1
|
Chen G, Gu P, Wu W, Yin Y, Pan L, Huang S, Lin W, Deng M. SETD2 deficiency in peripheral sensory neurons induces allodynia by promoting NMDA receptor expression through NFAT5 in rodent models. Int J Biol Macromol 2024; 282:136767. [PMID: 39476923 DOI: 10.1016/j.ijbiomac.2024.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/14/2024]
Abstract
Histone methylations play a crucial role in the development of neuropathic pain, and SET domain containing 2 (SETD2), a histone methyltransferase, serves as the sole tri-methylase known to catalyze H3K36me3 at the gene body. The N-methyl-d-aspartate receptor (NMDAR) is activated and mediates excitatory synaptic transmission in neuropathic pain. Nevertheless, the involvement of SETD2 in neuropathic pain and the specific regulatory mechanisms affecting NMDARs remain poorly understood. The expression levels of SETD2 were significantly decreased in the spinal cord and dorsal root ganglion (DRG) of rodents undergoing neuropathic pain induced by sciatic nerve chronic constrictive injury. Lentiviral shRNA-mediated SETD2 knockdown and conditional knockout in sensory neurons caused sustained NMDAR upregulation in DRG and spinal cord, which resulted in heightened neuronal excitability and increased pain hypersensitivity. SETD2 deficiency also led to reduced H3K36me3 deposition within the Grin1 (glutamate ionotropic receptor NMDA type subunit 1) gene body, thereby promoting aberrant transcription of the NMDARs subunit GluN1. The absence of SETD2 in the DRG potentiated neuronal excitability and increased presynaptic NMDAR activity in the spinal dorsal horn. Chromatin immunoprecipitation sequencing targeting H3K36me3 identified NFAT5 as a co-transcription factor in the transcriptional regulation of Grin1. These findings highlight SETD2 as a key regulator in pain signal transmission and offered new perspectives on the development of analgesics through the targeted modulation of epigenetic mechanisms.
Collapse
Affiliation(s)
- Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Panyang Gu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yuan Yin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int J Mol Sci 2024; 25:11136. [PMID: 39456918 PMCID: PMC11508341 DOI: 10.3390/ijms252011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid analgesic tolerance (OAT), among other central side effects, limits opioids' indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Péter P. Lakatos
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Edina Szücs
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Judit Mária Kirchlechner-Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sándor Benyhe
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Tamás Tábi
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| |
Collapse
|
3
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
4
|
Yao C, Fang X, Ru Q, Li W, Li J, Mehsein Z, Tolias KF, Li L. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia. Brain 2024; 147:2507-2521. [PMID: 38577773 PMCID: PMC11224607 DOI: 10.1093/brain/awae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.
Collapse
Affiliation(s)
- Changqun Yao
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Xing Fang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Zeinab Mehsein
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Lu Y, Wang J, Li L, Zhang X. The role of voltage-gated calcium channel α2δ-1 in the occurrence and development in myofascial orofacial pain. BMC Oral Health 2024; 24:552. [PMID: 38735923 PMCID: PMC11089774 DOI: 10.1186/s12903-024-04338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.
Collapse
Affiliation(s)
- Yang Lu
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jingfu Wang
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Li Li
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
7
|
Wang M, Wei X, Jia Y, Wang C, Wang X, Zhang X, Li D, Wang Y, Gao Y. Quercetin alleviates chronic unpredictable mild stress-induced depression-like behavior by inhibiting NMDAR1 with α2δ-1 in rats. CNS Neurosci Ther 2024; 30:e14724. [PMID: 38615365 PMCID: PMC11016343 DOI: 10.1111/cns.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.
