1
|
Blank S, Korošec P, Slusarenko BO, Ollert M, Hamilton RG. Venom Component Allergen IgE Measurement in the Diagnosis and Management of Insect Sting Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:1-14. [PMID: 39097146 DOI: 10.1016/j.jaip.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Accurate identification of allergy-eliciting stinging insect(s) is essential to ensuring effective management of Hymenoptera venom-allergic individuals with venom-specific immunotherapy. Diagnostic testing using whole-venom extracts with skin tests and serologic-based analyses remains the first level of discrimination for honeybee versus vespid venom sensitization in patients with a positive clinical history. As a second-level evaluation, serologic testing using molecular venom allergens can further discriminate genuine sensitization (honeybee venom: Api m 1, 3, 4, and 10 vs yellow jacket venom/Polistes dominula venom Ves v 1/Pol d 1 and Ves v 5/Pol d 5) from interspecies cross-reactivity (hyaluronidases [Api m 2, Ves v 2, and Pol d 2] and dipeptidyl peptidases IV [Api m 5, Ves v 3, and Pol d 3]). Clinical laboratories use a number of singleplex, oligoplex, and multiplex immunoassays that employ both extracted whole-venom and molecular venom allergens (highlighted earlier) for confirmation of allergic venom sensitization. Established quantitative singleplex autoanalyzers have general governmental regulatory clearance worldwide for venom-allergic patient testing with maximally achievable analytical sensitivity (0.1 kUA/L) and confirmed reproducibility (interassay coefficient of variation <10%). Emerging oligoplex and multiplex (fixed-panel) assays conserve on serum and are more cost-effective, but they need regulatory clearance in some countries and are prone to higher rates of detecting asymptomatic sensitization. Ultimately, the patient's clinical history, combined with proof of sensitization, is the final arbiter in the diagnosis of Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Benjamin O Slusarenko
- Center of Allergy and Environment, Technical University of Munich, School of Medicine and Health and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Centre, Odense Research Center for Anaphylaxis, Odense University Hospital, Odense, Denmark
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md.
| |
Collapse
|
2
|
Neaves BI, Coop CA. Imported fire ant immunotherapy. Ann Allergy Asthma Immunol 2024; 133:28-32. [PMID: 38281676 DOI: 10.1016/j.anai.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Imported fire ants (IFAs) permeate many areas of the United States. The IFA allergy is a significant health problem for children and adults. Stings from IFAs cause pustules, localized reactions, and anaphylaxis. There have been at least 32 deaths attributed to IFA stings. Because of the difficulty with the extraction of venom from the fire ants, whole body extracts are the only commercially available serum for immunotherapy. Fortunately, whole body extract immunotherapy given conventionally or through the rush method has proven to be efficacious and safe. It is recommended for the treatment of IFA hypersensitivity. Maintenance immunotherapy is typically given at 4-week intervals. However, more recent research has revealed that these intervals can gradually be extended up to 12 weeks similar to flying Hymenoptera venom immunotherapy. Long-term adherence to IFA immunotherapy remains an obstacle for many patients despite its potential as a life-saving treatment.
Collapse
|
3
|
Buraphaka H, Dobutr T, Wiese MD, Lopata AL, Daduang S. Structure-based epitope prediction and assessment of cross-reactivity of Myrmecia pilosula venom-specific IgE and recombinant Sol g proteins (Solenopsis geminata). Sci Rep 2024; 14:11145. [PMID: 38750087 PMCID: PMC11096326 DOI: 10.1038/s41598-024-61843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
The global distribution of tropical fire ants (Solenopsis geminata) raises concerns about anaphylaxis and serious medical issues in numerous countries. This investigation focused on the cross-reactivity of allergen-specific IgE antibodies between S. geminata and Myrmecia pilosula (Jack Jumper ant) venom proteins due to the potential emergence of cross-reactive allergies in the future. Antibody epitope analysis unveiled one predominant conformational epitope on Sol g 1.1 (PI score of 0.989), followed by Sol g 2.2, Sol g 4.1, and Sol g 3.1. Additionally, Pilosulin 1 showed high allergenic potential (PI score of 0.94), with Pilosulin 5a (PI score of 0.797) leading in B-cell epitopes. The sequence analysis indicated that Sol g 2.2 and Sol g 4.1 pose a high risk of cross-reactivity with Pilosulins 4.1a and 5a. Furthermore, the cross-reactivity of recombinant Sol g proteins with M. pilosula-specific IgE antibodies from 41 patients revealed high cross-reactivity for r-Sol g 3.1 (58.53%) and r-Sol g 4.1 (43.90%), followed by r-Sol g 2.2 (26.82%), and r-Sol g 1.1 (9.75%). Therefore, this study demonstrates cross-reactivity (85.36%) between S. geminata and M. pilosula, highlighting the allergenic risk. Understanding these reactions is vital for the prevention of severe allergic reactions, especially in individuals with pre-existing Jumper Jack ant allergy, informing future management strategies.
Collapse
Affiliation(s)
- Hathairat Buraphaka
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
| | - Theerawat Dobutr
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University AU, Townsville, Australia.
- Tropical Futures Institute, James Cook University SG, Singapore, Singapore.
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Chen J. Chemistry and Functions of Imported Fire Ant Venom. Toxins (Basel) 2023; 15:489. [PMID: 37624246 PMCID: PMC10467070 DOI: 10.3390/toxins15080489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In the United States, imported fire ants are often referred to as red imported fire ants, Solenopsis invicta Buren, black imported fire ants, S. richteri Forel, and their hybrid (S. invicta × S. richteri). Due to their aggressive stings and toxic venom, imported fire ants pose a significant threat to public health, agriculture, and ecosystem health. However, venom plays a vital role in the survival of fire ants by serving various crucial functions in defense, foraging, and colony health maintenance. Numerous reviews and book chapters have been published on fire ant venom. Due to its medical importance and the expanding global distribution of these ants, fire ant venom research remains an active and highly productive area, leading to the discovery of new components and functions. This review summarizes the recent advances in our understanding of fire ant venom chemistry and its functions within fire ant colonies.
