1
|
Wadhwa V, Wurzel D, Dharmage SC, Abramson MJ, Lodge C, Russell M. Do early-life allergic sensitization and respiratory infection interact to increase asthma risk? J Asthma 2024; 61:1212-1221. [PMID: 38551488 DOI: 10.1080/02770903.2024.2333473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE The 'two-hit' hypothesis theorizes that early life allergic sensitization and respiratory infection interact to increase asthma risk. METHODS We sought to determine in a high allergy risk birth cohort whether interactions between early life allergic sensitization and respiratory infection were associated with increased risk for asthma at ages 6-7 years and 18 years. Allergic sensitization was assessed at 6, 12, and 24 months by skin prick testing to 3 food and 3 aeroallergens. Respiratory infection was defined as reported "cough, rattle, or wheeze" and assessed 4-weekly for 15 months, at 18 months, and age 2 years. Regression analysis was undertaken with parent-reported asthma at age 6-7 years and doctor diagnosed asthma at 18 years as distinct outcomes. Interactions between allergic sensitization and respiratory infection were explored with adjustment made for potential confounders. RESULTS Odds of asthma were higher in sensitized compared to nonsensitized children at age 6-7 years (OR = 14.46; 95% CI 3.99-52.4), There was no evidence for interactions between allergic sensitization and early life respiratory infection, with a greater frequency of respiratory infection up to 2 years of age associated with increased odds for asthma at age 6-7 years in both sensitized (OR = 1.13; 95% CI 1.02-1.25, n = 199) and nonsensitized children (OR = 1.31; 1.11-1.53, n = 211) (p interaction = 0.089). At age 18 years, these associations were weaker. CONCLUSIONS Our findings do not support 'two-hit' interactions between early life allergic sensitization and respiratory infection on asthma risk. Both early life respiratory infections and allergic sensitization were risk factors and children with either should be monitored closely for development of asthma.
Collapse
Affiliation(s)
- Vikas Wadhwa
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Danielle Wurzel
- Murdoch Children's Research Institute and Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa Russell
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zuo X, Guo X, Zhao D, Gu Y, Zou Z, Shen Y, He C, Xu C, Rong Y, Wang F. An antibacterial, multifunctional nanogel for efficient treatment of neutrophilic asthma. J Control Release 2024; 372:31-42. [PMID: 38866241 DOI: 10.1016/j.jconrel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Asthma is a chronic and heterogeneous disease affecting the lungs and respiratory tract. In particular, the neutrophil subtype of asthma was described as persistent, more severe, and corticosteroid-resistant. Growing evidence suggested that nontypeable Haemophilus influenzae (NTHi) infection contributes to the development of neutrophilic asthma, exacerbating clinical symptoms and increasing the associated medical burden. In this work, arginine-grafted chitosan (CS-Arg) was ionically cross-linked with tris(2-carboxyethyl) phosphine (TCEP), and a highly-efficient antimicrobial agent, poly-ε-L-Lysine (ε-PLL), was incorporated to prepare ε-PLL/CS-Arg/TCEP (ECAT) composite nanogels. The results showed that ECAT nanogels exhibited highly effective inhibition against the proliferation of NTHi, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, ECAT nanogels could effectively inhibit the formation of mucins aggregates in vitro, suggesting that the nanogel might have the potential to destroy mucin in respiratory disease. Furthermore, in the ovalbumin (OVA)/NTHi-induced Balb/c mice model of neutrophilic asthma, the number of neutrophils in the alveolar lavage fluid and the percentage of inflammatory cells in the blood were effectively reduced by exposure to tower nebulized administration of ECAT nanogels, and reversing airway hyperresponsiveness (AHR) and reducing inflammation in neutrophilic asthma mice. In conclusion, the construction of ECAT nanogels was a feasible anti-infective and anti-inflammatory therapeutic strategy, which demonstrated strong potential in the clinical treatment of neutrophilic asthma.
