1
|
Pereira-Silva R, Teixeira-Pinto A, Neto FL, Martins I. μ-Opioid Receptor Activation at the Dorsal Reticular Nucleus Shifts Diffuse Noxious Inhibitory Controls to Hyperalgesia in Chronic Joint Pain in Male Rats. Anesthesiology 2024; 140:1176-1191. [PMID: 38381969 DOI: 10.1097/aln.0000000000004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND The dorsal reticular nucleus is a pain facilitatory area involved in diffuse noxious inhibitory control (DNIC) through opioidergic mechanisms that are poorly understood. The hypothesis was that signaling of μ-opioid receptors is altered in this area with prolonged chronic inflammatory pain and that this accounts for the loss of DNICs occurring in this condition. METHODS Monoarthritis was induced in male Wistar rats (n = 5 to 9/group) by tibiotarsal injection of complete Freund's adjuvant. The immunolabeling of µ-opioid receptors and the phosphorylated forms of µ-opioid receptors and cAMP response element binding protein was quantified. Pharmacologic manipulation of μ-opioid receptors at the dorsal reticular nucleus was assessed in DNIC using the Randall-Selitto test. RESULTS At 42 days of monoarthritis, μ-opioid receptor labeling decreased at the dorsal reticular nucleus, while its phosphorylated form and the phosphorylated cAMP response element binding protein increased. [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO) enhanced DNIC analgesia in normal animals (means ± SD: pre-DNIC: 126.9 ± 7.0 g; DNIC - DAMGO: 147.5 ± 8.0 g vs. DNIC + DAMGO: 198.1 ± 19.3 g; P < 0.001), whereas it produced hyperalgesia in monoarthritis (pre-DNIC: 67.8 ± 7.5 g; DNIC - DAMGO: 70.6 ± 7.7 g vs. DNIC + DAMGO: 32.2 ± 2.6 g; P < 0.001). An ultra-low dose of naloxone, which prevents the excitatory signaling of the μ-opioid receptor, restored DNIC analgesia in monoarthritis (DNIC - naloxone: 60.0 ± 6.1 g vs. DNIC + naloxone: 98.0 ± 13.5 g; P < 0.001), compared to saline (DNIC - saline: 62.5 ± 5.2 g vs. DNIC + saline: 64.2 ± 3.8 g). When injected before DAMGO, it restored DNIC analgesia and decreased the phosphorylated cAMP response element binding protein in monoarthritis. CONCLUSIONS The dorsal reticular nucleus is likely involved in a facilitatory pathway responsible for DNIC hyperalgesia. The shift of μ-opioid receptor signaling to excitatory in this pathway likely accounts for the loss of DNIC analgesia in monoarthritis. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Centre for Kidney Research, Kids Research Institute, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fani L Neto
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isabel Martins
- Institute for Research and Innovation in Health (i3S) of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal; Department of Biomedicine - Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
3
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Sex-related correspondence between mechanical hypersensitivity and the discharge of medullary pain control neurons in neuropathic rats. Neurosci Lett 2023; 813:137415. [PMID: 37544582 DOI: 10.1016/j.neulet.2023.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Here we studied whether the sex-related difference in mechanical hypersensitivity induced by neuropathy is associated with the discharge rate of medullary pain control neurons. We performed experiments in male and female rats with spared nerve injury (SNI) model of peripheral neuropathy. Mechanical hypersensitivity was assessed behaviorally by monofilaments. Discharge rates of pain-control neurons were determined using in vivo single unit recordings under light anesthesia. Recording targets were two medullary nuclei involved in descending pain control: the rostral ventromedial medulla (RVM) and the medullary dorsal reticular nucleus (DRt). Based on the response to peripheral noxious stimulus, neurons were classified as pronociceptive RVM ON-like or DRt neurons, or antinociceptive RVM OFF-like neurons. Behavioral results indicated that the mechanical hypersensitivity induced by SNI was significantly stronger in females than males. The ongoing discharge rates of pronociceptive RVM ON-like neurons were higher and those of antinociceptive RVM OFF-like neurons lower in SNI females than SNI males. Ongoing discharge rates of pronociceptive DRt neurons were not significantly different between SNI females and males. The results suggest that a sex difference in the discharge rate of pain control neurons in the RVM but not DRt may contribute to the maintenance of stronger neuropathic hypersensitivity in females.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Patel R. The circuit basis for chronic pain and its comorbidities. Curr Opin Support Palliat Care 2023; 17:156-160. [PMID: 37096597 PMCID: PMC10371057 DOI: 10.1097/spc.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW Chronic pain is poorly treated with many developing disabling comorbidities such as anxiety, depression and insomnia. Considerable evidence supports the idea that pain and anxiodepressive disorders share a common neurobiology and can mutually reinforce, which has significant long-term implications as the development of comorbidities leads to poorer treatment outcomes for both pain and mood disorders. This article will review recent advances in the understanding of the circuit basis for comorbidities in chronic pain. RECENT FINDINGS A growing number of studies have aimed to determine the mechanisms underlying chronic pain and comorbid mood disorders by using modern viral tracing tools for precise circuit manipulation with optogenetics and chemogenetics. These have revealed critical ascending and descending circuits, which advance the understanding of the interconnected pathways that modulate the sensory dimension of pain and the long-term emotional consequences of chronic pain. SUMMARY Comorbid pain and mood disorders can produce circuit-specific maladaptive plasticity; however, several translational issues require addressing to maximise future therapeutic potential. These include the validity of preclinical models, the translatability of endpoints and expanding analysis to the molecular and system levels.
