology of this disease.
Collapse
|
14
|
Katz I, Kim J, Gale K, Kondratyev A. Effects of lamotrigine alone and in combination with MK-801, phenobarbital, or phenytoin on cell death in the neonatal rat brain. J Pharmacol Exp Ther 2007; 322:494-500. [PMID: 17483293 DOI: 10.1124/jpet.107.123133] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neonatal rat brain is vulnerable to neuronal apoptosis induced by antiepileptic drugs (AEDs), especially when given in combination. This study evaluated lamotrigine alone or in combination with phenobarbital, phenytoin, or the glutamate antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) for a proapoptotic action in the developing rat brain. Cell death was assessed in brain regions (striatum, thalamus, and cortical areas) of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, 24 h after acute drug treatment. Lamotrigine alone did not increase neuronal apoptosis when given in doses up to 50 mg/kg; a significant increase in cell death occurred after 100 mg/kg. Combination of 20 mg/kg lamotrigine with 0.5 mg/kg MK-801 or 75 mg/kg phenobarbital resulted in a significant increase in TUNEL-positive cells, compared with MK-801 or phenobarbital treatment alone. A similar enhancement of phenytoin-induced cell death occurred after 30 mg/kg lamotrigine. In contrast, 20 mg/kg lamotrigine significantly attenuated phenytoin-induced cell death. Lamotrigine at 10 mg/kg was without effect on apoptosis induced by phenytoin. Although the functional and clinical implications of AED-induced developmental neuronal apoptosis remain to be elucidated, our finding that lamotrigine alone is devoid of this effect makes this drug attractive as monotherapy for the treatment of women during pregnancy, and for preterm or neonatal infants. However, because AEDs are often introduced as add-on medication, careful selection of drug combinations and doses may be required to avoid developmental neurotoxicity when lamotrigine is used in polytherapy.
Collapse
Affiliation(s)
- Irina Katz
- Departments of Pediatrics, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
15
|
Lema Tomé CM, Miller R, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Bryan R, Leigh A, Brady M, Busch J, Turner CP. Decline in age-dependent, MK801-induced injury coincides with developmental switch in parvalbumin expression: Cingulate and retrosplenial cortex. Dev Psychobiol 2007; 49:606-18. [PMID: 17680608 DOI: 10.1002/dev.20246] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Age-dependent, MK801-induced, activated caspase-3 expression in the postnatal brain is generally not observed in neurons expressing calcium-binding proteins (CaBPs), suggesting that apoptosis and calcium buffering are inversely related. In regions such as the cingulate and retrosplenial cortex, injury peaks at postnatal Day 7 (P7) and rapidly diminishes thereafter, whereas expression of calbindin (CB) and calretinin (CR) was relatively low from P0 to P7 and steadily increased from P7 to P14. At ages thereafter, CB and CR expression either remained stable then declined or rapidly declined. Parvalbumin (PV) was generally low-absent prior to P7 but expression dramatically increased from P10 onwards, peaking at P21. These studies suggest calcium entry (through N-methyl-D-aspartate receptor (NMDARs)) and buffering (by CaBPs) are integral to normal CNS maturation. Because schizophrenia is associated with glutamate hypo-function, developmental injury, and aberrant CaBP expression, our data indicate that this postnatal brain injury model may offer important insights into the nature of this disorder.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Turner CP, Connell J, Blackstone K, Ringler SL. Loss of calcium and increased apoptosis within the same neuron. Brain Res 2006; 1128:50-60. [PMID: 17125751 PMCID: PMC1876679 DOI: 10.1016/j.brainres.2006.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 09/19/2006] [Accepted: 10/23/2006] [Indexed: 02/01/2023]
Abstract
Loss of neuronal calcium is associated with later apoptotic injury but observing reduced calcium and increased apoptosis in the same cell would provide more definitive proof of this apparent correlation. Thus, following exposure to vehicle or the calcium chelator, BAPTA (1-20 microM), primary cortical neurons were labeled with Calcium Green-1 which was then cross-linked with EDAC, prior to immuno-staining for various proteins. We found that BAPTA-induced changes in calcium were highly correlated with changes in expression of activated caspase-3 as well as the calcium binding proteins calbindin, calretinin, and parvalbumin. Additionally, in brain slices from P7 neonatal rats, BAPTA induced significant loss of calcium in a brain region we have previously shown to express only moderate levels of calcium binding proteins as well as display robust apoptosis following calcium entry blockade. In contrast, BAPTA had little influence on calcium levels in a brain region we have previously shown to express robust calcium binding proteins as well as display far less apoptosis following calcium entry blockade. These data suggest that the ability of developing neurons to buffer changes in calcium may be critical to their long-term survival.
Collapse
Affiliation(s)
- C P Turner
- Departmentt of Neurobiology and Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | |
Collapse
|