Collapse
Affiliation(s)
- Xu Zuo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoping Guo
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yinuo Gu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuanyuan Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Caina Xu
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.; Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| | - Yan Rong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fang Wang
- The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
3
|
Benton LD, Lopez-Galvez N, Herman C, Caporaso JG, Cope EK, Rosales C, Gameros M, Lothrop N, Martínez FD, Wright AL, Carr TF, Beamer PI. Environmental and structural factors associated with bacterial diversity in household dust across the Arizona-Sonora border. Sci Rep 2024; 14:12803. [PMID: 38834753 PMCID: PMC11150412 DOI: 10.1038/s41598-024-63356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs. 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, housing structure, and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs. 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from Mexican homes was enriched with Alishewanella, Paracoccus, Rheinheimera genera and Intrasporangiaceae family. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
Affiliation(s)
- Lauren D Benton
- Department of Pediatrics, Steele Children's Research Center, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
| | - Nicolas Lopez-Galvez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Mercedes Gameros
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Nathan Lothrop
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Paloma I Beamer
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
4
|
Benton L, Lopez-Galvez N, Herman C, Caporaso G, Cope E, Rosales C, Gameros M, Lothrop N, Martínez F, Wright A, Carr T, Beamer P. Environmental and Structural Factors Associated with Bacterial Diversity in Household Dust Across the Arizona-Sonora Border. RESEARCH SQUARE 2023:rs.3.rs-3325336. [PMID: 37841844 PMCID: PMC10571632 DOI: 10.21203/rs.3.rs-3325336/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, and housing structure and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from US homes was enriched with Geodermatophilus, whereas dust from Mexican homes was enriched with Alishewanella and Chryseomicrobium. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
|
5
|
Liu G, Ye H, Cheng Q, Zhao J, Ma C, Jie H. The association of polyunsaturated fatty acids and asthma: a cross-sectional study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:91. [PMID: 37658467 PMCID: PMC10474735 DOI: 10.1186/s41043-023-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND To examine the relationships between polyunsaturated fatty acids (PUFAs) dietary intake and asthma in children. METHODS In this cross-sectional study, a total of 14,727 participants from the United States National Health and Nutrition Examination Survey (NHANES) database in 1999-2018 were included, and the baseline characteristics of all participants were gathered. The description analysis was used to explore the possible covariates. Weighted multivariate logistic regression models were adopted to assessed the association between PUFAs dietary intake and asthma in children. In addition, we also performed subgroup analysis based on gender, age, and maternal smoking during pregnancy to investigate this relationship. RESULTS The prevalence of asthma approximately was 15.38% in the present study. The result of weighted multivariate logistic regression indicated that, docosahexaenoic [weighted odds ratio (OR) = 0.37, 95% confidence interval (CI) 0.19-0.74], total n - 3 PUFAs (weighted OR = 0.63, 95%CI 0.43-0.91), and eicosapentaenoic (weighted OR = 0.35, 95%CI 0.13-0.95) dietary intake were negatively associated with asthma in children. The subgroup analysis described that when children were male (weighted OR = 0.28, 95%CI 0.10-0.84), or were 5-7 years (weighted OR = 0.04, 95%CI 0.01-0.37), were 7-12 years (weighted OR = 0.46, 95%CI 0.24-0.90), or their maternal smoking during pregnancy (weighted OR = 0.16, 95%CI 0.03-0.90), docosahexaenoic dietary intake was negatively related to childhood asthma. CONCLUSION Docosahexaenoic dietary intake was negatively associated with the asthma in children, especially if children were male, or were 5-12 years, or their maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Gangtie Liu
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China.
| | - Hengbo Ye
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China
| | - Qian Cheng
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China
| | - Jian Zhao
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China
| | - Congcong Ma
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China
| | - Huichao Jie
- Department of Pediatrics, Taian Maternal and Child Healthcare Hospital, No.386 Longtan Road, Taian, 271000, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Biddle TA, Yisrael K, Drover R, Li Q, Maltz MR, Topacio TM, Yu J, Del Castillo D, Gonzales D, Freund HL, Swenson MP, Shapiro ML, Botthoff JK, Aronson E, Cocker DR, Lo DD. Aerosolized aqueous dust extracts collected near a drying lake trigger acute neutrophilic pulmonary inflammation reminiscent of microbial innate immune ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159882. [PMID: 36334668 DOI: 10.1016/j.scitotenv.2022.159882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.