Collapse
|
5
|
Kong D, Zhang Y, Gao P, Pan C, Deng H, Xu S, Tang D, Xiao J, Jiao Y, Yu W, Wen D. The locus coeruleus input to the rostral ventromedial medulla mediates stress-induced colorectal visceral pain. Acta Neuropathol Commun 2023; 11:65. [PMID: 37062831 PMCID: PMC10108465 DOI: 10.1186/s40478-023-01537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 04/18/2023] Open
Abstract
Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.
Collapse
Affiliation(s)
- Dexu Kong
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Chao Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Haoyue Deng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
6
|
Park KT, Jo H, Kim B, Kim W. Red Ginger Extract Prevents the Development of Oxaliplatin-Induced Neuropathic Pain by Inhibiting the Spinal Noradrenergic System in Mice. Biomedicines 2023; 11:432. [PMID: 36830967 PMCID: PMC9953630 DOI: 10.3390/biomedicines11020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Oxaliplatin is a well-known chemotherapeutic drug that is widely used to treat colorectal cancer. However, it can induce acute side effects in up to 90% of patients. Serotonin and norepinephrine reuptake inhibitors (SNRIs) are used as first-choice drugs; however, even SNRIs are known to be effective only in treatment and not for prevention. Therefore, finding a drug that can prevent the development of cold and mechanical forms of allodynia induced by oxaliplatin is needed. This study demonstrated that multiple oral administrations of 100 mg/kg and 300 mg/kg of red ginger extract could significantly prevent pain development in mice. The role of the noradrenergic system was investigated as an underlying mechanism of action. Both the spinal α1- and α2-adrenergic receptors were significantly downregulated after treatment. Furthermore, the noradrenaline levels in the serum and spinal cord were upregulated and downregulated after treatment with paclitaxel and red ginger, respectively. As the active sub-component of red ginger, ginsenoside Rg3 (Rg3) was identified and quantified using HPLC. Moreover, multiple intraperitoneal injections of Rg3 prevented the development of pain in paclitaxel-treated mice, suggesting that RG3 may induce the effect of red ginger extract.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Park KT, Kim S, Choi I, Han IH, Bae H, Kim W. The involvement of the noradrenergic system in the antinociceptive effect of cucurbitacin D on mice with paclitaxel-induced neuropathic pain. Front Pharmacol 2023; 13:1055264. [PMID: 36686685 PMCID: PMC9846532 DOI: 10.3389/fphar.2022.1055264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Paclitaxel (sold under the brand name Taxol) is a chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are used to attenuate neuropathy, no optimal treatment is available to date. In this study, the effect of cucurbitacins B and D on paclitaxel-induced neuropathic pain was assessed. Multiple paclitaxel injections (a cumulative dose of 8 mg/kg, i. p.) induced cold and mechanical allodynia from days 10 to 21 in mice, and the i. p. administration of 0.025 mg/kg of cucurbitacins B and D attenuated both allodynia types. However, as cucurbitacin B showed a more toxic effect on non-cancerous (RAW 264.7) cells, further experiments were conducted with cucurbitacin D. The cucurbitacin D dose-dependently (0.025, 0.1, and 0.5 mg/kg) attenuated both allodynia types. In the spinal cord, paclitaxel injection increased the gene expression of noradrenergic (α 1-and α 2-adrenergic) receptors but not serotonergic (5-HT1A and 3) receptors. Cucurbitacin D treatment significantly decreased the spinal α 1- but not α 2-adrenergic receptors, and the amount of spinal noradrenaline was also downregulated. However, the tyrosine hydroxylase expression measured via liquid chromatography in the locus coeruleus did not decrease significantly. Finally, cucurbitacin D treatment did not lower the anticancer effect of chemotherapeutic drugs when co-administered with paclitaxel in CT-26 cell-implanted mice. Altogether, these results suggest that cucurbitacin D could be considered a treatment option against paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Suyong Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ilseob Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea,*Correspondence: Woojin Kim,
| |
Collapse
|
8
|
Sampaio-Cunha TJ, Martins I. Knowing the Enemy Is Halfway towards Victory: A Scoping Review on Opioid-Induced Hyperalgesia. J Clin Med 2022; 11:jcm11206161. [PMID: 36294488 PMCID: PMC9604911 DOI: 10.3390/jcm11206161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a paradoxical effect of opioids that is not consensually recognized in clinical settings. We conducted a revision of clinical and preclinical studies and discuss them side by side to provide an updated and renewed view on OIH. We critically analyze data on the human manifestations of OIH in the context of chronic and post-operative pain. We also discuss how, in the context of cancer pain, though there are no direct evidence of OIH, several inherent conditions to the tumor and chemotherapy provide a substrate for the development of OIH. The review of the clinical data, namely in what concerns the strategies to counter OIH, emphasizes how much OIH rely mechanistically on the existence of µ-opioid receptor (MOR) signaling through opposite, inhibitory/antinociceptive and excitatory/pronociceptive, pathways. The rationale for the maladaptive excitatory signaling of opioids is provided by the emerging growing information on the functional role of alternative splicing and heteromerization of MOR. The crossroads between opioids and neuroinflammation also play a major role in OIH. The latest pre-clinical data in this field brings new insights to new and promising therapeutic targets to address OIH. In conclusion, although OIH remains insufficiently recognized in clinical practice, the appropriate diagnosis can turn it into a treatable pain disorder. Therefore, in times of scarce alternatives to opioids to treat pain, mainly unmanageable chronic pain, increased knowledge and recognition of OIH, likely represent the first steps towards safer and efficient use of opioids as analgesics.