Collapse
Affiliation(s)
- Jian Chen
- Biological Control of Pests Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, MS 38776, USA
| |
Collapse
|
5
|
Liu Y, Huang J, Zhang J, Xu Y, Li X, Lu Y. Sensitization of Guinea Pig Skin to Imported Fire Ant Alkaloids and Establishment of an Inflammatory Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1904. [PMID: 36767271 PMCID: PMC9914866 DOI: 10.3390/ijerph20031904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Imported fire ants (IFAs), Solenopsis invicta, release their venom through multiple stings that induce inflammation, allergies, shock, and even death. Although IFA venom protein sensitization and related subcutaneous immunotherapy have been studied, few studies have examined the potential toxicity or pathogenicity of alkaloids, the main substances in IFA venom. Here, IFA alkaloids were identified and analyzed by gas chromatography-mass spectrometry; we further determined an appropriate extraction method and its effectiveness for extracting high-purity alkaloids through comparative analysis and guinea pig skin sensitivity tests. The alkaloids released from the IFA abdomen included those present in the head and thorax, and the alkaloids in the abdomen accounted for the highest proportion of the total extract. The abdominal extirpation method yielded alkaloids with a purity above 97%, and the skin irritation response score and histopathological diagnosis suggest that intradermal injection of the extracted alkaloids produced symptoms effectively simulating those of IFA stings. The successful establishment of an inflammatory model in guinea pigs stung by IFAs provides a basis for further research on the mechanism of inflammatory diseases caused by IFAs.
Collapse
Affiliation(s)
- Yueze Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juan Zhang
- Institute of Garden Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, China
| | - Yipeng Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Hoffmann BD, Ducarme F, Bradford D, Martinez S. Spread of stinging ants to oceanic islands, and the need to raise awareness of prevention and treatment of ant stings. Emerg Med Australas 2023. [PMID: 36596650 DOI: 10.1111/1742-6723.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Venomous invasive ants are rapidly dispersing throughout oceanic islands. Medics unfamiliar with envenomation or venom-induced anaphylaxis may be unprepared for the range of possible reactions and corresponding treatments. We detail the suboptimal treatment of a patient suffering anaphylaxis from an ant sting on a remote island and describe what treatment should have been provided. METHODS The patient experienced stings on his feet from an ant later identified as tropical fire ant, Solenopsis geminata. Clinical examination revealed throat swelling without obstruction of the airway or pharynx. RESULTS The patient was provided the following suboptimal treatment: intravenously-administered antihistamine and saline perfusion. Injected epinephrine should be the standard first line of treatment for anaphylaxis, even when not all symptoms are present. CONCLUSION A rise in invasive hymenopteran stings on oceanic islands is inevitable, and proactively improving public awareness and medical training could save lives.
Collapse
Affiliation(s)
- Benjamin D Hoffmann
- Tropical Ecosystems Research Centre, Commonwealth Scientific and Industrial Research Organisation, Darwin, Northern Territory, Australia
| | - Frédéric Ducarme
- Centre d'Écologie et des Sciences de la Conservation, Muséum National d'Histoire Naturelle, Paris, France
| | - DanaKai Bradford
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Santiago Martinez
- Department of Clinical Sciences, Florida State University, Orlando, Florida, USA
| |
Collapse
|
7
|
Gschwend A, Helbling A. Allergic Reactions to Stinging and Biting Insects. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Abstract
Ants have outstanding capacity to mediate inter- and intraspecific interactions by producing structurally diverse metabolites from numerous secretory glands. Since Murray Blum's pioneering studies dating from the 1950s, there has been a growing interest in arthropod toxins as natural products. Over a dozen different alkaloid classes have been reported from approximately 40 ant genera in five subfamilies, with peak diversity within the Myrmicinae tribe Solenopsidini. Most ant alkaloids function as venom, but some derive from other glands with alternative functions. They are used in defense (e.g., alarm, repellants) or offense (e.g., toxins) but also serve as antimicrobials and pheromones. We provide an overview of ant alkaloid diversity and function with an evolutionary perspective. We conclude that more directed integrative research is needed. We suggest that comparative phylogenetics will illuminate compound diversification, while molecular approaches will elucidate genetic origins. Biological context, informed by natural history, remains critical not only for research about focal species, but also to guide applied research.
Collapse
Affiliation(s)
- Eduardo Gonçalves Paterson Fox
- Departamento de Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil;
| | - Rachelle M M Adams
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA;
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA
| |
Collapse
|
9
|
Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. mSystems 2021; 6:e0082221. [PMID: 34427507 PMCID: PMC8407381 DOI: 10.1128/msystems.00822-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida auris is a recently described multidrug-resistant pathogenic fungus that is increasingly responsible for health care-associated outbreaks across the world. Bloodstream infections of this fungus cause death in up to 70% of cases. Aggravating this scenario, the disease-promoting mechanisms of C. auris are poorly understood. Fungi release extracellular vesicles (EVs) that carry a broad range of molecules, including proteins, lipids, carbohydrates, pigments, and RNA, many of which are virulence factors. Here, we carried out a comparative molecular characterization of C. auris and Candida albicans EVs and evaluated their capacity to modulate effector mechanisms of host immune defense. Using proteomics, lipidomics, and transcriptomics, we found that C. auris released EVs with payloads that were significantly different from those of EVs released by C. albicans. EVs released by C. auris potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C. albicans had no effect. C. albicans EVs primed macrophages for enhanced intracellular yeast killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from both C. auris and C. albicans induced the activation of bone marrow-derived dendritic cells. Together, our findings show distinct profiles and properties of EVs released by C. auris and by C. albicans and highlight the potential contribution of C. auris EVs to the pathogenesis of this emerging pathogen. IMPORTANCECandida auris is a recently described multidrug-resistant pathogenic fungus that is responsible for outbreaks across the globe, particularly in the context of nosocomial infections. Its virulence factors and pathogenesis are poorly understood. Here, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris are a disease-promoting factor. We describe the production of EVs by C. auris and compare their biological activities against those of the better-characterized EVs from C. albicans. C. auris EVs have immunoregulatory properties, of which some are opposite those of C. albicans EVs. We also explored the cargo and structural components of those vesicles and found that they are remarkably distinct compared to EVs from C. auris’s phylogenetic relative Candida albicans.
Collapse
|
10
|
Gremski LH, Matsubara FH, da Justa HC, Schemczssen-Graeff Z, Baldissera AB, Schluga PHDC, Leite IDO, Boia-Ferreira M, Wille ACM, Senff-Ribeiro A, Veiga SS. Brown spider venom toxins: what are the functions of astacins, serine proteases, hyaluronidases, allergens, TCTP, serpins and knottins? J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200188. [PMID: 34377142 PMCID: PMC8314928 DOI: 10.1590/1678-9199-jvatitd-2020-0188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | - Ana Carolina Martins Wille
- Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
11
|
Global View on Ant Venom Allergy: from Allergenic Components to Clinical Management. Clin Rev Allergy Immunol 2021; 62:123-144. [PMID: 34075569 DOI: 10.1007/s12016-021-08858-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Hymenoptera venom allergy is characterised by systemic anaphylactic reactions that occur in response to stings from members of the Hymenoptera order. Stinging by social Hymenoptera such as ants, honeybees, and vespids is one of the 3 major causes of anaphylaxis; along with food and drug exposure, it accounts for up to 43% of anaphylaxis cases and 20% of anaphylaxis-related fatalities. Despite their recognition as being of considerable public health significance, stinging ant venoms are relatively unexplored in comparison to other animal venoms and may be overlooked as a cause of venom allergy. Indeed, the venoms of stinging ants may be the most common cause of anaphylaxis in ant endemic areas. A better understanding of the natural history of venom allergy caused by stinging ants, their venom components, and the management of ant venom allergy is therefore required. This article provides a global view on allergic reactions to the venoms of stinging ants and the contemporary approach to diagnose and manage ant venom allergy.
