1
|
Novel MED12 variant in a multiplex Fragile X syndrome family: dual molecular etiology of two X-linked intellectual disabilities with autism in the same family. Mol Biol Rep 2019; 46:4185-4193. [PMID: 31098807 DOI: 10.1007/s11033-019-04869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Studies of X-linked pedigrees were the first to identify genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD). However, some pedigrees present a huge clinical variability between the affected members. This intrafamilial heterogeneity may be due to cooccurrence of two disorders. In the present study, we describe a multiplex X-linked pedigree in which three siblings have ID, ASD and dysmorphic features but with variable severity. Through Fragile X syndrome test, we identified the full FMR1 mutation in only two males. Whole exome sequencing allowed us to identify a novel hemizygous variant (p.Gln2080_Gln2083del) in MED12 gene in two males. So, the first patient has FXS, the second has both FMR1 and MED12 mutations while the third has only the MED12 variant. MED12 mutations are implicated in several forms of X-linked ID. Family segregation and genotype-phenotype-correlation were in favor of a cooccurrence of two forms of X-linked ID. Our work provides further evidence of the involvement of MED12 in XLID. Moreover, through these results, it is noteworthy to raise awareness that intrafamilial heterogeneity in FXS multiplex families could result from the cooccurrence of multiple clinical entities involving at least two separate genetic loci. This should be taken into consideration for genetic testing and counselling in patients/families with atypical disease symptoms.
Collapse
|
2
|
Sox10 cooperates with the mediator subunit 12 during terminal differentiation of myelinating glia. J Neurosci 2013; 33:6679-90. [PMID: 23575864 DOI: 10.1523/jneurosci.5178-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several transcription factors are essential for terminal differentiation of myelinating glia, among them the high-mobility-group-domain-containing protein Sox10. To better understand how these factors exert their effects and shape glial expression programs, we identified and characterized a physical and functional link between Sox10 and the Med12 subunit of the Mediator complex that serves as a conserved multiprotein interphase between transcription factors and the general transcription machinery. We found that Sox10 bound with two of its conserved domains to the C-terminal region of Med12 and its close relative, Med12-like. In contrast to Med12-like, substantial amounts of Med12 were detected in both Schwann cells and oligodendrocytes. Its conditional glia-specific deletion in mice led to terminal differentiation defects that were highly reminiscent of those obtained after Sox10 deletion. In support of a functional cooperation, both proteins were jointly required for Krox20 induction and were physically associated with the critical regulatory region of the Krox20 gene in myelinating Schwann cells. We conclude that Sox10 functions during terminal differentiation of myelinating glia, at least in part by Med12-dependent recruitment of the Mediator complex.
Collapse
|
3
|
Coffey CM, Solleveld PA, Fang J, Roberts AK, Hong SK, Dawid IB, Laverriere CE, Glasgow E. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons. PLoS One 2013; 8:e53991. [PMID: 23342055 PMCID: PMC3544674 DOI: 10.1371/journal.pone.0053991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/07/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP) marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl) promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.
Collapse
Affiliation(s)
- Caitrín M. Coffey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Patricia A. Solleveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Joyce Fang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Antonia K. Roberts
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline E. Laverriere
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
4
|
Abstract
DNA methylation and chromatin modifications regulate gene expression and contribute to changes in brain transcriptomes underlying neurodevelopmental and psychiatric disorders. Clinical genetics and preclinical animal models highlight the crucial importance of the correct establishment of epigenetic marks during sensitive windows of development for normal brain function. On the same side of the coin, some of the concerned factors also appear engaged in the programming of experience-dependent long-term effects on mental health following exposure to relevant early-life events. Delineating the particular role of genetic variations in these players could provide new insights into the molecular basis of vulnerability and resilience and advance tailored therapies.
