1
|
Chintala SM, Tateiwa H, Qian M, Xu Y, Amtashar F, Chen ZW, Kirkpatrick CC, Bracamontes J, Germann AL, Akk G, Covey DF, Evers AS. Direct measurements of neurosteroid binding to specific sites on GABA A receptors. Br J Pharmacol 2024; 181:4229-4244. [PMID: 38978389 DOI: 10.1111/bph.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurosteroids are allosteric modulators of GABAA currents, acting through several functional binding sites although their affinity and specificity for each site are unknown. The goal of this study was to measure steady-state binding affinities of various neurosteroids for specific sites on the GABAA receptor. EXPERIMENTAL APPROACH Two methods were developed to measure neurosteroid binding affinity: (1) quenching of specific tryptophan residues in neurosteroid binding sites by the neurosteroid 17-methylketone group, and (2) FRET between MQ290 (an intrinsically fluorescent neurosteroid) and tryptophan residues in the binding sites. The assays were developed using ELIC-α1GABAAR, a chimeric receptor containing transmembrane domains of the α1-GABAA receptor. Tryptophan mutagenesis was used to identify specific interactions. KEY RESULTS Allopregnanolone (3α-OH neurosteroid) was shown to bind at intersubunit and intrasubunit sites with equal affinity, whereas epi-allopregnanolone (3β-OH neurosteroid) binds at the intrasubunit site. MQ290 formed a strong FRET pair with W246, acting as a site-specific probe for the intersubunit site. The affinity and site-specificity of several neurosteroid agonists and inverse agonists was measured using the MQ290 binding assay. The FRET assay distinguishes between competitive and allosteric inhibition of MQ290 binding and demonstrated an allosteric interaction between the two neurosteroid binding sites. CONCLUSIONS AND IMPLICATIONS The affinity and specificity of neurosteroid binding to two sites in the ELIC-α1GABAAR were directly measured and an allosteric interaction between the sites was revealed. Adaptation of the MQ290 FRET assay to a plate-reader format will enable screening for high affinity agonists and antagonists for neurosteroid binding sites.
Collapse
Affiliation(s)
- Satyanarayana M Chintala
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hiroki Tateiwa
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Mingxing Qian
- Department of Developmental Biology (Pharmacology), Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuanjian Xu
- Department of Developmental Biology (Pharmacology), Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fatima Amtashar
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| | | | - John Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| | - Douglas F Covey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Zhou Z, Yang Y, Wei Y, Xie Y. Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway. Neurochem Res 2024; 49:1306-1321. [PMID: 38472553 PMCID: PMC10991060 DOI: 10.1007/s11064-024-04115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.
Collapse
Affiliation(s)
- Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Dietzen NM, Arcario MJ, Chen LJ, Petroff JT, Moreland KT, Krishnan K, Brannigan G, Covey DF, Cheng WW. Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites. eLife 2022; 11:74306. [PMID: 34982031 PMCID: PMC8786314 DOI: 10.7554/elife.74306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.
Collapse
Affiliation(s)
- Noah M Dietzen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Lawrence J Chen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - K Trent Moreland
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
| | - Grace Brannigan
- Center for the Computational and Integrative Biology, Rutgers University, Camden, United States.,Department of Physics, Rutgers University, Camden, United States
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St Louis, United States.,Department of Psychiatry, Washington University in St. Louis, St. Louis, United States.,Taylor Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| |
Collapse
|
5
|
Germann AL, Pierce SR, Tateiwa H, Sugasawa Y, Reichert DE, Evers AS, Steinbach JH, Akk G. Intrasubunit and Intersubunit Steroid Binding Sites Independently and Additively Mediate α1 β2 γ2L GABA A Receptor Potentiation by the Endogenous Neurosteroid Allopregnanolone. Mol Pharmacol 2021; 100:19-31. [PMID: 33958479 DOI: 10.1124/molpharm.121.000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Prior work employing functional analysis, photolabeling, and X-ray crystallography have identified three distinct binding sites for potentiating steroids in the heteromeric GABAA receptor. The sites are located in the membrane-spanning domains of the receptor at the β-α subunit interface (site I) and within the α (site II) and β subunits (site III). Here, we have investigated the effects of mutations to these sites on potentiation of the rat α1β2γ2L GABAA receptor by the endogenous neurosteroid allopregnanolone (3α5αP). The mutations were introduced alone or in combination to probe the additivity of effects. We show that the effects of amino acid substitutions in sites I and II are energetically additive, indicating independence of the actions of the two steroid binding sites. In site III, none of the mutations tested reduced potentiation by 3α5αP, nor did a mutation in site III modify the effects of mutations in sites I or II. We infer that the binding sites for 3α5αP act independently. The independence of steroid action at each site is supported by photolabeling data showing that mutations in either site I or site II selectively change steroid orientation in the mutated site without affecting labeling at the unmutated site. The findings are discussed in the context of linking energetic additivity to empirical changes in receptor function and ligand binding. SIGNIFICANCE STATEMENT: Prior work has identified three distinct binding sites for potentiating steroids in the heteromeric γ-aminobutyric acid type A receptor. This study shows that the sites act independently and additively in the presence of the steroid allopregnanolone and provide estimates of energetic contributions made by steroid binding to each site.