Collapse
|
12
|
Valles SM, Oliver JB, Addesso KM, Perera OP. Unique venom proteins from Solenopsis invicta x Solenopsis richteri hybrid fire ants. Toxicon X 2021; 9-10:100065. [PMID: 34027387 PMCID: PMC8131721 DOI: 10.1016/j.toxcx.2021.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The Solenopsis venom protein 2 transcript was amplified, sequenced, probed, and analyzed from Solenopsis invicta x Solenopsis richteri hybrid ant colonies (hybrids) collected from across Tennessee to determine the extent of introgression of each parent allele (Solenopsis invicta venom protein 2 [Soli2] and Solenopsis richteri venom protein 2 [Solr2]). Chemotaxonomic analyses of venom alkaloids and cuticular hydrocarbons were used to categorize hybrid colonies and their relative relatedness to each parent species. Hybrid colonies were chosen randomly from each chemotaxonomic hybridization category, including "very near S. richteri," "near S. richteri," "near S. invicta," and "very near S. invicta." Lateral flow immunoassays for detection of the Soli2 and Solr2 venom proteins were largely in agreement with the chemotaxonomic analyses for the very near S. richteri (100% Solr2) and very near S. invicta (80% Soli2, 20% Soli2 + Solr2 detected in the sample) groups, while Soli2 and Solr2 were reported in 60% and 40% in the near S. invicta and near S. richteri chemotaxonomic groups. Analysis of transcripts from the hybrid colonies revealed a sequence with 100% identity to Soli2 (GenBank Accession L09560) and three unique sequences, which we identify as Solenopsis hybrid venom protein 2 (Solh2; GenBank Accession MT150127), Solenopsis hybrid truncated venom protein 2 (Solh2Tr97; Genbank Accession MT150129), and Solenopsis richteri venom protein 2, D to A change at position 69 (Solr2A69; GenBank Accession MT150128). The predicted open reading frame for Solh2 and Solh2Tr97 revealed sequences unique to hybrid ants, with Solh2Tr97an alternatively spliced form. A third unique sequence, Solr2A69, is likely the correct sequence for Solr2, which appears to have been published previously with a sequencing error (GenBank Accession P35776).
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, 1600, SW 23rd Drive, Gainesville, FL, USA
| | - Jason B Oliver
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, 37110, USA
| | - Karla M Addesso
- Tennessee State University, College of Agriculture, Otis L. Floyd Nursery Research Center, McMinnville, TN, 37110, USA
| | - Omaththage P Perera
- Southern Insect Management Research Unit, United States Department of Agriculture, Agricultural Research Service, 141 Experiment Station Road, Stoneville, MS, USA
| |
Collapse
|
13
|
Khachonpisitsak S, Yamane S, Sriwichai P, Jaitrong W. An updated checklist of the ants of Thailand (Hymenoptera, Formicidae). Zookeys 2020; 998:1-182. [PMID: 33335444 PMCID: PMC7714773 DOI: 10.3897/zookeys.998.54902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
Thailand has a great diversity of ant fauna as a zoogeographical crossroads and biodiversity hotspot. The last publication presenting a Thai ant checklist was published in 2005. In the present paper, based on an examination of museum specimens and published records, a comprehensive and critical species list of Thai ants is synthesized. Currently, 529 valid species and subspecies in 109 genera among ten subfamilies are known from Thailand with their diversity and distribution within 77 provinces presented and assigned to six geographical regions. Furthermore, Thailand is the type locality for 81 ant species. Forty-one species are here newly recorded for Thailand with photographs illustrating these species. The checklist provides information on distribution and a comprehensive bibliography. This study will also serve as a guide for the upper northeast and central Thailand, which are poorly sampled; a comprehensive reference list relating to endemic taxa and localities where conservation is an important priority, thus an essential resource for policy makers and conservation planners concerned with the management of insect diversity in Thailand; and a list of exotic ant species found in Thailand, which could possibly impact the ecological balance.
Collapse
Affiliation(s)
- Salinee Khachonpisitsak
- Department of Biology, Faculty of Science, Burapha University, 169 Long Hard Bangsaen Road, Sanesuk, Mueang, Chon Buri, 20131 ThailandBurapha UniversityChon BuriThailand
| | - Seiki Yamane
- Kagoshima University Museum, Korimoto 1-21-30, Kagoshimashi, 890-0065 JapanKagoshima UniversityKagoshimaJapan
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 ThailandMahidol UniversityBangkokThailand
| | - Weeyawat Jaitrong
- Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 ThailandThailand Natural History MuseumPathum ThaniThailand
| |
Collapse
|
14
|
Dodou Lima HV, Sidrim de Paula Cavalcante C, Rádis-Baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon 2020; 187:19-28. [DOI: 10.1016/j.toxicon.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
|
15
|
Ricke SC, Dittoe DK, Richardson KE. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front Vet Sci 2020; 7:563. [PMID: 33088825 PMCID: PMC7494846 DOI: 10.3389/fvets.2020.00563] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organic acids continue to receive considerable attention as feed additives for animal production. Most of the emphasis to date has focused on food safety aspects, particularly on lowering the incidence of foodborne pathogens in poultry and other livestock. Several organic acids are currently either being examined or are already being implemented in commercial settings. Among the several organic acids that have been studied extensively, is formic acid. Formic acid has been added to poultry diets as a means to limit Salmonella spp. and other foodborne pathogens both in the feed and potentially in the gastrointestinal tract once consumed. As more becomes known about the efficacy and impact formic acid has on both the host and foodborne pathogens, it is clear that the presence of formic acid can trigger certain pathways in Salmonella spp. This response may become more complex when formic acid enters the gastrointestinal tract and interacts not only with Salmonella spp. that has colonized the gastrointestinal tract but the indigenous microbial community as well. This review will cover current findings and prospects for further research on the poultry microbiome and feeds treated with formic acid.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
16
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Efficacy of the InvictDetect TM Immunostrip ® to Taxonomically Identify the Red Imported Fire Ant, Solenopsis invicta, Using a Single Worker Ant. INSECTS 2020; 11:insects11010037. [PMID: 31906263 PMCID: PMC7023181 DOI: 10.3390/insects11010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
The early detection and identification of the red imported fire ant Solenopsis invicta are crucial to intercepting and preventing it from becoming established in new areas. Unfortunately, the visual identification of fire ants to species is difficult and ant samples must often be couriered to an expert for positive identification, which can delay control interventions. A lateral flow immunoassay that provides a rapid and portable method for the identification of S. invicta ants was developed and commercialized, and it is available from Agdia, Inc. under the trade name InvictDetectTM. While the test was 100% accurate when using the recommended minimum sample of three ant workers, InvictDetectTM was field tested for the first time while using homogenates prepared from single S. invicta workers to determine the effectiveness of the method under these non-recommended conditions. Disregarding social form, the false negative rate was 25.5% for an initial single worker ant test and 10% after a repeat test was performed. The InvictDetectTM false negative response was independent of worker weight. Though InvictDetectTM requires a minimum of three worker ants, the test improves upon current identification methods because it can be conducted in the field, be completed in 10–30 min, and requires no special training or expertise.