Collapse
|
5
|
Keightley MC, Layton JE, Hayman JW, Heath JK, Lieschke GJ. Mediator subunit 12 is required for neutrophil development in zebrafish. PLoS One 2011; 6:e23845. [PMID: 21901140 PMCID: PMC3162013 DOI: 10.1371/journal.pone.0023845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022] Open
Abstract
Hematopoiesis requires the spatiotemporal organization of regulatory factors to successfully orchestrate diverse lineage specificity from stem and progenitor cells. Med12 is a regulatory component of the large Mediator complex that enables contact between the general RNA polymerase II transcriptional machinery and enhancer bound regulatory factors. We have identified a new zebrafish med12 allele, syr, with a single missense mutation causing a valine to aspartic acid change at position 1046. Syr shows defects in hematopoiesis, which predominantly affect the myeloid lineage. Syr has identified a hematopoietic cell-specific requirement for Med12, suggesting a new role for this transcriptional regulator.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Judith E. Layton
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - John W. Hayman
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Joan K. Heath
- Colon Molecular and Cell Biology Laboratory, Melbourne Branch, Ludwig Institute for Cancer Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
7
|
Bavaro SL, Calabrò M, Kanduc D. Pentapeptide sharing between Corynebacterium diphtheria toxin and the human neural protein network. Immunopharmacol Immunotoxicol 2010; 33:360-72. [PMID: 20874613 DOI: 10.3109/08923973.2010.518618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We describe the pentapeptides shared between the Corynebacterium diphtheria toxin and the human proteins associated with fundamental neural functions. We report that diphtheria toxin pentapeptides are spread among human antigens such as tuberous sclerosis proteins 1 and 2, reelin, contactin-4, neuroligins, semaphorin-5A, sodium channel protein type 1 subunit α, Williams-Beuren syndrome chromosomal region 1 protein, Williams-Beuren syndrome chromosomal region 20A protein. Williams-Beuren syndrome chromosomal region 8 protein, Bardet-Biedl syndrome 9 protein, Bardet-Biedl syndrome 10 protein, oligodendrocyte-myelin glycoprotein, neurofibromin-2, and periaxin. The data are discussed in relation to the bacterial immune escape phenomenon, and in the context of potential cross-reactions in diagnostic tests and immune therapies.
Collapse
|
8
|
Roser P, Kawohl W. Turner syndrome and schizophrenia: a further hint for the role of the X-chromosome in the pathogenesis of schizophrenic disorders. World J Biol Psychiatry 2010; 11:239-42. [PMID: 20218787 DOI: 10.3109/15622970701599060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abnormalities of sex chromosomes are associated with various forms of neuropsychiatric disorders, such as schizophrenia. Turner syndrome occurs approximately threefold more frequently in female schizophrenics compared to the general female population. A single case is reported. We report on a case of a 41-year-old woman with Turner syndrome, schizophrenia, mental retardation, and hypothyroidism. A polymorphism of the HOPA gene within Xq13 termed HOPA(12bp) is associated with schizophrenia, mental retardation, and hypothyroidism. Interestingly, Xq13 is the X-chromosome region that contains the X-inactivation center and a gene escaping X-inactivation whose gene product may be involved in the X-inactivation process as well as in the pathogenesis of sex chromosome anomalies such as Turner syndrome. These genes that escape X-inactivation may produce their gene products in excess, influencing normal brain growth and differentiation. Our case gives a further hint for an involvement of the X-chromosome in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Patrik Roser
- Research Group Clinical and Experimental Psychopathology, Department of General and Social Psychiatry ZH West, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Brown JS. Effects of bisphenol-A and other endocrine disruptors compared with abnormalities of schizophrenia: an endocrine-disruption theory of schizophrenia. Schizophr Bull 2009; 35:256-78. [PMID: 18245062 PMCID: PMC2643957 DOI: 10.1093/schbul/sbm147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, numerous substances have been identified as so-called "endocrine disruptors" because exposure to them results in disruption of normal endocrine function with possible adverse health outcomes. The pathologic and behavioral abnormalities attributed to exposure to endocrine