Collapse
Affiliation(s)
- Allison L Germann
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Spencer R Pierce
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Hiroki Tateiwa
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Yusuke Sugasawa
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - David E Reichert
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Alex S Evers
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Joe Henry Steinbach
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| | - Gustav Akk
- Departments of Anesthesiology (A.L.G., S.R.P., H.T., A.S.E., J.H.S., G.A.) and Radiology (D.E.R.), and the Taylor Family Institute for Innovative Psychiatric Research (D.E.R., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri; and Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan (Y.S.)
| |
Collapse
|
6
|
Fourati Z, Sauguet L, Delarue M. Structural evidence for the binding of monocarboxylates and dicarboxylates at pharmacologically relevant extracellular sites of a pentameric ligand-gated ion channel. Acta Crystallogr D Struct Biol 2020; 76:668-675. [PMID: 32627739 PMCID: PMC7336382 DOI: 10.1107/s205979832000772x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
GLIC is a bacterial homologue of the pentameric ligand-gated ion channels (pLGICs) that mediate the fast chemical neurotransmission of nerve signalling in eukaryotes. Because the activation and allosteric modulation features are conserved among prokaryotic and eukaryotic pLGICs, GLIC is commonly used as a model to study the allosteric transition and structural pharmacology of pLGICs. It has previously been shown that GLIC is inhibited by some carboxylic acid derivatives. Here, experimental evidence for carboxylate binding to GLIC is provided by solving its X-ray structures with a series of monocarboxylate and dicarboxylate derivatives, and two carboxylate-binding sites are described: (i) the `intersubunit' site that partially overlaps the canonical pLGIC orthosteric site and (ii) the `intrasubunit' vestibular site, which is only occupied by a subset of the described derivatives. While the intersubunit site is widely conserved in all pLGICs, the intrasubunit site is only conserved in cationic eukaryotic pLGICs. This study sheds light on the importance of these two extracellular modulation sites as potential drug targets in pLGICs.
Collapse
Affiliation(s)
- Zaineb Fourati
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| | - Ludovic Sauguet
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| | - Marc Delarue
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| |
Collapse
|
7
|
Sugasawa Y, Bracamontes JR, Krishnan K, Covey DF, Reichert DE, Akk G, Chen Q, Tang P, Evers AS, Cheng WWL. The molecular determinants of neurosteroid binding in the GABA(A) receptor. J Steroid Biochem Mol Biol 2019; 192:105383. [PMID: 31150831 PMCID: PMC6708749 DOI: 10.1016/j.jsbmb.2019.105383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Neurosteroids positively modulate GABA-A receptor (GABAAR) channel activity by binding to a transmembrane domain intersubunit site. Understanding the interactions in this site that determine neurosteroid binding and its effect is essential for the design of neurosteroid-based therapeutics. Using photo-affinity labeling and an ELIC-α1GABAAR chimera, we investigated the impact of mutations (Q242L, Q242W and W246L) within the intersubunit site on neurosteroid binding. These mutations, which abolish the thermal stabilizing effect of allopregnanolone on the chimera, reduce neither photolabeling within the intersubunit site nor competitive prevention of labeling by allopregnanolone. Instead, these mutations change the orientation of neurosteroid photolabeling. Molecular docking of allopregnanolone in WT and Q242W receptors confirms that the mutation favors re-orientation of allopregnanolone within the binding pocket. Collectively, the data indicate that mutations at Gln242 or Trp246 that eliminate neurosteroid effects do not eliminate neurosteroid binding within the intersubunit site, but significantly alter the preferred orientation of the neurosteroid within the site. The interactions formed by Gln242 and Trp246 within this pocket play a vital role in determining the orientation of the neurosteroid that may be necessary for its functional effect.