Collapse
|
18
|
The Peptide Venom Composition of the Fierce Stinging Ant Tetraponera aethiops (Formicidae: Pseudomyrmecinae). Toxins (Basel) 2019; 11:toxins11120732. [PMID: 31847368 PMCID: PMC6950161 DOI: 10.3390/toxins11120732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC–MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.
Collapse
|
19
|
Ceolin Mariano DO, de Oliveira ÚC, Zaharenko AJ, Pimenta DC, Rádis-Baptista G, Prieto-da-Silva ÁRDB. Bottom-Up Proteomic Analysis of Polypeptide Venom Components of the Giant Ant Dinoponera Quadriceps. Toxins (Basel) 2019; 11:toxins11080448. [PMID: 31362422 PMCID: PMC6722740 DOI: 10.3390/toxins11080448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
Ant species have specialized venom systems developed to sting and inoculate a biological cocktail of organic compounds, including peptide and polypeptide toxins, for the purpose of predation and defense. The genus Dinoponera comprises predatory giant ants that inoculate venom capable of causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms. To deepen our knowledge about venom composition with regard to protein toxins and their roles in the chemical-ecological relationship and human health, we performed a bottom-up proteomics analysis of the crude venom of the giant ant D. quadriceps, popularly known as the "false" tocandiras. For this purpose, we used two different analytical approaches: (i) gel-based proteomics approach, wherein the crude venom was resolved by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and all protein bands were excised for analysis; (ii) solution-based proteomics approach, wherein the crude venom protein components were directly fragmented into tryptic peptides in solution for analysis. The proteomic data that resulted from these two methodologies were compared against a previously annotated transcriptomic database of D. quadriceps, and subsequently, a homology search was performed for all identified transcript products. The gel-based proteomics approach unequivocally identified nine toxins of high molecular mass in the venom, as for example, enzymes [hyaluronidase, phospholipase A1, dipeptidyl peptidase and glucose dehydrogenase/flavin adenine dinucleotide (FAD) quinone] and diverse venom allergens (homologous of the red fire ant Selenopsis invicta) and venom-related proteins (major royal jelly-like). Moreover, the solution-based proteomics revealed and confirmed the presence of several hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensin. Our results showed that the major components of the D. quadriceps venom are toxins that are highly likely to damage cell membranes and tissue, to cause neurotoxicity, and to induce allergic reactions, thus, expanding the knowledge about D. quadriceps venom composition and its potential biological effects on prey and victims.
Collapse
Affiliation(s)
| | | | | | - Daniel Carvalho Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo SP 05503-900, Brazil
| | - Gandhi Rádis-Baptista
- Laboratorio of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza CE 60165-081, Brazil.
| | | |
Collapse
|
20
|
Lim CHL. Ant Bites Conjunctival Tissue: The ABCs of Removing an Ocular Ant Foreign Body. J Emerg Med 2019; 56:698-700. [PMID: 30904382 DOI: 10.1016/j.jemermed.2019.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND A variety of insect-related ocular injuries have been reported in the literature. However, no reports have been published documenting injuries resulting from exposure of the ocular surface to ants. This is surprising, given the relatively ubiquitous presence of ants. This is the first known case report to describe various techniques utilized in the removal of ants from the ocular surface. CASE REPORT This case report details the presentation of a distressed 24-year-old woman who presented to the Emergency Department with an ocular foreign body associated with pain and increased lacrimation. She was identified to have an ant adherent to her conjunctiva. Various techniques of removal were performed, with the ant finally removed without any trauma to underlying tissues. CONCLUSION This is the first case report to detail various techniques utilized in the removal of ants from the ocular surface, and discusses salient features that treating physicians should be aware of in managing patients presenting with ant bites.
Collapse
Affiliation(s)
- Chris H L Lim
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; Department of Ophthalmology, National University Health System, Singapore; Department of Ophthalmology, Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
21
|
Perez-Riverol A, Lasa AM, Dos Santos-Pinto JRA, Palma MS. Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:10-24. [PMID: 30582958 DOI: 10.1016/j.ibmb.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil.
| |
Collapse
|
22
|
Helbling A, Müller UR. Allergic Reactions to Stinging and Biting Insects. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Al-Tamimi J, Semlali A, Hassan I, Ebaid H, Alhazza IM, Mehdi SH, Al-Khalifa M, Alanazi MS. Samsum Ant Venom Exerts Anticancer Activity Through Immunomodulation In Vitro and In Vivo. Cancer Biother Radiopharm 2018; 33:65-73. [PMID: 29634416 DOI: 10.1089/cbr.2017.2400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Samsum ant venom (SAV) is a rich repertoire of natural compounds with tremendous pharmacological properties. The present work explores its antineoplastic activity in different cell lines followed by its confirmation in vivo. The cell lines, HepG2, MCF-7, and LoVo showed the differential dose-dependent antineoplastic effect with an increased level of significant cytokines, including Interleukin (IL)-1β, IL-6, and IL-8 and transcription factor, Nuclear factor-kappa B (NF-κB). However, the venom was more effective on HepG2 and MCF-7 cells than LoVo cells. Furthermore, the extract was administered to four groups (n = 8) of rats. Group I was taken as a control without any treatment, whereas group II received CCl4 (1 mL/kg) for induction of mild hepatoma. Group III was given 100 μg/kg of SAV twice a week for 1 month. Group IV was pretreated with the CCl4 (like group II) followed by dosing with SAV (100 μg/kg) for 2 months as per the authors' prestandardized dosing schedule. Intriguingly, the rats of group IV demonstrated significant decrease in key cytokines, IL-1β and IL-6, as well as the transcription factors, including Tumor Necrosis Factor-alpha (TNF-α), NF-κB, and Inhibitor-kappa B (I-κB) as compared with group II. Furthermore, increase in IL-10 and First apoptosis signal (FAS) in the same group confirmed that SAV induces apoptosis at the given dose through immunomodulation leading to enhanced tumor killing in vivo. Hence, SAV has an excellent antineoplastic activity that can be directly used to treat certain types of cancer. Moreover, study of its ingredients can pave ways to design novel anticancer drugs. However, further in-depth investigation is required before its clinical trials.