Collapse
Affiliation(s)
- Mingyan Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Wei
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yugai Jia
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Chaonan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Xinliu Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Zhang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Depei Li
- Department of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Yuanyuan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Yonggang Gao
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
- Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangChina
| |
Collapse
|
8
|
Han X, Pinto LG, Vilar B, McNaughton PA. Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J Neurosci 2024; 44:e1368232023. [PMID: 38124021 PMCID: PMC11059424 DOI: 10.1523/jneurosci.1368-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Prolonged exposure to opioids causes an enhanced sensitivity to painful stimuli (opioid-induced hyperalgesia, OIH) and a need for increased opioid doses to maintain analgesia (opioid-induced tolerance, OIT), but the mechanisms underlying both processes remain obscure. We found that pharmacological block or genetic deletion of HCN2 ion channels in primary nociceptive neurons of male mice completely abolished OIH but had no effect on OIT. Conversely, pharmacological inhibition of central HCN channels alleviated OIT but had no effect on OIH. Expression of C-FOS, a marker of neuronal activity, was increased in second-order neurons of the dorsal spinal cord by induction of OIH, and the increase was prevented by peripheral block or genetic deletion of HCN2, but block of OIT by spinal block of HCN channels had no impact on C-FOS expression in dorsal horn neurons. Collectively, these observations show that OIH is driven by HCN2 ion channels in peripheral nociceptors, while OIT is driven by a member of the HCN family located in the CNS. Induction of OIH increased cAMP in nociceptive neurons, and a consequent shift in the activation curve of HCN2 caused an increase in nociceptor firing. The shift in HCN2 was caused by expression of a constitutively active μ-opioid receptor (MOR) and was reversed by MOR antagonists. We identified the opioid-induced MOR as a six-transmembrane splice variant, and we show that it increases cAMP by coupling constitutively to Gs HCN2 ion channels therefore drive OIH, and likely OIT, and may be a novel therapeutic target for the treatment of addiction.
Collapse
Affiliation(s)
- Xue Han
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
9
|
Salim C, Batsaikhan E, Kan AK, Chen H, Jee C. Nicotine Motivated Behavior in C. elegans. Int J Mol Sci 2024; 25:1634. [PMID: 38338915 PMCID: PMC10855306 DOI: 10.3390/ijms25031634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
To maximize the advantages offered by Caenorhabditis elegans as a high-throughput (HTP) model for nicotine dependence studies, utilizing its well-defined neuroconnectome as a robust platform, and to unravel the genetic basis of nicotine-motivated behaviors, we established the nicotine conditioned cue preference (CCP) paradigm. Nicotine CCP enables the assessment of nicotine preference and seeking, revealing a parallel to fundamental aspects of nicotine-dependent behaviors observed in mammals. We demonstrated that nicotine-elicited cue preference in worms is mediated by nicotinic acetylcholine receptors and requires dopamine for CCP development. Subsequently, we pinpointed nAChR subunits associated with nicotine preference and validated human GWAS candidates linked to nicotine dependence involved in nAChRs. Functional validation involves assessing the loss-of-function strain of the CACNA2D3 ortholog and the knock-out (KO) strain of the CACNA2D2 ortholog, closely related to CACNA2D3 and sharing human smoking phenotypes. Our orthogonal approach substantiates the functional conservation of the α2δ subunit of the calcium channel in nicotine-motivated behavior. Nicotine CCP in C. elegans serves as a potent affirmation of the cross-species functional relevance of GWAS candidate genes involved in nicotine seeking associated with tobacco abuse, providing a streamlined yet comprehensive system for investigating intricate behavioral paradigms within a simplified and reliable framework.
Collapse
Affiliation(s)
| | | | | | | | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.S.)
| |
Collapse
|
10
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
11
|
McDonald WM, Wilkinson MM, Jain A, Cohen SP. The use of ketamine infusion to dramatically reduce opioid requirements in a patient whose high-dose intrathecal opioid pump was inadvertently cut during surgery. Pain Pract 2023; 23:978-981. [PMID: 37312629 DOI: 10.1111/papr.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chronic opioid therapy may lead to high level tolerance development, hyperalgesia, and central sensitization, which further complicates long-term therapeutic management of chronic pain patients. In this case, we encounter a patient who was receiving over 15,000 morphine milligram equivalents through their intrathecal pain pump. Unfortunately, the intrathecal pump was inadvertently cut during a spinal surgery. It was deemed unsafe to delivery IV equivalent opioid therapy in this case; instead, the patient was admitted to the ICU and given a four-day ketamine infusion. METHOD The patient was started on a ketamine infusion at a rate of 0.5mg/kg/h, which was continued for three days. On the fourth day, the infusion rate was tapered over 12 h before being completely stopped. No coinciding opioid therapy was given during this time, which was only restarted in the outpatient setting. RESULTS Despite chronic high levels of opioid therapy immediately prior to the ketamine infusion, the patient did not experience florid withdrawals during the infusion period. Additionally, the patient experienced remarkable improvement in their subjective pain rating, which decreased from 9 to 3-4 on an 11-point Number Rating Scale, while simultaneously being managed on an MME <100. These results were sustained through a 6-month follow-up period. CONCLUSION Ketamine may play an important role in attenuating not only tolerance but also acute withdrawal in a setting where rapid or instant weaning from high dose chronic opioid therapy is needed.