Collapse
Affiliation(s)
- Tiago J. Sampaio-Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- i3S–Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- i3S–Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-0426780; Fax: +351-22-5513655
| |
Collapse
|
9
|
Nerve injury induces transient locus coeruleus activation over time: role of the locus coeruleus-dorsal reticular nucleus pathway. Pain 2022; 163:943-954. [PMID: 35025190 DOI: 10.1097/j.pain.0000000000002457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/05/2021] [Indexed: 01/13/2023]
Abstract
ABSTRACT The transition from acute to chronic pain results in maladaptive brain remodeling, as characterized by sensorial hypersensitivity and the ensuing appearance of emotional disorders. Using the chronic constriction injury of the sciatic nerve as a model of neuropathic pain in male Sprague-Dawley rats, we identified time-dependent plasticity of locus coeruleus (LC) neurons related to the site of injury, ipsilateral (LCipsi) or contralateral (LCcontra) to the lesion, hypothesizing that the LC→dorsal reticular nucleus (DRt) pathway is involved in the pathological nociception associated with chronic pain. LCipsi inactivation with lidocaine increased cold allodynia 2 days after nerve injury but not later. However, similar blockade of LCcontra reduced cold allodynia 7 and 30 days after inducing neuropathy but not earlier. Furthermore, lidocaine blockade of the LCipsi or LCcontra reversed pain-induced depression 30 days after neuropathy. Long-term pain enhances phosphorylated cAMP-response element binding protein expression in the DRtcontra but not in the DRtipsi. Moreover, inactivation of the LCcontra→DRtcontra pathway using dual viral-mediated gene transfer of designer receptor exclusively activated by designer drugs produced consistent analgesia in evoked and spontaneous pain 30 days postinjury. This analgesia was similar to that produced by spinal activation of α2-adrenoreceptors. Furthermore, chemogenetic inactivation of the LCcontra→DRtcontra pathway induced depressive-like behaviour in naïve animals, but it did not modify long-term pain-induced depression. Overall, nerve damage activates the LCipsi, which temporally dampens the neuropathic phenotype. However, the ensuing activation of a LCcontra→DRtcontra facilitatory pain projection contributes to chronic pain, whereas global bilateral LC activation contributes to associated depressive-like phenotype.
Collapse
|
10
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Louçano M, Oliveira J, Martins I, Vaz R, Tavares I. Pain Modulation from the Locus Coeruleus in a Model of Hydrocephalus: Searching for Oxidative Stress-Induced Noradrenergic Neuroprotection. Int J Mol Sci 2022; 23:ijms23073970. [PMID: 35409327 PMCID: PMC8999514 DOI: 10.3390/ijms23073970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Pain transmission at the spinal cord is modulated by noradrenaline (NA)-mediated actions that arise from supraspinal areas. We studied the locus coeruleus (LC) to evaluate the expression of the cathecolamine-synthetizing enzyme tyrosine hydroxylase (TH) and search for local oxidative stress and possible consequences in descending pain modulation in a model of hydrocephalus, a disease characterized by enlargement of the cerebral ventricular system usually due to the obstruction of cerebrospinal fluid flow. Four weeks after kaolin injection into the cisterna magna, immunodetection of the catecholamine-synthetizing enzymes TH and dopamine-β-hydroxylase (DBH) was performed in the LC and spinal cord. Colocalization of the oxidative stress marker 8-OHdG (8-hydroxyguanosine; 8-OHdG), with TH in the LC was performed. Formalin was injected in the hindpaw both for behavioral nociceptive evaluation and the immunodetection of Fos expression in the spinal cord. Hydrocephalic rats presented with a higher expression of TH at the LC, of TH and DBH at the spinal dorsal horn along with decreased nociceptive behavioral responses in the second (inflammatory) phase of the formalin test, and formalin-evoked Fos expression at the spinal dorsal horn. The expression of 8-OHdG was increased in the LC neurons, with higher co-localization in TH-immunoreactive neurons. Collectively, the results indicate increased noradrenergic expression at the LC during hydrocephalus. The strong oxidative stress damage at the LC neurons may lead to local neuroprotective-mediated increases in NA levels. The increased expression of catecholamine-synthetizing enzymes along with the decreased nociception-induced neuronal activation of dorsal horn neurons and behavioral pain signs may indicate that hydrocephalus is associated with alterations in descending pain modulation.