Collapse
Affiliation(s)
- Jameel Al-Tamimi
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Hossam Ebaid
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Ibrahim M Alhazza
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Syed H Mehdi
- 3 Department of Geriatrics, Donald W Reynolds Institute of Aging , UAMS Little Rock, Little Rock, Arkansas
| | - Mohammed Al-Khalifa
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohammad S Alanazi
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Srisong H, Sukprasert S, Klaynongsruang S, Daduang J, Daduang S. Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata. J Venom Anim Toxins Incl Trop Dis 2018; 24:23. [PMID: 30181738 PMCID: PMC6116302 DOI: 10.1186/s40409-018-0159-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 11/17/2022] Open
Abstract
Background Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. Tropical fire ant Solenopsis geminata is an important stinging ant species that causes anaphylaxis and serious medical problems. Although the biological activities of allergenic venom proteins that are unique to ant venom, particularly Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom. Methods In the present study, the cDNA cloning, sequencing and three-dimensional structure of Sol g 4.1 venom protein are described. The recombinant Sol g 4.1 protein (rSol g 4.1) was produced in E. coli, and its possible function as a hydrophobic binding protein was characterized by paralyzing crickets using the 50% piperidine dose (PD50). Moreover, an antiserum was produced in mice to determine the allergenic properties of Sol g 4.1, and the antiserum was capable of binding to Sol g 4.1, as determined by Western blotting. Results The molecular weight of Sol g 4.1 protein is 16 kDa, as determined by SDS-PAGE. The complete cDNA is 414 bp in length and contains a leader sequence of 19 amino acids. The protein consists of six cysteines that presumably form three disulfide bonds, based on a predicted three-dimensional model, creating the interior hydrophobic pocket and stabilizing the structure. The rSol g 4.1 protein was expressed in inclusion bodies, as determined by SDS-PAGE. Dialysis techniques were used to refold the recombinant protein into the native form. Its secondary structure, which primarily consists of α-helices, was confirmed by circular dichroism analysis, and the three-dimensional model was also verified. The results of allergenic analysis performed on mice showed that the obtained protein was predicted to be allergenically active. Moreover, we report on the possible role of the Sol g 4.1 venom protein, which significantly reduced the PD50 from 0.027 to 0.013% in paralyzed crickets via synergistic effects after interactions with piperidine alkaloids. Conclusions The primary structure of Sol g 4.1 showed high similarity to that of venom proteins in the Solenopsis 2 and 4 family. Those proteins are life-threatening and produce IgE-mediated anaphylactic reactions in allergic individuals. The possible function of this protein is the binding of the interior hydrophobic pockets with piperidine alkaloids, as determined by the analysis of the structural model and PD50 test. Electronic supplementary material The online version of this article (10.1186/s40409-018-0159-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hathairat Srisong
- 1Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sophida Sukprasert
- 2Division of Integrative Medicine, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120 Thailand
| | - Sompong Klaynongsruang
- 1Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Jureerut Daduang
- 3Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sakda Daduang
- 1Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand.,4Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
25
|
Romita P, Foti C, Principato M, Stingeni L. Generalized papular-purpuric eruption due to Solenopsis fugax bites. An Bras Dermatol 2018; 93:570-572. [PMID: 30066767 PMCID: PMC6063111 DOI: 10.1590/abd1806-4841.20187298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/01/2017] [Indexed: 11/23/2022] Open
Abstract
A 59-year-old atopic man referred to for the onset of a diffused itching papular-purpuric eruption involving his trunk and legs but without systemic symptoms. History revealed that he started feeling itching after spending few hours in his basement. Direct examination of the environmental dust (www.edpa.it) showed high level of infestation of Solenopsis fugax, a small Myrmicinae ant. The skin eruption completely healed without scarring in 2 weeks. Specific disinfestation measures were performed and the patient did not comply of any recurrence during a 6-months follow-up.
Collapse
Affiliation(s)
- Paolo Romita
- Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Mario Principato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luca Stingeni
- Clinical, Allergological and Venereological Dermatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
27
|
Antolín-Amérigo D, Ruiz-León B, Boni E, Alfaya-Arias T, Álvarez-Mon M, Barbarroja-Escudero J, González-de-Olano D, Moreno-Aguilar C, Rodríguez-Rodríguez M, Sánchez-González MJ, Sánchez-Morillas L, Vega-Castro A. Component-resolved diagnosis in hymenoptera allergy. Allergol Immunopathol (Madr) 2018; 46:253-262. [PMID: 28739022 DOI: 10.1016/j.aller.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Component-resolved diagnosis based on the use of well-defined, properly characterised and purified natural and recombinant allergens constitutes a new approach in the diagnosis of venom allergy. Prospective readers may benefit from an up-to-date review on the allergens. The best characterised venom is that of Apis mellifera, whose main allergens are phospholipase A2 (Api m1), hyaluronidase (Api m2) and melittin (Api m4). Additionally, in recent years, new allergens of Vespula vulgaris have been identified and include phospholipase A1 (Ves v1), hyaluronidase (Ves v2) and antigen 5 (Ves v5). Polistes species are becoming an increasing cause of allergy in Europe, although only few allergens have been identified in this venom. In this review, we evaluate the current knowledge about molecular diagnosis in hymenoptera venom allergy.