Collapse
Affiliation(s)
- Trevor A Biddle
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Keziyah Yisrael
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Ryan Drover
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Qi Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Mia R Maltz
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Talyssa M Topacio
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Jasmine Yu
- School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Diana Del Castillo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Daniel Gonzales
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Hannah L Freund
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Mark P Swenson
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Malia L Shapiro
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Emma Aronson
- Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA; Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - David R Cocker
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - David D Lo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
7
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
8
|
Gangneux JP, Godet C, Denning DW. Allergic diseases and fungal exposome: Prevention is better than cure. Allergy 2022; 77:3182-3184. [PMID: 35822920 DOI: 10.1111/all.15436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Cendrine Godet
- Service de Pneumologie, Assistance Publique - Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - David W Denning
- Manchester Fungal Infection Group, Core Technology Facility, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Kelly MS, Bunyavanich S, Phipatanakul W, Lai PS. The Environmental Microbiome, Allergic Disease, and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2206-2217.e1. [PMID: 35750322 PMCID: PMC9704440 DOI: 10.1016/j.jaip.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 04/26/2023]
Abstract
The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Peggy S Lai
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Mass; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
10
|
Kress S, Hara A, Wigmann C, Sato T, Suzuki K, Pham KO, Zhao Q, Areal A, Tajima A, Schwender H, Nakamura H, Schikowski T. The Role of Polygenic Susceptibility on Air Pollution-Associated Asthma between German and Japanese Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9869. [PMID: 36011501 PMCID: PMC9407879 DOI: 10.3390/ijerph19169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Polygenic susceptibility likely influences individual responses to air pollutants and the risk of asthma. We compared the role of polygenic susceptibility on air pollution-associated asthma between German and Japanese women. We investigated women that were enrolled in the German SALIA cohort (n = 771, mean age = 73 years) and the Japanese Shika cohort (n = 847, mean age = 67 years) with known asthma status. Adjusted logistic regression models were used to assess the associations between (1) particulate matter with a median aerodynamic diameter ≤ 2.5μm (PM2.5) and nitrogen dioxide (NO2), (2) polygenic risk scores (PRS), and (3) gene-environment interactions (G × E) with asthma. We found an increased risk of asthma in Japanese women after exposure to low pollutant levels (PM2.5: median = 12.7µg/m3, p-value < 0.001, NO2: median = 8.5µg/m3, p-value < 0.001) and in German women protective polygenic effects (p-value = 0.008). While we found no significant G × E effects, the direction in both groups was that the PRS increased the effect of PM2.5 and decreased the effect of NO2 on asthma. Our study confirms that exposure to low air pollution levels increases the risk of asthma in Japanese women and indicates polygenic effects in German women; however, there was no evidence of G × E effects. Future genome-wide G × E studies should further explore the role of ethnic-specific polygenic susceptibility to asthma.
Collapse
Affiliation(s)
- Sara Kress
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Claudia Wigmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Kim-Oanh Pham
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Qi Zhao
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Ashtyn Areal
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Tamara Schikowski
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Krzych-Fałta E, Wojas O, Raciborski F, Tomaszewska A, Samel-Kowalik P, Furmańczyk K, Siński E, Bednarska M, Rabczenko D, Samoliński B. The effect of infectious agents on the prevalence of allergies. Adv Med Sci 2021; 66:424-431. [PMID: 34597894 DOI: 10.1016/j.advms.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/10/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE The role of infectious agents in allergy development is ambivalent. On one hand, there are reports of an association between a previous infection (especially a viral respiratory tract infection) and developing hypersensitivity to inhaled allergens, which in turn may increase the risk of developing allergic reactions. On the other hand, there are reports emphasizing a protective effect of a number of infectious agents against allergy development. The aim the study was to find possible associations between a past infectious or parasitic disease and an allergic condition. MATERIAL AND METHODS The study population was a group of 18,648 subjects. The study, which was a part of the project: 'Implementation of a System for the Prevention and Early Detection of Allergic Diseases in Poland', was conducted in 9 selected regions of Poland and used the ECRHS and ISAAC questionnaires adapted for Europe. The following statistical tools were used: Pearson's chi-squared test, Fisher's exact test, and logistic regression. RESULTS This research was an attempt to clear association between a history of measles or viral hepatitis and the likelihood of developing asthma, especially in males (χ2 = 5.29; p<0.05). Past parasitic disease showed a clear association with a suspected allergic rhinitis in various groups of patients (differing both in terms of sex and age). CONCLUSIONS A history of some forms of either infectious or parasitic diseases has a measurable effect on the risk of developing allergies.