Collapse
Affiliation(s)
- Marta Louçano
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Chemical and Biomolecule Sciences, School of Health, Polytechnic of Porto, 4099-002 Porto, Portugal;
- International Doctoral School, University of Vigo, 36310 Vigo, Spain
| | - Joana Oliveira
- Neurosurgery Service of Centro Hospital São João, 4200-319 Porto, Portugal;
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Rui Vaz
- Chemical and Biomolecule Sciences, School of Health, Polytechnic of Porto, 4099-002 Porto, Portugal;
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +35-12-2551-3654
| |
Collapse
|
12
|
The BDNF-TrkB signaling pathway in the rostral anterior cingulate cortex is involved in the development of pain aversion in rats with bone cancer via NR2B and ERK-CREB signaling. Brain Res Bull 2022; 185:18-27. [DOI: 10.1016/j.brainresbull.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022]
|
13
|
Llorca-Torralba M, Camarena-Delgado C, Suárez-Pereira I, Bravo L, Mariscal P, Garcia-Partida JA, López‐Martín C, Wei H, Pertovaara A, Mico JA, Berrocoso E. Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain 2022; 145:154-167. [PMID: 34373893 PMCID: PMC8967092 DOI: 10.1093/brain/awab239] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi→spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
| | - Irene Suárez-Pereira
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Lidia Bravo
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Patricia Mariscal
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Jose Antonio Garcia-Partida
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Carolina López‐Martín
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
| | - Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Juan Antonio Mico
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
14
|
Moriya S, Yamashita A, Masukawa D, Sakaguchi J, Ikoma Y, Sameshima Y, Kambe Y, Yamanaka A, Kuwaki T. Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regen Res 2021; 17:881-886. [PMID: 34472489 PMCID: PMC8530127 DOI: 10.4103/1673-5374.322465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the central nervous system, the A6 noradrenaline (NA) and the B3 serotonin (5-HT) cell groups are well-recognized players in the descending antinociceptive system, while other NA/5-HT cell groups are not well characterized. A5/A7 NA and B2 5-HT cells project to the spinal horn and form descending pathways. We recorded G-CaMP6 green fluorescence signal intensities in the A5/A7 NA and the B2 5-HT cell groups of awake mice in response to acute tail pinch stimuli, acute heat stimuli, and in the context of a non-noxious control test, using fiber photometry with a calcium imaging system. We first introduced G-CaMP6 in the A5/A7 NA or B2 5-HT neuronal soma, using transgenic mice carrying the tetracycline-controlled transactivator transgene under the control of either a dopamine β-hydroxylase or a tryptophan hydroxylase-2 promoters and by the site-specific injection of adeno-associated virus (AAV-TetO(3G)-G-CaMP6). After confirming the specific expression patterns of G-CaMP6, we recorded G-CaMP6 green fluorescence signals in these sites in awake mice in response to acute nociceptive stimuli. G-CaMP6 fluorescence intensity in the A5, A7, and B2 cell groups was rapidly increased in response to acute nociceptive stimuli and soon after, it returned to baseline fluorescence intensity. This was not observed in the non-noxious control test. The results indicate that acute nociceptive stimuli rapidly increase the activities of A5/A7 NA or B2 5-HT neurons but the non-noxious stimuli do not. The present study suggests that A5/A7 NA or B2 5-HT neurons play important roles in nociceptive processing in the central nervous system. We suggest that A5/A7/B2 neurons may be new therapeutic targets. All performed procedures were approved by the Institutional Animal Use Committee of Kagoshima University (MD17105) on February 22, 2018.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junichi Sakaguchi
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoko Ikoma
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoshimune Sameshima
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
15
|
Mills EP, Keay KA, Henderson LA. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. FRONTIERS IN PAIN RESEARCH 2021; 2:705345. [PMID: 35295481 PMCID: PMC8915745 DOI: 10.3389/fpain.2021.705345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.