Collapse
Affiliation(s)
- William M McDonald
- East Tennessee State University Quillen College of Medicine, Mountain Home, Tennessee, USA
| | - Michael M Wilkinson
- East Tennessee State University Quillen College of Medicine, Mountain Home, Tennessee, USA
| | - Ankush Jain
- East Tennessee State University Quillen College of Medicine, Mountain Home, Tennessee, USA
| | - Steven P Cohen
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Physical Medicine & Rehabilitation, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Anesthesiology, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Johnson Z, Scribner M, Patzkowski J, Patzkowski M. Continuous Intravenous Ketamine for Pain Control After Tibial or Femoral Osteotomy. Mil Med 2023; 188:3248-3251. [PMID: 36043263 DOI: 10.1093/milmed/usac241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
PURPOSE The purpose of this case series is to evaluate the potential of continuous intravenous ketamine administration as part of a multimodal strategy to reduce opioid requirements after high tibial osteotomy (HTO) and distal femoral osteotomy (DFO). METHODS We examined the average postoperative numerical rating scale pain intensity score from admission to the postanesthesia care unit to 8 am of the first postoperative day of four patients who underwent HTO or DFO. Pain scores were analyzed as the time-weighted sum of pain intensity differences using the trapezoidal rule of the curve, resulting in an area under the curve (AUC). RESULTS Patient A had an AUC of 2,828 over 1,180 minutes with an average pain score of 2.4/10. Patient B had an AUC of 1,418 over 1,285 minutes with an average pain score of 1.1/10. Patient C had an AUC of 4,217 over 1,155 minutes with an average pain score of 3.7/10. Patient D had an AUC of 4,498 over 1,030 minutes with an average pain score of 4.4/10. All were able to go home on postoperative day 1. CONCLUSIONS This novel perioperative pain pathway including multiple non-opioid pain adjuncts and a low-dose continuous ketamine infusion is an effective method for pain management in knee periarticular osteotomies. LEVEL OF EVIDENCE Level 4; Case Series.
Collapse
Affiliation(s)
- Zackary Johnson
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Maggie Scribner
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Jeanne Patzkowski
- Department of Orthopaedic Surgery, Brooke Army Medical Center, Fort Sam Houston, TX 78234, USA
| | - Michael Patzkowski
- Department of Anesthesiology, Brooke Army Medical Center, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
13
|
Jin D, Chen H, Zhou MH, Chen SR, Pan HL. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors. J Neurosci 2023; 43:5593-5607. [PMID: 37451981 PMCID: PMC10401648 DOI: 10.1523/jneurosci.0601-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
14
|
Nysom K, Morad AG, Rafael MS, Zier J, Marachelian A, Watt T, Morgenstern DA. Pain mitigation and management strategies for anti-GD2 infusions: An expert consensus. Pediatr Blood Cancer 2023; 70:e30217. [PMID: 36772891 DOI: 10.1002/pbc.30217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023]
Abstract
Monoclonal antibodies (mAbs) targeting disialoganglioside 2 (GD2) are an important treatment advance for high-risk neuroblastoma, including in patients with refractory or relapsed disease. Dinutuximab and dinutuximab beta are administered for ≥8 hours (and up to 10 days for dinutuximab beta), whereas naxitamab is administered over 0.5 to 2 hours as tolerated. As acute pain is a class effect of anti-GD2 mAbs, effective pain management is crucial to successful treatment. Here, we provide an overview of current pain-management strategies for anti-GD2 mAb infusions, with a focus on strategies suitable for naxitamab infusions, which cause a more rapid onset of often severe pain. We discuss opioid analgesics, ketamine, gabapentin, and other similar agents and nonpharmacologic approaches. Potential future pain-management options are also discussed, in addition to the use of sedatives to reduce the anxiety that may be associated with infusion-related pain. In this expert consensus paper, specific guidance for pain management during naxitamab infusions is provided, as these infusions are administered over 0.5 to 2 hours and may not need overnight hospitalization based on the physician's assessment, and require rapid-onset analgesia options suitable for potential outpatient administration.