Collapse
Affiliation(s)
- Edyta Krzych-Fałta
- Department of Fundamentals of Nursing, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| | - Oksana Wojas
- Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| | - Filip Raciborski
- Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| | - Aneta Tomaszewska
- Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Samel-Kowalik
- Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| | - Konrad Furmańczyk
- Institute of Information Technology, Warsaw University of Life Sciences, Warsaw, Poland; Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland.
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Bednarska
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Bolesław Samoliński
- Department of Prevention of Environmental Hazards and Allergology, Faculty of Medical Science, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Tosca MA, Pistorio A, Silvestri M, Marseglia GL, Ciprandi G. The comparison between children and adolescents with asthma provided by the real-world "ControL'Asma" study. J Asthma 2021; 59:1531-1536. [PMID: 34112042 DOI: 10.1080/02770903.2021.1941089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Because asthma is a disease that changes over time, the Italian Society of Pediatric Allergy and Immunology launched a nationwide study on asthma control (the ControL'Asma study). The intent was to test the hypothesis that children with asthma could present a different pattern compared to adolescents. In the study, we compared children with adolescents in a real-world setting by analyzing the asthma control grade and other asthma-related parameters. METHODS This cross-sectional real-world study included 471 asthmatic children (<age 12) and adolescents (≥age 12), mostly male (n = 326; 69.2%), who were consecutively enrolled at 10 tertiary pediatric allergy clinics. Asthma control level was evaluated according to the Global Initiative for Asthma (GINA) guidelines, the Childhood Asthma Control Test (cACT) questionnaire for children, and the Asthma Control Test (ACT) questionnaire for adolescents, history, rhinitis comorbidity, allergy, clinical examination, lung function, and perception of asthma symptoms assessed by visual analogue scale (VAS). RESULTS There was no difference between the age groups in asthma control as determined by both GINA criteria and the cACT/ACT questionnaires. However, adolescents with asthma had significantly more frequent rhinitis comorbidity (p = 0.02; OR = 2.07) and allergy (p = 0.012; OR = 3.72) than children. Asthma severity, lung function, and symptom perception were not different between age groups. CONCLUSIONS The current study showed that asthma control is not associated with age in young people. Adolescents with asthma did experience rhinitis and allergy more frequently than children. These findings reflect the progressive nature of the allergic phenotype in young patients.
Collapse
Affiliation(s)
- Maria Angela Tosca
- Allergy Center, Department of Pediatrics, Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Pistorio
- Epidemiology, Biostatistics and Committe, Department of Direction, Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Silvestri
- Allergy Center, Department of Pediatrics, Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Luigi Marseglia
- Pediatrics Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Giorgio Ciprandi
- Allergy Clinic, Department of Outpatients, Casa di Cura Villa Montallegro, Genoa, Italy
| | | |
Collapse
|
13
|
Chun Y, Do A, Grishina G, Arditi Z, Ribeiro V, Grishin A, Vicencio A, Bunyavanich S. The nasal microbiome, nasal transcriptome, and pet sensitization. J Allergy Clin Immunol 2021; 148:244-249.e4. [PMID: 33592204 DOI: 10.1016/j.jaci.2021.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pet allergies are common in children with asthma. Microbiota and host responses may mediate allergen sensitization. OBJECTIVE We sought to uncover host-microbe relationships in pet allergen sensitization via joint examination of the nasal microbiome and nasal transcriptome. METHODS We collected nasal samples from 132 children with asthma for parallel 16S rRNA and RNA sequencing. Specific IgE levels for cat and dog dander were measured. Analyses of the nasal microbiome, nasal transcriptome, and their correlations were performed with respect to pet sensitization status. RESULTS Among the 132 children, 91 (68.9%) were cat sensitized and 96 (72.7%) were dog sensitized. Cat sensitization was associated with lower nasal microbial diversity by Shannon index (P = .021) and differential nasal bacterial composition by weighted UniFrac distance (permutational multivariate ANOVA P = .035). Corynebacterium sp and Staphylococcus epidermidis were significantly less abundant, and the metabolic process "fatty acid elongation in mitochondria" was lower in pet-sensitized versus unsensitized children. Correlation networks revealed that the nasal expression levels of 47 genes representing inflammatory processes were negatively correlated with the relative abundances of Corynebacterium sp and S epidermidis. Thus, these species were directly associated not only with the absence of pet sensitization but also with the underexpression of host gene expression of inflammatory processes that contribute to allergen sensitization. Causal mediation analyses revealed that the associations between these nasal species and pet sensitization were mediated by nasal gene expression. CONCLUSIONS Higher abundances of nasal Corynebacterium sp and S epidermidis are associated with absence of pet sensitization and correlate with lower expression of inflammatory genes.