Collapse
|
16
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Pereira-Silva R, Costa-Pereira JT, Alonso R, Serrão P, Martins I, Neto FL. Attenuation of the Diffuse Noxious Inhibitory Controls in Chronic Joint Inflammatory Pain Is Accompanied by Anxiodepressive-Like Behaviors and Impairment of the Descending Noradrenergic Modulation. Int J Mol Sci 2020; 21:E2973. [PMID: 32340137 PMCID: PMC7215719 DOI: 10.3390/ijms21082973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
The noradrenergic system is paramount for controlling pain and emotions. We aimed at understanding the descending noradrenergic modulatory mechanisms in joint inflammatory pain and its correlation with the diffuse noxious inhibitory controls (DNICs) and with the onset of anxiodepressive behaviours. In the complete Freund's adjuvant rat model of Monoarthritis, nociceptive behaviors, DNICs, and anxiodepressive-like behaviors were evaluated. Spinal alpha2-adrenergic receptors (a2-AR), dopamine beta-hydroxylase (DBH), and noradrenaline were quantified concomitantly with a2-AR pharmacologic studies. The phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) were quantified in the Locus coeruleus (LC), amygdala, and anterior cingulate cortex (ACC). DNIC was attenuated at 42 days of monoarthritis while present on days 7 and 28. On day 42, in contrast to day 28, noradrenaline was reduced and DBH labelling was increased. Moreover, spinal a2-AR were potentiated and no changes in a2-AR levels were observed. Additionally, at 42 days, the activation of ERKs1/2 was increased in the LC, ACC, and basolateral amygdala. This was accompanied by anxiety- and depressive-like behaviors, while at 28 days, only anxiety-like behaviors were observed. The data suggest DNIC is attenuated in prolonged chronic joint inflammatory pain, and this is accompanied by impairment of the descending noradrenergic modulation and anxiodepressive-like behaviors.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Tiago Costa-Pereira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel Alonso
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Serrão
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- MedInUP–Center for Drug Discovery and Innovative Medicines, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
18
|
Costa-Pereira JT, Ribeiro J, Martins I, Tavares I. Role of Spinal Cord α 2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2020; 13:1413. [PMID: 32009887 PMCID: PMC6974806 DOI: 10.3389/fnins.2019.01413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a problem during cancer treatment and for cancer survivors but the central mechanisms underlying CIPN remain understudied. This study aims to determine if CIPN is associated with alterations of noradrenergic modulation of nociceptive transmission at the spinal cord. CIPN was induced in male Wistar rats by paclitaxel injections. One month after CIPN induction, the behavioral effects of the administration of reboxetine (noradrenaline reuptake inhibitor), clonidine (agonist of α2-adrenoreceptors; α2–AR) and atipamezole (antagonist of α2–AR) were evaluated using the von Frey and cold plate tests. Furthermore, we measured the expression of the noradrenaline biosynthetic enzyme dopamine-β-hydroxylase (DBH) and of α2–AR in the spinal dorsal horn. Reboxetine and clonidine reversed the behavioral signs of CIPN whereas the opposite occurred with atipamezole. In the 3 pharmacological approaches, a higher effect was detected in mechanical allodynia, the pain modality which is under descending noradrenergic control. DBH expression was increased at the spinal dorsal horn of paclitaxel-injected animals. The enhanced noradrenergic inhibition during CIPN may represent an adaptation of the descending noradrenergic pain control system to the increased arrival of peripheral nociceptive input. A potentiation of the α2–AR mediated antinociception at the spinal cord may represent a therapeutic opportunity to face CIPN.
Collapse
Affiliation(s)
- José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ribeiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Sanna MD, Borgonetti V, Masini E, Galeotti N. Histamine H 4 receptor stimulation in the locus coeruleus attenuates neuropathic pain by promoting the coeruleospinal noradrenergic inhibitory pathway. Eur J Pharmacol 2019; 868:172859. [PMID: 31843515 DOI: 10.1016/j.ejphar.2019.172859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 11/24/2022]
Abstract
The locus coeruleus (LC) adrenergic nuclei constitute a pain-control inhibitory system nucleus implicated in descending modulation of pain through the action on spinal α2-adrenoceptors. Histaminergic innervation from the tuberomammillary nucleus of the LC increases firing of noradrenergic neurons and might contribute to pain control. Here we evaluated the contribution of LC histaminergic innervation in descending modulation of neuropathic hypersensitivity, by investigating the role of the histamine H4 receptor subtype in a mouse model of neuropathic pain. Intra LC administration of the H4 agonist VUF 8430 attenuated mechanical and thermal allodynia of mice that underwent spared nerve injury (SNI). Similarly, histamine in the LC showed mechanical and thermal anti-hypersensitivity. Pretreatment of LC with JNJ 10191584 (H4 antagonist) prevented the beneficial effect of VUF 8430 and histamine on nociceptive behaviour. Comparable results were obtained after intrathecal administration of drugs. The intrathecal administration of the α2-adrenoceptor agonist clonidine ameliorated mechanical and thermal allodynia in SNI mice. The clonidine-induced anti-hypersensitivity effect was prevented by intra LC pretreatment with JNJ 10191584. In addition, clonidine failed to suppress neuropathic pain in H4 deficient mice. LC H4 receptors showed a ubiquitous distribution within LC, a neuronal localization and H4 immunostaining was detected on noradrenergic neurons expressing phosphorylated cAMP response element-binding protein (CREB), a marker of neuronal activation. Under pain pathological conditions H4 stimulation might promote the activation of the coeruleospinal noradrenergic neurons that exert an inhibitory control over spinal dorsal horn neuronal excitability. Thus, histamine H4 receptor stimulation may represent a perspective for neuropathic pain management.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, University of Florence, 50139, Florence, Italy
| | - Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, University of Florence, 50139, Florence, Italy
| | - Emanuela Masini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, University of Florence, 50139, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
20
|
Patel R, Dickenson AH. A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats. Eur J Neurosci 2019; 51:952-962. [PMID: 31518451 PMCID: PMC7079135 DOI: 10.1111/ejn.14576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous descending pain modulation and are deficient in a large proportion of chronic pain patients. However, the pathways involved remain only partially determined with several cortical and brainstem structures implicated. This study examined the role of the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefrontal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields in anaesthetised sham‐operated and L5/L6 spinal nerve‐ligated (SNL) rats. Evoked neuronal responses were quantified in the presence and absence of a conditioning stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a heterotopically applied conditioning stimulus, an effect that was absent in neuropathic rats. Intra‐DRt naloxone had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. In addition, intra‐DRt naloxone blocked DNIC in sham rats, but had no effect in SNL rats. Intra‐ILC lidocaine had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. However, differential effects were observed in relation to the expression of DNIC; intra‐ILC lidocaine blocked activation of DNIC in sham rats but restored DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediating DNIC but can modulate its activation and that DRt involvement in DNIC requires opioidergic signalling.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
21
|
Costa AR, Carvalho P, Flik G, Wilson SP, Reguenga C, Martins I, Tavares I. Neuropathic Pain Induced Alterations in the Opioidergic Modulation of a Descending Pain Facilitatory Area of the Brain. Front Cell Neurosci 2019; 13:287. [PMID: 31316354 PMCID: PMC6610065 DOI: 10.3389/fncel.2019.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/13/2019] [Indexed: 12/03/2022] Open
Abstract
Opioids play a major role at descending pain modulation but the effects of neuropathic pain on the brain opioidergic system remain understudied. Since descending facilitation is enhanced during neuropathic pain, we studied the opioidergic modulation of the dorsal reticular nucleus (DRt), a medullary pain facilitatory area, in the spared nerve injury (SNI) model of neuropathic pain. We first performed a series of behavioral experiments in naïve-animals to establish the role of μ-opioid receptor (MOR) in the effects of endogenous and exogenous opioids at the DRt. Specifically, we showed that lentiviral-mediated MOR-knockdown at the DRt increased sensitivity to thermal and mechanical stimuli while the MOR agonist DAMGO induced the opposite effects. Additionally, we showed that MOR-knockdown and the pharmacological blockade of MOR by CTAP at the DRt decreased and inhibited, respectively, the analgesic effects of systemic morphine. Then, we performed in vivo microdialysis to measure enkephalin peptides in the DRt and evaluated MOR expression in the DRt at mRNA, protein and phosphorylated form levels by quantitative real-time PCR and immunohistochemistry, respectively. SNI-animals, compared to sham control, showed higher levels of enkephalin peptides, lower MOR-labeled cells without alterations in MOR mRNA levels, and higher phosphorylated MOR-labeled cells. Finally, we performed behavioral studies in SNI animals to determine the potency of systemic morphine and the effects of the pharmacologic and genetic manipulation of MOR at the DRt. We showed a reduced potency of the antiallodynic effects of systemic morphine in SNI-animals compared to the antinociceptive effects in sham animals. Increasing MOR-cells at the DRt of SNI-animals by lentiviral-mediated MOR-overexpression produced no effects on mechanical allodynia. DAMGO induced anti-allodynia only after MOR-overexpression. These results show that MOR inhibits DRt pain facilitatory actions and that this action contributes to the analgesic effects of systemic opioids. We further show that the inhibitory function of MOR is impaired during neuropathic pain. This is likely due to desensitization and degradation of MOR which are adaptations of the receptor that can be triggered by MOR phosphorylation. Skipping counter-regulatory pathways involved in MOR adaptations might restore the opioidergic inhibition at pain facilitatory areas.
Collapse
Affiliation(s)
- Ana Rita Costa
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulina Carvalho
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Gunnar Flik
- Charles River Laboratories Den Bosch B.V., 's-Hertogenbosch, Netherlands
| | - Steven P Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carlos Reguenga
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Isabel Martins
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Isaura Tavares
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Bhatt RR, Zeltzer LK, Coloigner J, Wood JC, Coates TD, Labus JS. Patients with sickle-cell disease exhibit greater functional connectivity and centrality in the locus coeruleus compared to anemic controls. NEUROIMAGE-CLINICAL 2019; 21:101686. [PMID: 30690419 PMCID: PMC6356008 DOI: 10.1016/j.nicl.2019.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Patients with sickle-cell disease (SCD) have greater resting-state functional connectivity between the locus coeruleus (LC) and dorsolateral prefrontal cortex (dlPFC). Patients with SCD have greater resting state centrality of the LC SCD patients with chronic pain exhibited even greater functional connectivity between the LC and dlPFC. This study supports hyper-connectivity between the LC and PFC is a potential chronic pain generator.