Collapse
Affiliation(s)
| | | | - Margarida Simão Rafael
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - Judith Zier
- Children's Respiratory and Critical Care Specialists PA, Minneapolis, Minnesota, USA
| | | | - Tanya Watt
- UT Southwestern Medical Center, Dallas-Fort Worth, Texas, USA
| | | |
Collapse
|
15
|
Wang X, Song J, Xia P, Lin Q, Chen A, Cheng K, Kong F, Shi Y, Li X. High intensity interval training attenuates osteoarthritis-associated hyperalgesia in rats. J Physiol Sci 2023; 73:8. [PMID: 37118669 DOI: 10.1186/s12576-023-00866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
High-intensity interval training (HIIT) is a physical therapy that may benefit patients with osteoarthritis (OA). Cacna2d1 is a calcium channel subunit protein that plays an important role in the activity of nerve cells. However, there is currently no evidence on HIIT relieving OA-associate hyperalgesia by decreased Cacna2d1. Our study established the OA rat models with intra-articular injection of monosodium iodoacetate (MIA). This experiment was divided into two stages. The first stage comprised three groups: the control, OA, and OA-HIIT groups. The second stage comprised two groups, including the AAV-C and AAV-shRNA-Cacna2d1 groups. OA rats were positioned at the L5-L6 segments, and 20 µl of AAV virus was injected intrathecally. The pain threshold, cartilage analysis, Cacna2d1, and pain neurotransmitters were measured and compared. The pain threshold was significantly lower in OA rats than in control rats from the first to the tenth week. Starting from the sixth week, OA-HIIT rats exhibited significantly increased pain thresholds. The expression of Cacna2d1 increased in OA rats. Moreover, the knockdown of Cacna2d1 significantly down-regulated the expression of c-Fos, SP, and Vglut2 in the posterior horn of the spinal cord. In conclusion, HIIT attenuates OA-associated hyperalgesia, which may be related to the down-regulation of Cacna2d1.
Collapse
Affiliation(s)
- Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jiulong Song
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Anliang Chen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fane Kong
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yi Shi
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
16
|
Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J Neurochem 2023; 164:143-157. [PMID: 36222452 PMCID: PMC9892208 DOI: 10.1111/jnc.15706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Wu T, Chen SR, Pan HL, Luo Y. The α2δ-1-NMDA receptor complex and its potential as a therapeutic target for ischemic stroke. Front Neurol 2023; 14:1148697. [PMID: 37153659 PMCID: PMC10157046 DOI: 10.3389/fneur.2023.1148697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in excitotoxicity caused by ischemic stroke, but NMDAR antagonists have failed to be translated into clinical practice for treating stroke patients. Recent studies suggest that targeting the specific protein-protein interactions that regulate NMDARs may be an effective strategy to reduce excitotoxicity associated with brain ischemia. α2δ-1 (encoded by the Cacna2d1 gene), previously known as a subunit of voltage-gated calcium channels, is a binding protein of gabapentinoids used clinically for treating chronic neuropathic pain and epilepsy. Recent studies indicate that α2δ-1 is an interacting protein of NMDARs and can promote synaptic trafficking and hyperactivity of NMDARs in neuropathic pain conditions. In this review, we highlight the newly identified roles of α2δ-1-mediated NMDAR activity in the gabapentinoid effects and NMDAR excitotoxicity during brain ischemia as well as targeting α2δ-1-bound NMDARs as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Hui-Lin Pan
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yi Luo
| |
Collapse
|
18
|
Hessenberger M, Haddad S, Obermair GJ. Pathophysiological Roles of Auxiliary Calcium Channel α 2δ Subunits. Handb Exp Pharmacol 2023; 279:289-316. [PMID: 36598609 DOI: 10.1007/164_2022_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
α2δ proteins serve as auxiliary subunits of voltage-gated calcium channels, which are essential components of excitable cells such as skeletal and heart muscles, nerve cells of the brain and the peripheral nervous system, as well as endocrine cells. Over the recent years, α2δ proteins have been identified as critical regulators of synaptic functions, including the formation and differentiation of synapses. These functions require signalling mechanisms which are partly independent of calcium channels. Hence, in light of these features it is not surprising that the genes encoding for the four α2δ isoforms have recently been linked to neurological and neurodevelopmental disorders including epilepsy, autism spectrum disorders, schizophrenia, and depressive and bipolar disorders. Despite the increasing number of identified disease-associated mutations, the underlying pathophysiological mechanisms are only beginning to emerge. However, a thorough understanding of the pathophysiological role of α2δ proteins ideally serves two purposes: first, it will contribute to our understanding of general pathological mechanisms in synaptic disorders. Second, it may support the future development of novel and specific treatments for brain disorders. In this context, it is noteworthy that the antiepileptic and anti-allodynic drugs gabapentin and pregabalin both act via binding to α2δ proteins and are among the top sold drugs for treating neuropathic pain. In this book chapter, we will discuss recent developments in our understanding of the functions of α2δ proteins, both as calcium channel subunits and as independent regulatory entities. Furthermore, we present and summarize recently identified and likely pathogenic mutations in the genes encoding α2δ proteins and discuss potential underlying pathophysiological consequences at the molecular and structural level.