Collapse
Affiliation(s)
- Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anh Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Victoria Ribeiro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alfin Vicencio
- Division of Pulmonary Medicine, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
14
|
Maio S, Baldacci S, Simoni M, Angino A, La Grutta S, Muggeo V, Fasola S, Viegi G. Longitudinal Asthma Patterns in Italian Adult General Population Samples: Host and Environmental Risk Factors. J Clin Med 2020; 9:jcm9113632. [PMID: 33187300 PMCID: PMC7696248 DOI: 10.3390/jcm9113632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Asthma patterns are not well established in epidemiological studies. Aim: To assess asthma patterns and risk factors in an adult general population sample. Methods: In total, 452 individuals reporting asthma symptoms/diagnosis in previous surveys participated in the AGAVE survey (2011–2014). Latent transition analysis (LTA) was performed to detect baseline and 12-month follow-up asthma phenotypes and longitudinal patterns. Risk factors associated with longitudinal patterns were assessed through multinomial logistic regression. Results: LTA detected four longitudinal patterns: persistent asthma diagnosis with symptoms, 27.2%; persistent asthma diagnosis without symptoms, 4.6%; persistent asthma symptoms without diagnosis, 44.0%; and ex -asthma, 24.1%. The longitudinal patterns were differently associated with asthma comorbidities. Persistent asthma diagnosis with symptoms showed associations with passive smoke (OR 2.64, 95% CI 1.10–6.33) and traffic exposure (OR 1.86, 95% CI 1.02–3.38), while persistent asthma symptoms (without diagnosis) with passive smoke (OR 3.28, 95% CI 1.41–7.66) and active smoke (OR 6.24, 95% CI 2.68–14.51). Conclusions: LTA identified three cross-sectional phenotypes and their four longitudinal patterns in a real-life setting. The results highlight the necessity of a careful monitoring of exposure to active/passive smoke and vehicular traffic, possible determinants of occurrence of asthma symptoms (with or without diagnosis). Such information could help affected patients and physicians in prevention and management strategies.
Collapse
Affiliation(s)
- Sara Maio
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology (IFC), 56126 Pisa, Italy; (S.B.); (M.S.); (A.A.); (G.V.)
- Correspondence:
| | - Sandra Baldacci
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology (IFC), 56126 Pisa, Italy; (S.B.); (M.S.); (A.A.); (G.V.)
| | - Marzia Simoni
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology (IFC), 56126 Pisa, Italy; (S.B.); (M.S.); (A.A.); (G.V.)
| | - Anna Angino
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology (IFC), 56126 Pisa, Italy; (S.B.); (M.S.); (A.A.); (G.V.)
| | - Stefania La Grutta
- CNR Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy; (S.L.G.); (S.F.)
| | - Vito Muggeo
- Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy;
| | - Salvatore Fasola
- CNR Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy; (S.L.G.); (S.F.)
| | - Giovanni Viegi
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology (IFC), 56126 Pisa, Italy; (S.B.); (M.S.); (A.A.); (G.V.)