Collapse
Affiliation(s)
- Ravi R Bhatt
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Lonnie K Zeltzer
- UCLA Pediatric Pain and Palliative Care Program, Division of Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julie Coloigner
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - John C Wood
- Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA, USA; Childrens Hospital Los Angeles, Department of Cardiology, Los Angeles, CA, USA
| | - Tom D Coates
- Childrens Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles (CCCBD), Los Angeles, CA, USA
| | - Jennifer S Labus
- Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
23
|
Bravo L, Llorca-Torralba M, Berrocoso E, Micó JA. Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci 2019; 13:1268. [PMID: 31942167 PMCID: PMC6951279 DOI: 10.3389/fnins.2019.01268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Monoamines are involved in regulating the endogenous pain system and indeed, peripheral and central monoaminergic dysfunction has been demonstrated in certain types of pain, particularly in neuropathic pain. Accordingly, drugs that modulate the monaminergic system and that were originally designed to treat depression are now considered to be first line treatments for certain types of neuropathic pain (e.g., serotonin and noradrenaline (and also dopamine) reuptake inhibitors). The analgesia induced by these drugs seems to be mediated by inhibiting the reuptake of these monoamines, thereby reinforcing the descending inhibitory pain pathways. Hence, it is of particular interest to study the monoaminergic mechanisms involved in the development and maintenance of chronic pain. Other analgesic drugs may also be used in combination with monoamines to facilitate descending pain inhibition (e.g., gabapentinoids and opioids) and such combinations are often also used to alleviate certain types of chronic pain. By contrast, while NSAIDs are thought to influence the monoaminergic system, they just produce consistent analgesia in inflammatory pain. Thus, in this review we will provide preclinical and clinical evidence of the role of monoamines in the modulation of chronic pain, reviewing how this system is implicated in the analgesic mechanism of action of antidepressants, gabapentinoids, atypical opioids, NSAIDs and histaminergic drugs.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Juan Antonio Micó
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Juan Antonio Micó,
| |
Collapse
|
24
|
Kawasaki K, Nagamine T, Watanabe T, Suga T, Tu TTH, Sugawara S, Mikuzuki L, Miura A, Shinohara Y, Yoshikawa T, Takenoshita M, Toyofuku A. An increase in salivary flow with amitriptyline may indicate treatment resistance in burning mouth syndrome. Asia Pac Psychiatry 2018; 10:e12315. [PMID: 29575764 DOI: 10.1111/appy.12315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Kaoru Kawasaki
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | | | - Takeshi Watanabe
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Takayuki Suga
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Trang T H Tu
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Shiori Sugawara
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Lou Mikuzuki
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Anna Miura
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Yukiko Shinohara
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Tatsuya Yoshikawa
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Miho Takenoshita
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Science, Tokyo, Japan
| |
Collapse
|
25
|
Central Sensitization-Based Classification for Temporomandibular Disorders: A Pathogenetic Hypothesis. Pain Res Manag 2017; 2017:5957076. [PMID: 28932132 PMCID: PMC5592418 DOI: 10.1155/2017/5957076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/03/2017] [Accepted: 07/09/2017] [Indexed: 12/15/2022]
Abstract
Dysregulation of Autonomic Nervous System (ANS) and central pain pathways in temporomandibular disorders (TMD) is a growing evidence. Authors include some forms of TMD among central sensitization syndromes (CSS), a group of pathologies characterized by central morphofunctional alterations. Central Sensitization Inventory (CSI) is useful for clinical diagnosis. Clinical examination and CSI cannot identify the central site(s) affected in these diseases. Ultralow frequency transcutaneous electrical nerve stimulation (ULFTENS) is extensively used in TMD and in dental clinical practice, because of its effects on descending pain modulation pathways. The Diagnostic Criteria for TMD (DC/TMD) are the most accurate tool for diagnosis and classification of TMD. However, it includes CSI to investigate central aspects of TMD. Preliminary data on sensory ULFTENS show it is a reliable tool for the study of central and autonomic pathways in TMD. An alternative classification based on the presence of Central Sensitization and on individual response to sensory ULFTENS is proposed. TMD may be classified into 4 groups: (a) TMD with Central Sensitization ULFTENS Responders; (b) TMD with Central Sensitization ULFTENS Nonresponders; (c) TMD without Central Sensitization ULFTENS Responders; (d) TMD without Central Sensitization ULFTENS Nonresponders. This pathogenic classification of TMD may help to differentiate therapy and aetiology.