Collapse
Affiliation(s)
- D Antolín-Amérigo
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Principe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| | - B Ruiz-León
- Servicio de Alergología, Hospital Universitario Reina Sofía, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - E Boni
- S.S. Allergologia, ASL Alessandria, Hospital Santo Spirito, Casale Monferrato (AL), Italy
| | - T Alfaya-Arias
- Servicio de Alergología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - M Álvarez-Mon
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - J Barbarroja-Escudero
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - D González-de-Olano
- Servicio de Alergología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - C Moreno-Aguilar
- Servicio de Alergología, Hospital Universitario Reina Sofía, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - M Rodríguez-Rodríguez
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - M J Sánchez-González
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | - A Vega-Castro
- Servicio de Alergología, Hospital Universitario de Guadalajara, Guadalajara, Spain
| |
Collapse
|
28
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
29
|
Arcà B, Lombardo F, Struchiner CJ, Ribeiro JMC. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen Anopheles species. BMC Genomics 2017; 18:153. [PMID: 28193177 PMCID: PMC5307786 DOI: 10.1186/s12864-017-3579-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito saliva is a complex cocktail whose pharmacological properties play an essential role in blood feeding by counteracting host physiological response to tissue injury. Moreover, vector borne pathogens are transmitted to vertebrates and exposed to their immune system in the context of mosquito saliva which, in virtue of its immunomodulatory properties, can modify the local environment at the feeding site and eventually affect pathogen transmission. In addition, the host antibody response to salivary proteins may be used to assess human exposure to mosquito vectors. Even though the role of quite a few mosquito salivary proteins has been clarified in the last decade, we still completely ignore the physiological role of many of them as well as the extent of their involvement in the complex interactions taking place between the mosquito vectors, the pathogens they transmit and the vertebrate host. The recent release of the genomes of 16 Anopheles species offered the opportunity to get insights into function and evolution of salivary protein families in anopheline mosquitoes. RESULTS Orthologues of fifty three Anopheles gambiae salivary proteins were retrieved and annotated from 18 additional anopheline species belonging to the three subgenera Cellia, Anopheles, and Nyssorhynchus. Our analysis included 824 full-length salivary proteins from 24 different families and allowed the identification of 79 novel salivary genes and re-annotation of 379 wrong predictions. The comparative, structural and phylogenetic analyses yielded an unprecedented view of the anopheline salivary repertoires and of their evolution over 100 million years of anopheline radiation shedding light on mechanisms and evolutionary forces that contributed shaping the anopheline sialomes. CONCLUSIONS We provide here a comprehensive description, classification and evolutionary overview of the main anopheline salivary protein families and identify two novel candidate markers of human exposure to malaria vectors worldwide. This anopheline sialome catalogue, which is easily accessible as hyperlinked spreadsheet, is expected to be useful to the vector biology community and to improve the capacity to gain a deeper understanding of mosquito salivary proteins facilitating their possible exploitation for epidemiological and/or pathogen-vector-host interaction studies.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, Brazil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
30
|
Vétillard A, Bouzid W. [Ants: a chemical library of anticancer molecules]. Biol Aujourdhui 2016; 210:119-25. [PMID: 27687602 DOI: 10.1051/jbio/2016021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 11/14/2022]
Abstract
Animal venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements with extraordinary biological properties associated with their ability to act on a number of molecular receptors in the process of incapacitating their target organisms. In such a context, arthropod venoms are invaluable sources of bioactive substances, with therapeutic interest but the limited availability of some venom such as those from ants, has restricted the potential that these biomolecules could represent. We investigated for the first time transcriptomic expression from the ant species Tetramorium bicarinatum. Four hundred randomly selected clones from cDNA libraries were sequenced and a total of 374 expressed sequence tags (ESTs) were generated. Based on the results of BLAST searches, these sequences were clustered and assembled into 269 contigs. About 72% (269) of these matched BLASTx hits with an interesting diversity and unusual abundance of cellular transcripts (48%) related to gene and protein expression reflecting the specialization of this tissue. In addition, transcripts encoding transposases were relatively highly expressed (14%). It may be that transposable elements are present and that their presence accounts for some of the variation in venom toxins. About twenty per cent of the ESTs were categorized as putative toxins, the major part represented by allergens (48% of the total venom toxins) such as pilosulin 5, sol i 3 and Myp p I and II. Several contigs encoding enzymes, including zinc-metalloproteases (17%) that are likely involved in the processing and activation of venom proteins/peptides, were also identified from the library. In addition, a number of sequences (8%) had no significant similarity to any known sequence which indicates a potential source of for the discovery of new toxins. In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of their products, high-throughput expressed sequence tags were generated using Illumina paired-end sequencing technology. A total of 212 371 758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36 042 contigs for which 27 873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the read mapping toxin class revealed and confirmed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%) followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus). These studies provide a first insight of the gene expression scenario of the venom gland of T. bicarinatum which might contribute to acquiring a more comprehensive view about the origin and functional diversity of venom proteins of this ant. Based on such results, we conducted cytotoxic tests from the crude venom of T.bicarinatum ant and reported toxic effect on tumoral cells lines from one of the fifth of the most frequently occurring cancers with a 3-year survival rate of only 30%. In such a context, new therapeutic strategies are essential and the discovery of new molecules in ant venom could be one possible avenue. Thus our project aims to characterize, from the crude venom of T.bicarinatum, the molecule(s) which have potential anti-cancerous toxicity as well as their mechanisms of action.
Collapse
|
31
|
Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 2016; 38:581-603. [PMID: 27225312 PMCID: PMC5010491 DOI: 10.1007/s00281-016-0565-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly "maladaptive" immune response develop in evolution and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
32
|
Valles SM, Strong CA, Callcott AMA. Development of a lateral flow immunoassay for rapid field detection of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Anal Bioanal Chem 2016; 408:4693-703. [DOI: 10.1007/s00216-016-9553-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022]
|
33
|
Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins (Basel) 2016; 8:E30. [PMID: 26805882 PMCID: PMC4728552 DOI: 10.3390/toxins8010030] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
- BTSB (Biochimie et Toxicologie des Substances Bioactives) Université de Champollion, Place de Verdun, Albi 81012, France.
| | - Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| | | | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines-Villa 3, Valbonne 06560, France.
| | - Jérôme Orivel
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| | - Alain Dejean
- CNRS, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex 97379, France.
- Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, Toulouse 31062, France.
| |
Collapse
|
34
|
Conti F, Hanss A, Fischer C, Elger G. Thermogravimetric investigation on the interaction of formic acid with solder joint materials. NEW J CHEM 2016. [DOI: 10.1039/c6nj02396g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reaction mechanisms of gaseous formic acid with oxidized Cu and Sn–Ag–Cu alloy (SAC305) are investigated in the temperature range of soldering (40–260 °C).