- CNR Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy; (S.L.G.); (S.F.)
| | | |
Collapse
|
15
|
Gangneux JP, Sassi M, Lemire P, Le Cann P. Metagenomic Characterization of Indoor Dust Bacterial and Fungal Microbiota in Homes of Asthma and Non-asthma Patients Using Next Generation Sequencing. Front Microbiol 2020; 11:1671. [PMID: 32849345 PMCID: PMC7409152 DOI: 10.3389/fmicb.2020.01671] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background The exposure of house occupants to indoor air pollutants has increased in recent decades. Among microbiological contaminants, bacterial and fungal aerosols remain poorly studied and the debate on the impact of these aerosols on respiratory health is still open. This study aimed to assess the diversity of indoor microbial communities in relationship with the health of occupants. Methods Measurements were taken from dwellings of 2 cohorts in Brittany (France), one with children without any pathology and the other with children and adults with asthma. Thirty dust samples were analyzed by next generation sequencing with a 16S and 18S targeted metagenomics approach. Analysis of sequencing data was performed using qiime 2, and univariate and multivariate statistical analysis using R software and phyloseq package. Results A total of 2,637 prokaryotic (589 at genus level) and 2,153 eukaryotic taxa were identified (856 fungal taxa (39%) and 573 metazoa (26%)). The four main bacterial phyla were identified: Proteobacteria (53%), Firmicutes (27%), Actinobacteria (11%), Bacteroidetes (8%). Among Fungi, only 136 taxa were identified at genus level. Three main fungal phyla were identified: Ascomycota (84%), Basidiomycota (12%) and Mucoromycota (3%). No bacterial nor fungal phyla were significantly associated with asthma versus control group. A significant over representation in control group versus asthma was observed for Christensenellaceae family (p-value = 0.0015, adj. p-value = 0.033). Besides, a trend for over representation in control group was observed with Dermabacteraceae family (p-value = 0.0002, adj. p-value = 0.815). Conclusions Our findings provide evidence that dust samples harbor a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples, a less easy strategy for the detection of eukaryotes at least using18S metagenomics approach. This study showed that the detection of some bacteria might be associated to indoor air of asthmatic patients. Regarding fungi, a higher number of samples and sequencing with more depth could allow reaching significant signatures.
Collapse
Affiliation(s)
- Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (Irset) - UMR_S 1085, Rennes, France
| | - Mohamed Sassi
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (Irset) - UMR_S 1085, Rennes, France
| | - Pierre Lemire
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (Irset) - UMR_S 1085, Rennes, France
| | - Pierre Le Cann
- Univ Rennes, CHU Rennes, Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (Irset) - UMR_S 1085, Rennes, France
| |
Collapse
|
16
|
Gangneux JP, Bouvrais M, Frain S, Morel H, Deguen S, Chevrier S, Le Cann P. Asthma and Indoor Environment: Usefulness of a Global Allergen Avoidance Method on Asthma Control and Exposure to Molds. Mycopathologia 2020; 185:367-371. [PMID: 31897973 DOI: 10.1007/s11046-019-00417-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023]
Abstract
The usefulness and feasibility of a global allergens avoidance method with counselors visiting patients' home for allergens measures and adapted advices were prospectively evaluated through asthma control and environment evaluation. Twenty seven patients were prospectively included and compared to a cohort of 30 control patients. The level of control of asthma at inclusion and after 1 year was evaluated by the clinical signs, the evolution of the FEV1, and the healthcare use. Environmental measurements included the fungal load of 5 surfaces of the dwellings and the evaluation of moisture. A significant clinical improvement in the population that benefited from the home counselors visit was observed compared to the baseline (p < 0.0001), as well as a decreased number of hospitalizations for asthma and of the consumption of anti-asthma drugs (p < 0.01). Dampness markers slightly improved with an improvement of the fungal loads in two-third of the dwellings.