Collapse
Affiliation(s)
- Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - John R Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - David E Reichert
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | - Alex S Evers
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Structural basis of neurosteroid anesthetic action on GABA A receptors. Nat Commun 2018; 9:3972. [PMID: 30266951 PMCID: PMC6162318 DOI: 10.1038/s41467-018-06361-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are inhibitory pentameric ligand-gated ion channels in the brain. Many anesthetics and neurosteroids act through binding to the GABAAR transmembrane domain (TMD), but the structural basis of their actions is not well understood and no resting-state GABAAR structure has been determined. Here, we report crystal structures of apo and the neurosteroid anesthetic alphaxalone-bound desensitized chimeric α1GABAAR (ELIC-α1GABAAR). The chimera retains the functional and pharmacological properties of GABAARs, including potentiation, activation and desensitization by alphaxalone. The apo-state structure reveals an unconventional activation gate at the intracellular end of the pore. The desensitized structure illustrates molecular determinants for alphaxalone binding to an inter-subunit TMD site. These structures suggest a plausible signaling pathway from alphaxalone binding at the bottom of the TMD to the channel gate in the pore-lining TM2 through the TM1–TM2 linker. The study provides a framework to discover new GABAAR modulators with therapeutic potential. The anesthetic alphaxalone binds γ-aminobutyric acid type A receptors (GABAARs) that play an important role in regulating sensory processes. Here the authors present the structures of a α1GABAAR chimera in the resting state and in an alphaxalone-bound desensitized state, which might facilitate the development of new GABAAR modulators.
Collapse
|
9
|
Price KL, Lummis SCR. Characterization of a 5-HT 3-ELIC Chimera Revealing the Sites of Action of Modulators. ACS Chem Neurosci 2018; 9:1409-1415. [PMID: 29508995 DOI: 10.1021/acschemneuro.8b00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cys-loop receptors are major sites of action for many important therapeutically active compounds, but the sites of action of those that do not act at the orthosteric binding site or at the pore are mostly poorly understood. To help understand these, we here describe a chimeric receptor consisting of the extracellular domain of the 5-HT3A receptor and the transmembrane domain of a prokaryotic homologue, ELIC. Alterations of some residues at the coupling interface are required for function, but the resulting receptor expresses well and responds to 5-HT with a lower EC50 (0.34 μM) than that of the 5-HT3A receptor. Partial agonists and competitive antagonists of the 5-HT3A receptor activate and inhibit the chimera as expected. Examination of a range of receptor modulators, including ethanol, thymol, 5-hydroxyindole, and 5-chloroindole, which can affect the 5-HT3A receptor and ELIC, suggest that these compounds act via the transmembrane domain, except for 5-hydroxyindole, which can compete with 5-HT at the orthosteric binding site. The data throw further light on the importance of coupling interface in Cys-loop receptors and provide a platform for examining the mechanism of action of compounds that act in the extracellular domain of the 5-HT3A receptor and the transmembrane domain of ELIC.