Collapse
Affiliation(s)
- Fosca Conti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Innovative Mobility (MOREA)
| | - Alexander Hanss
- Institute of Innovative Mobility (MOREA)
- Technische Hochschule Ingolstadt
- 85049 Ingolstadt
- Germany
| | | | - Gordon Elger
- Institute of Innovative Mobility (MOREA)
- Technische Hochschule Ingolstadt
- 85049 Ingolstadt
- Germany
| |
Collapse
|
35
|
Srisong H, Daduang S, Lopata AL. Current advances in ant venom proteins causing hypersensitivity reactions in the Asia-Pacific region. Mol Immunol 2016; 69:24-32. [DOI: 10.1016/j.molimm.2015.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
|
36
|
Singh AK, Singh S, Kumar A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01276g] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Formic acid, the simplest carboxylic acid, could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Suryabhan Singh
- Department of Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Abhinav Kumar
- Department of Chemistry
- University of Lucknow
- Lucknow 226007
- India
| |
Collapse
|
37
|
Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2015; 135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Morgenstern
- Proteomics Resource Center, Langone Medical Center, New York University, New York, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
38
|
Van Gasse AL, Mangodt EA, Faber M, Sabato V, Bridts CH, Ebo DG. Molecular allergy diagnosis: status anno 2015. Clin Chim Acta 2015; 444:54-61. [PMID: 25681645 DOI: 10.1016/j.cca.2015.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
IgE antibodies play a key role in type I allergic reactions. Today, different in vitro immunoassays for allergen-specific IgE antibodies are available. However, some major issues should be taken into account for correct interpretation of specific IgE (sIgE) antibody results, as these assays do not demonstrate absolute positive and negative predictive values. Therefore, additional diagnostic tests are needed to make the correct diagnosis. During the last two decades significant progress in biochemistry and molecular biology enabled the detection and quantification of sIgE antibodies to allergen protein components and epitope-emulating peptides, also called molecular allergy diagnosis or component resolved diagnosis (CRD). In contrast to conventional sIgE antibody assays, molecular allergy diagnosis makes it possible to discriminate between genuine allergy and merely sensitisation, to establish personalized sensitization patterns and to assess the individual risk of severity of an allergic reaction and finally it helps us to predict the natural course. In this review the use of CRD in inhalant, food, latex and hymenoptera venom allergy will be discussed. The primary focus will be on the most relevant clinical applications of CRD rather than to describe all the currently available allergen components and epitopes. Appropriate experience of our own research group is provided.
Collapse
Affiliation(s)
- A L Van Gasse
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - E A Mangodt
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - M Faber
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - V Sabato
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - C H Bridts
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - D G Ebo
- Department of Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Immunology-Allergology-Rheumatology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
39
|
Bouzid W, Verdenaud M, Klopp C, Ducancel F, Noirot C, Vétillard A. De Novo sequencing and transcriptome analysis for Tetramorium bicarinatum: a comprehensive venom gland transcriptome analysis from an ant species. BMC Genomics 2014; 15:987. [PMID: 25407482 PMCID: PMC4256838 DOI: 10.1186/1471-2164-15-987] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Arthropod venoms are invaluable sources of bioactive substances with biotechnological application. The limited availability of some venoms, such as those from ants, has restricted the knowledge about the composition and the potential that these biomolecules could represent. In order to provide a global insight on the transcripts expressed in the venom gland of the Brazilian ant species Tetramorium bicarinatum and to unveil the potential of its products, high-throughput approach using Illumina technology has been applied to analyze the genes expressed in active venom glands of this ant species. RESULTS A total of 212,371,758 pairs of quality-filtered, 100-base-pair Illumina reads were obtained. The de novo assemblies yielded 36,042 contigs for which 27,873 have at least one predicted ORF among which 59.77% produce significant hits in the available databases. The investigation of the reads mapping toxin class revealed a high diversification with the major part consistent with the classical hymenopteran venom protein signature represented by venom allergen (33.3%), followed by a diverse toxin-expression profile including several distinct isoforms of phospholipase A1 and A2, venom serine protease, hyaluronidase, protease inhibitor and secapin. Moreover, our results revealed for the first time the presence of toxin-like peptides that have been previously identified from unrelated venomous animals such as waprin-like (snakes) and agatoxins (spiders and conus).The non-toxin transcripts were mainly represented by contigs involved in protein folding and translation, consistent with the protein-secretory function of the venom gland tissue. Finally, about 40% of the generated contigs have no hits in the databases with 25% of the predicted peptides bearing signal peptide emphasizing the potential of the investigation of these sequences as source of new molecules. Among these contigs, six putative novel peptides that show homologies with previously identified antimicrobial peptides were identified. CONCLUSIONS To the best of our knowledge, this work reports the first large-scale analysis of genes transcribed by the venomous gland of the ant species T. bicarinatum and helps with the identification of Hymenoptera toxin arsenal. In addition, results from this study demonstrate that de novo transcriptome assembly allows useful venom gene expression analysis in a species lacking a genome sequence database.
Collapse
Affiliation(s)
| | | | | | | | | | - Angélique Vétillard
- Venoms and Biological Activities Laboratory, EA 4357, PRES-University of Toulouse, Jean-François Champollion University Center, Albi, France.
| |
Collapse
|
40
|
Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimie 2014; 107 Pt B:211-5. [PMID: 25220871 DOI: 10.1016/j.biochi.2014.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 09/04/2014] [Indexed: 11/23/2022]
Abstract
Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 μg/g.
Collapse
|
41
|
Production of antibacterial peptide from bee venom via a new strategy for heterologous expression. Mol Biol Rep 2014; 41:8081-91. [PMID: 25189650 DOI: 10.1007/s11033-014-3706-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
Honey bee is important economic insect that not only pollinates fruits and crops but also provides products with various physiological activities. Bee venom is a functional agent that is widely applied in clinical treatment and pharmacy. Secapin is one of these agents that have a significant role in therapy. The functions of secapin from the bee venom have been documented, but little information is known about its heterologous expression under natural condition. Moreover, few scholars verified experimentally the functions of secapin from bee venom in vitro. In this study, we successfully constructed a heterologous expression vector, which is different from conventional expression system. A transgenic approach was established for transformation of secapin gene from the venom of Apis mellifera carnica (Ac-sec) into the edible fungi, Coprinus cinereus. Ac-sec was encoded by a 234 bp nucleotide that contained a signal peptide domain and two potential phosphorylation sites. The sequence exhibited highly homology with various secapins characterized from honey bee and related species. Southern blot data indicated that Ac-sec was present as single or multiple copy loci in the C. cinereus genome. By co-transformation and double-layer active assay, Ac-sec was expressed successfully in C. cinereus and the antibacterial activity of the recombinants was identified, showing notable antibacterial activities on different bacteria. Although Ac-sec is from the venom of Apidae, phylogenetic analysis demonstrated that Ac-sec was more closely related to that of Vespid than to bee species from Apidae. The molecular characteristics of Ac-sec and the potential roles of small peptides in biology were discussed.
Collapse
|
42
|
Chen L, Mullen GE, Le Roch M, Cassity CG, Gouault N, Fadamiro HY, Barletta RE, O'Brien RA, Sykora RE, Stenson AC, West KN, Horne HE, Hendrich JM, Xiang KR, Davis JH. On the Formation of a Protic Ionic Liquid in Nature. Angew Chem Int Ed Engl 2014; 53:11762-5. [DOI: 10.1002/anie.201404402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/16/2014] [Indexed: 11/09/2022]
|
43
|
Chen L, Mullen GE, Le Roch M, Cassity CG, Gouault N, Fadamiro HY, Barletta RE, O'Brien RA, Sykora RE, Stenson AC, West KN, Horne HE, Hendrich JM, Xiang KR, Davis JH. On the Formation of a Protic Ionic Liquid in Nature. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Recent advances in developing insect natural products as potential modern day medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:904958. [PMID: 24883072 PMCID: PMC4026837 DOI: 10.1155/2014/904958] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines. Utilising knowledge gleaned from Insect Folk Medicines, this review describes modern research into bioengineering honey and venom from bees, silk, cantharidin, antimicrobial peptides, and maggot secretions and anticoagulants from blood-sucking insects into medicines. Problems and solutions encountered in these endeavours are described and indicate that the future is bright for new insect derived pharmaceuticals treatments and medicines.