Collapse
Affiliation(s)
- Jean-Pierre Gangneux
- Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, CHU Rennes, Inserm, EHESP, 35000, Rennes, France. .,Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rennes, 2 rue Henri le Guilloux, 35033, Rennes Cedex 09, France.
| | - Matthieu Bouvrais
- Département de Médecine Générale, Université de Rennes 1, Rennes, France
| | | | - Hugues Morel
- Service de Pneumologie, Centre Hospitalier d'Orléans, Orléans, France
| | - Séverine Deguen
- EHESP, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Sylviane Chevrier
- Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, CHU Rennes, Inserm, EHESP, 35000, Rennes, France
| | - Pierre Le Cann
- EHESP, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| |
Collapse
|
17
|
Burg GT, Covar R, Oland AA, Guilbert TW. The Tempest: Difficult to Control Asthma in Adolescence. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 6:738-748. [PMID: 29747981 DOI: 10.1016/j.jaip.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/06/2023]
Abstract
Severe asthma is associated with significant morbidity and is a highly heterogeneous disorder. Severe asthma in adolescence has some unique elements compared with the features of severe asthma a medical provider would see in younger children or adults. A specific focus on psychological issues and adherence highlights some of the challenges in the management of asthma in adolescents. Treatment of adolescents with severe asthma now includes 3 approved biologic phenotype-directed therapies. Therapies available to adults may be beneficial to adolescents with severe asthma. Research into predictors of specific treatment response by phenotypes is ongoing. Optimal treatment strategies are not yet defined and warrant further investigation.
Collapse
Affiliation(s)
- Gregory T Burg
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | | | | | | |
Collapse
|
18
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
19
|
Pediatric asthma - moving ahead faster than ever. Curr Opin Allergy Clin Immunol 2019; 17:96-98. [PMID: 28225363 DOI: 10.1097/aci.0000000000000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Lee-Sarwar K, Kelly RS, Lasky-Su J, Kachroo P, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Laranjo N, Gold DR, Weiss ST, Litonjua AA. Dietary and Plasma Polyunsaturated Fatty Acids Are Inversely Associated with Asthma and Atopy in Early Childhood. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:529-538.e8. [PMID: 30145365 DOI: 10.1016/j.jaip.2018.07.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) influence immune function and risk of allergic disease. Prior evidence of the effect of PUFA intake on childhood asthma and allergy is inconclusive. OBJECTIVES To investigate associations of PUFA plasma levels and dietary intake with asthma and allergy at age 3 years in this ancillary study of the Vitamin D Antenatal Asthma Reduction Trial. METHODS Plasma PUFA levels were reported as relative abundances from mass spectrometry profiling, and dietary PUFA intake was derived from food frequency questionnaire responses. Associations between PUFA and outcomes, including asthma and/or recurrent wheeze, allergic sensitization, and total IgE at age 3 years, were evaluated in adjusted regression models. Additional regression models analyzed the combined effects of antenatal vitamin D and early childhood PUFA on outcomes. RESULTS Total, omega-3, and omega-6 plasma PUFA relative abundances were significantly (P < .05) inversely associated with both asthma and/or recurrent wheeze and allergic sensitization. Likewise, dietary PUFA intake was inversely associated with asthma and/or recurrent wheeze (P < .05 for omega-6 PUFA only). For both dietary and plasma measures of total, omega-3, and omega-6 PUFAs, inverse associations with outcomes were strongest among subjects with both high umbilical cord blood 25-hydroxyvitamin D and high PUFA at age 3 years. CONCLUSIONS PUFA dietary intake and plasma levels are inversely associated with asthma and/or recurrent wheeze and atopy at age 3 years. Antenatal vitamin D could modulate the effect of early childhood PUFA on risk of asthma and allergy.
Collapse
Affiliation(s)
- Kathleen Lee-Sarwar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Robert S Zeiger
- Departments of Allergy and Research and Evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif
| | - George T O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Megan T Sandel
- Department of Pediatrics, Boston Medical Center, Boston, Mass
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, and St Louis Children's Hospital, St Louis, Mo
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, and St Louis Children's Hospital, St Louis, Mo
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Diane R Gold
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at University of Rochester Medical Center, Rochester, New York, NY.
| |
Collapse
|
21
|
Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe 2017; 45:31-39. [DOI: 10.1016/j.anaerobe.2017.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/27/2022]
|