Collapse
Affiliation(s)
- Kerry L. Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| |
Collapse
|
10
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, Eckenhoff RG. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 2018; 32:4172-4189. [PMID: 29505303 DOI: 10.1096/fj.201701347r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most general anesthetics enhance GABA type A (GABAA) receptor activity at clinically relevant concentrations. Sites of action of volatile anesthetics on the GABAA receptor remain unknown, whereas sites of action of many intravenous anesthetics have been identified in GABAA receptors by using photolabeling. Here, we used photoactivatable analogs of isoflurane (AziISO) and sevoflurane (AziSEVO) to locate their sites on α1β3γ2L and α1β3 GABAA receptors. As with isoflurane and sevoflurane, AziISO and AziSEVO enhanced the currents elicited by GABA. AziISO and AziSEVO each labeled 10 residues in α1β3 receptors and 9 and 8 residues, respectively, in α1β3γ2L receptors. Photolabeled residues were concentrated in transmembrane domains and located in either subunit interfaces or in the interface between the extracellular domain and the transmembrane domain. The majority of these transmembrane residues were protected from photolabeling with the addition of excess parent anesthetic, which indicated specificity. Binding sites were primarily located within α+/β- and β+/α- subunit interfaces, but residues in the α+/γ- interface were also identified, which provided a basis for differential receptor subtype sensitivity. Isoflurane and sevoflurane did not always share binding sites, which suggests an unexpected degree of selectivity.-Woll, K. A., Zhou, X., Bhanu, N. V., Garcia, B. A., Covarrubias, M., Miller, K. W., Eckenhoff, R. G. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Keith W Miller
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Zhong Q, Chen X, Zhao Y, Liu R, Yao S. Association of Polymorphisms in Pharmacogenetic Candidate Genes with Propofol Susceptibility. Sci Rep 2017; 7:3343. [PMID: 28611364 PMCID: PMC5469860 DOI: 10.1038/s41598-017-03229-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Significant individual susceptibility to intravenous anesthetic propofol exists. The etiology of individual variability in the response to propofol may be influenced by genetic polymorphisms in metabolic and functional pathways. With current pharmacogenetics and modern molecular biology technologies, it is possible to study the influence of genetic polymorphisms on susceptibility to propofol. When inducing general anesthesia with intravenous propofol, high individual susceptibility to propofol was found. Using Sequenom MassARRAY single-nucleotide polymorphism (SNP) genotyping, we identified a mutation (rs6313) in the 5HT2A gene that was correlated to individual susceptibility to propofol effect-site concentration (Cep) and onset time of propofol induction. Carriers of the minor allele (G) of 5HT2A rs6313 required less propofol (20% decrease in Cep) and less time (40% decrease in onset time) to induce anesthesia. Moreover, associations were found between the gamma-aminobutyric acid (GABA) receptor SNP rs2279020 and the SCN9A SNP rs6746030 and the susceptibility of bispectral index (BIS) after propofol-induced anesthesia. In addition, dominant mutations in GABAA1 rs2279020, GABAA2 rs11503014, and CHRM2 rs1824024 were putatively associated with cardiovascular susceptibility to propofol anesthesia. No gene-gene interactions were found through a standardized measure of linkage disequilibrium and a multifactor dimensionality reduction analysis. Our results suggest that genetic polymorphisms related to mechanisms of propofol anesthesia are involved in propofol susceptibility.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yan Zhao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ru Liu
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421000, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
14
|
Jayakar SS, Ang G, Chiara DC, Hamouda AK. Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites. Methods Mol Biol 2017; 1598:157-197. [PMID: 28508361 DOI: 10.1007/978-1-4939-6952-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gordon Ang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Kingsville, TX, USA.
| |
Collapse
|
15
|
Chen Q, Wells MM, Tillman TS, Kinde MN, Cohen A, Xu Y, Tang P. Structural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC. Structure 2016; 25:180-187. [PMID: 27916519 DOI: 10.1016/j.str.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022]
Abstract
The structural basis for alcohol modulation of neuronal pentameric ligand-gated ion channels (pLGICs) remains elusive. We determined an inhibitory mechanism of alcohol on the pLGIC Erwinia chrysanthemi (ELIC) through direct binding to the pore. X-ray structures of ELIC co-crystallized with 2-bromoethanol, in both the absence and presence of agonist, reveal 2-bromoethanol binding in the pore near T237(6') and the extracellular domain (ECD) of each subunit at three different locations. Binding to the ECD does not appear to contribute to the inhibitory action of 2-bromoethanol and ethanol as indicated by the same functional responses of wild-type ELIC and mutants. In contrast, the ELIC-α1β3GABAAR chimera, replacing the ELIC transmembrane domain (TMD) with the TMD of α1β3GABAAR, is potentiated by 2-bromoethanol and ethanol. The results suggest a dominant role of the TMD in modulating alcohol effects. The X-ray structures and functional measurements support a pore-blocking mechanism for inhibitory action of short-chain alcohols.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Marta M Wells
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tommy S Tillman
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Aina Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|