disruptors like bisphenol-A (BPA) have been studied in animals. Mental conditions ranging from cognitive impairment to autism have been linked to BPA exposure by more than one investigation. Concurrent with these developments in BPA research, schizophrenia research has continued to find evidence of possible endocrine or neuroendocrine involvement in the disease. Sufficient information now exists for a comparison of the neurotoxicological and behavioral pathology associated with exposure to BPA and other endocrine disruptors to the abnormalities observed in schizophrenia. This review summarizes these findings and proposes a theory of endocrine disruption, like that observed from BPA exposure, as a pathway of schizophrenia pathogenesis. The review shows similarities exist between the effects of exposure to BPA and other related chemicals with schizophrenia. These similarities can be observed in 11 broad categories of abnormality: physical development, brain anatomy, cellular anatomy, hormone function, neurotransmitters and receptors, proteins and factors, processes and substances, immunology, sexual development, social behaviors or physiological responses, and other behaviors. Some of these similarities are sexually dimorphic and support theories that sexual dimorphisms may be important to schizophrenia pathogenesis. Research recommendations for further elaboration of the theory are proposed.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
10
|
Abstract
The Mediator complex is a fluid assemblage of approximately 25 proteins that is essential for eukaryotic transcriptional regulation. Mediator of RNA polymerase II transcription (MED)12 (HOPA) is a 25-kb Xq13 member of the Mediator complex that plays a key role in the complex and directly moderates receptor tyrosine kinase, nuclear receptor and Wnt pathway signaling. Sequence variation in two MED12 protein domains has been linked to neuropsychiatric illness. First, variants in the Leu-Ser domain have been linked to Opitz-Kaveggia and Lujan syndromes, which are forms of X-linked mental retardation. Second, a balanced polymorphism in the C terminus opposite-paired domain, a key motif in the MED12-mediated transcriptional repression of Wnt signaling, has been associated with increased risk for psychosis. We conclude that variation of MED12 is associated with a wide variety of clinical presentations whose severity is dependent on the location and nature of the variation, and that a thorough understanding of MED12's role in transcriptional regulation could have significant benefits for human healthcare.
Collapse
Affiliation(s)
- Robert A Philibert
- The University of Iowa, Department of Psychiatry, Neuroscience Program, Room 2-126 MEB, Iowa City, IA 52242-1000, USA.
| | | |
Collapse
|
11
|
Philibert RA, Bohle P, Secrest D, Deaderick J, Sandhu H, Crowe R, Black DW. The association of the HOPA(12bp) polymorphism with schizophrenia in the NIMH Genetics Initiative for Schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:743-7. [PMID: 17299734 DOI: 10.1002/ajmg.b.30489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HOPA (MED12) is an X-chromosome gene that codes for a critical member of the Mediator Complex, a group of proteins that regulates transcription via the nuclear receptor, Wnt and Receptor Tyrosine Kinase pathways. In prior association and meta-analyses, we have shown that the presence of an evolutionarily conserved, 12 bp (4 amino acid) insertional polymorphism in exon 43 of this gene is associated with increased risk for an endophenotype of schizophrenia. In this communication, we describe the results of our work with subjects and data from the National Institutes of Mental Health (NIMH) Genetics Initiative for Schizophrenia. We report that the presence of the HOPA(12bp) polymorphism is associated with increased risk for schizophrenia in subjects of European ancestry. In the light of this new study and the prior wealth of clinical and basic science data, we conclude that the HOPA(12bp) allele is a risk factor for schizophrenia in subjects of European ancestry and suggest that further studies to define the endophenotype and mechanisms of illness associated with this polymorphism are indicated.
Collapse
Affiliation(s)
- Robert A Philibert
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa 52242-1000, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Philibert RA, Gershenfeld HK. Therapeutic potential of targeting gene variants in schizophrenia. Expert Rev Neurother 2007; 7:757-60. [PMID: 17610381 DOI: 10.1586/14737175.7.7.757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|