Collapse
|
26
|
Martins I, Tavares I. Reticular Formation and Pain: The Past and the Future. Front Neuroanat 2017; 11:51. [PMID: 28725185 PMCID: PMC5497058 DOI: 10.3389/fnana.2017.00051] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Collapse
Affiliation(s)
- Isabel Martins
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| | - Isaura Tavares
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| |
Collapse
|
27
|
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res 2016; 95:1336-1346. [PMID: 27685982 DOI: 10.1002/jnr.23956] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Central noradrenergic centers such as the locus coeruleus (LC) are traditionally viewed as pain inhibitory; however, complex interactions among brainstem pathways and their receptors modulate both inhibition and facilitation of pain. In addition to the well-described role of descending pontospinal pathways that inhibit spinal nociceptive transmission, an emerging body of research now indicates that noradrenergic neurons in the LC and their terminals in the dorsal reticular nucleus (DRt), medial prefrontal cortex (mPFC), spinal dorsal horn, and spinal trigeminal nucleus caudalis participate in the development and maintenance of allodynia and hyperalgesia after nerve injury. With time after injury, we argue that the balance of LC function shifts from pain inhibition to pain facilitation. Thus, the pain-inhibitory actions of antidepressant drugs achieved with elevated noradrenaline concentrations in the dorsal horn may be countered or even superseded by simultaneous activation of supraspinal facilitating systems dependent on α1 -adrenoreceptors in the DRt and mPFC as well as α2 -adrenoreceptors in the LC. Indeed, these opposing actions may account in part for the limited treatment efficacy of tricyclic antidepressants and noradrenaline reuptake inhibitors such as duloxetine for the treatment of chronic pain. We propose that the traditional view of the LC as a pain-inhibitory structure be modified to account for its capacity as a pain facilitator. Future studies are needed to determine the neurobiology of ascending and descending pathways and the pharmacology of receptors underlying LC-mediated pain inhibition and facilitation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Karin N Westlund
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
28
|
Kaushal R, Taylor BK, Jamal AB, Zhang L, Ma F, Donahue R, Westlund KN. GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience 2016; 334:148-159. [PMID: 27520081 DOI: 10.1016/j.neuroscience.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Trigeminal neuropathic pain is described as constant excruciating facial pain. The study goal was to investigate the role of nucleus locus coeruleus (LC) in a model of chronic orofacial neuropathic pain (CCI-ION). The study examines LC's relationship to both the medullary dorsal horn receiving trigeminal nerve sensory innervation and the medial prefrontal cortex (mPFC). LC is a major source of CNS noradrenaline (NA) and a primary nucleus involved in pain modulation. Although descending inhibition of acute pain by LC is well established, contribution of the LC to facilitation of chronic neuropathic pain is also reported. In the present study, a rat orofacial pain model of trigeminal neuropathy was induced by chronic constrictive injury of the infraorbital nerve (CCI-ION). Orofacial neuropathic pain was indicated by development of whisker pad mechanical hypersensitivity. Hypersensitivity was alleviated by selective elimination of NA neurons, including LC (A6 cell group), with the neurotoxin anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) microinjected either intracerebroventricularly (i.c.v.) or into trigeminal spinal nucleus caudalis (spVc). The GABAA receptor antagonist, bicuculline, administered directly into LC (week 8) inhibited hypersensitivity. This indicates a valence shift in which increased GABAA signaling ongoing in LC after trigeminal nerve injury paradoxically produces excitatory facilitation of the chronic pain state. Microinjection of NAα1 receptor antagonist, benoxathian, into mPFC attenuated whisker pad hypersensitivity, while NAα2 receptor antagonist, idazoxan, was ineffective. Thus, GABAA-mediated activation of NA neurons during CCI-ION can facilitate hypersensitivity through NAα1 receptors in the mPFC. These data indicate LC is a chronic pain generator.
Collapse
Affiliation(s)
- R Kaushal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - B K Taylor
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - A B Jamal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - R Donahue
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
29
|
Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016; 338:93-113. [PMID: 27267247 DOI: 10.1016/j.neuroscience.2016.05.057] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
The noradrenergic system is crucial for several activities in the body, including the modulation of pain. As the major producer of noradrenaline (NA) in the central nervous system (CNS), the Locus Coeruleus (LC) is a nucleus that has been studied in several pain conditions, mostly due to its strategic location. Indeed, apart from a well-known descending LC-spinal pathway that is important for pain control, an ascending pathway passing through this nucleus may be responsible for the noradrenergic inputs to higher centers of the pain processing, such as the limbic system and frontal cortices. Thus, the noradrenergic system appears to modulate different components of the pain experience and accordingly, its manipulation has distinct behavioral outcomes. The main goal of this review is to bring together the data available regarding the noradrenergic system in relation to pain, particularly focusing on the ascending and descending LC projections in different conditions. How such findings influence our understanding of these conditions is also discussed.
Collapse
|