Collapse
|
45
|
Johnson CM, Baldelli S. Vibrational Sum Frequency Spectroscopy Studies of the Influence of Solutes and Phospholipids at Vapor/Water Interfaces Relevant to Biological and Environmental Systems. Chem Rev 2014; 114:8416-46. [DOI: 10.1021/cr4004902] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C. Magnus Johnson
- Division of Surface and Corrosion
Science, Royal Institute of Technology (KTH), Drottning Kristinas Väg 51, SE-100 44 Stockholm, Sweden
| | - Steven Baldelli
- Department
of Chemistry, University of Houston, Texas 77204-5003, United States
| |
Collapse
|
46
|
Antioxidant bioactivity of Samsum ant (Pachycondyla sennaarensis) venom protects against CCL₄-induced nephrotoxicity in mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:763061. [PMID: 24803985 PMCID: PMC3997132 DOI: 10.1155/2014/763061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/17/2014] [Indexed: 01/01/2023]
Abstract
To assess whether SAV could influence the effects of carbon tetrachloride (CCL4) exposure, mice were treated with SAV in doses of 100, 200, 300 and 400 μg/kg body weight and the effects on oxidative status and kidney function were studied. Serum levels of creatinine, malondialdehyde (MDA), and blood urea, together with renal and hepatic levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified in order to evaluate antioxidant activity. Results showed that the group injected with CCL4 exhibited significantly higher levels of oxidative stress markers, MDA, and significantly lower concentrations of GSH, SOD and catalase. SAV was found to significantly improve these oxidative markers, occasionally, in a dose-dependent manner. Furthermore, treatment with SAV was associated with the same behaviour in respect to kidney functions which had previously been impaired by CCL4. Histopathological examination demonstrated that SAV, in different groups, improved the renal tissue damage induced by CCL4 and histological scores confirmed that significant improvements were obtained after treatment with SAV, particularly with the lowest dose (100 μg/kg body weight). In conclusion, SAV has the potential capability to restore oxidative stability and to improve kidney functions after CCL4 acute injury.
Collapse
|
47
|
Papini RA. A case of stings in humans caused by Sclerodermus sp. in Italy. J Venom Anim Toxins Incl Trop Dis 2014; 20:11. [PMID: 24685279 PMCID: PMC3973378 DOI: 10.1186/1678-9199-20-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/24/2014] [Indexed: 12/02/2022] Open
Abstract
In the last years, stings of Sclerodermus species in humans have been sporadically reported in Italy. In order to draw attention to these bethylid wasps of medical importance, we report the case of documented Sclerodermus sp. stings on the dorsum, abdomen, arms, and thighs of a 40-year-old man and his wife. The sting sites developed raised red itchy rash. The source of environmental contamination was identified in a worm-eaten sofa purchased from a used furniture dealer and placed in the living room about a month and half earlier. The lesions on the man and his wife rapidly healed within 3 to 4 days once they left the house and treatment for the lesions was instituted. Physicians, dermatologists, medical and public health entomologists, as well as specific categories of workers should be aware of the risk of exposure to Sclerodermus stings.
Collapse
|
48
|
Ebo DG, Van Vaerenbergh M, de Graaf DC, Bridts CH, De Clerck LS, Sabato V. In vitro diagnosis of Hymenoptera venom allergy and further development of component resolved diagnostics. Expert Rev Clin Immunol 2014; 10:375-84. [PMID: 24490811 DOI: 10.1586/1744666x.2014.881252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For most people Hymenoptera stings result in transient and bothersome local inflammatory responses characterized by pain, itching, redness and swelling. In contrast, for those presenting an IgE-mediated allergic reaction, a re-sting may cause life-threatening reactions. In such patients, correct diagnosis is an absolute prerequisite for effective management, i.e. venom-specific immunotherapy. Generally, identification of the offending insect involves a detailed history along with quantification of venom-specific IgE antibodies and venom skin tests. Unfortunately, due to uncertainties associated with both tests, correct diagnosis is not always straightforward. This review summarizes the potentials and limitations of the various in vitro tests that are currently being used in the diagnosis of Hymenoptera venom allergy. Particular attention is paid to the potential of novel cellular tests such as basophil activation tests and component-resolved diagnosis with recombinant venom allergens in the diagnostic approach of patients with difficult diagnosis, i.e. cases in whom traditional venom specific IgE and skin tests yield equivocal or negative results. Finally, this review also covers the recent discoveries in the field of proteome research of Hymenoptera venoms and the selection of cell types for recombinant allergens production.
Collapse
Affiliation(s)
- Didier G Ebo
- Department of Immunology, Faculty of Medicine and Health Science, Allergology and Rheumatology, University Antwerp and Antwerp University Hospital, Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Torres AFC, Huang C, Chong CM, Leung SW, Prieto-da-Silva ÁRB, Havt A, Quinet YP, Martins AMC, Lee SMY, Rádis-Baptista G. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: insights into the polypeptide toxin arsenal of hymenopterans. PLoS One 2014; 9:e87556. [PMID: 24498135 PMCID: PMC3909188 DOI: 10.1371/journal.pone.0087556] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022] Open
Abstract
Background Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. Results We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. Conclusions To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans.
Collapse
Affiliation(s)
- Alba F. C. Torres
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu Wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | - Alexandre Havt
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Yves P. Quinet
- Laboratory of Entomology, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Alice M. C. Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceara, Fortaleza, Ceara, Brazil
- * E-mail: (AMCM); (GRB)
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
- * E-mail: (AMCM); (GRB)
| |
Collapse
|
50
|
Ghafuri H, Roshani M. Aqueous formic acid: an efficient, inexpensive and environmentally friendly organocatalyst for three-component Strecker synthesis of α-aminonitriles and imines with excellent yields. RSC Adv 2014. [DOI: 10.1039/c4ra11957f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aqueous formic acid (37%) was effectively used as catalyst in Strecker reaction to afford α-aminonitriles and imines in high yields.
Collapse
Affiliation(s)
- Hossein Ghafuri
- Department of Chemistry
- Iran University of Science and Technology
- 16846 Tehran, Iran
| | - Mahdi Roshani
- Department of Chemistry
- Iran University of Science and Technology
- 16846 Tehran, Iran
| |
Collapse
|