Collapse
Affiliation(s)
- Manuel Hessenberger
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrin Haddad
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division Physiology, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
19
|
Chen SR, Chen H, Jin D, Pan HL. Brief Opioid Exposure Paradoxically Augments Primary Afferent Input to Spinal Excitatory Neurons via α2δ-1-Dependent Presynaptic NMDA Receptors. J Neurosci 2022; 42:9315-9329. [PMID: 36379705 PMCID: PMC9794381 DOI: 10.1523/jneurosci.1704-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment with opioids not only inhibits nociceptive transmission but also elicits a rebound and persistent increase in primary afferent input to the spinal cord. Opioid-elicited long-term potentiation (LTP) from TRPV1-expressing primary afferents plays a major role in opioid-induced hyperalgesia and analgesic tolerance. Here, we determined whether opioid-elicited LTP involves vesicular glutamate transporter-2 (VGluT2) or vesicular GABA transporter (VGAT) neurons in the spinal dorsal horn of male and female mice and identified underlying signaling mechanisms. Spinal cord slice recordings revealed that µ-opioid receptor (MOR) stimulation with DAMGO initially inhibited dorsal root-evoked EPSCs in 87% VGluT2 neurons and subsequently induced LTP in 49% of these neurons. Repeated morphine treatment increased the prevalence of VGluT2 neurons displaying LTP with a short onset latency. In contrast, DAMGO inhibited EPSCs in 46% VGAT neurons but did not elicit LTP in any VGAT neurons even in morphine-treated mice. Spinal superficial laminae were densely innervated by MOR-containing nerve terminals and were occupied by mostly VGluT2 neurons and few VGAT neurons. Furthermore, conditional Grin1 knockout in dorsal root ganglion neurons diminished DAMGO-elicited LTP in lamina II neurons and attenuated hyperalgesia and analgesic tolerance induced by repeated treatment with morphine. In addition, DAMGO-elicited LTP in VGluT2 neurons was abolished by protein kinase C inhibition, gabapentin, Cacna2d1 knockout, or disrupting the α2δ-1-NMDA receptor interaction with an α2δ-1 C terminus peptide. Thus, brief MOR stimulation distinctively potentiates nociceptive primary afferent input to excitatory dorsal horn neurons via α2δ-1-coupled presynaptic NMDA receptors, thereby causing hyperalgesia and reducing analgesic actions of opioids.SIGNIFICANCE STATEMENT Opioid drugs are potent analgesics for treating severe pain and are commonly used during general anesthesia. However, opioid use often induces pain hypersensitivity, rapid loss of analgesic efficacy, and dose escalation, which can cause dependence, addiction, and even overdose fatality. This study demonstrates for the first time that brief opioid exposure preferentially augments primary sensory input to genetically identified glutamatergic excitatory, but not GABAergic/glycinergic inhibitory, neurons in nociceptive dorsal horn circuits. This opioid-elicited synaptic plasticity is cell type specific and mediated by protein kinase C-dependent and α2δ-1-dependent activation of NMDA receptors at primary sensory nerve terminals. These findings elucidate how intraoperative use of opioids for preemptive analgesia paradoxically aggravates postoperative pain and increases opioid consumption and suggest new strategies to improve opioid analgesic efficacy.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
20
|
Huang Y, Chen SR, Pan HL. Calcineurin Regulates Synaptic Plasticity and Nociceptive Transmission at the Spinal Cord Level. Neuroscientist 2022; 28:628-638. [PMID: 34791930 DOI: 10.1177/10738584211046888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcineurin, the predominant Ca2+/calmodulin-dependent serine/threonine protein phosphatase (also known as protein phosphatase 2B), is highly expressed in immune T cells and the nervous system, including the dorsal root ganglion and spinal cord. It controls synaptic transmission and plasticity by maintaining the appropriate phosphorylation status of many ion channels present at presynaptic and postsynaptic sites. As such, normal calcineurin activity in neurons and synapses is mainly involved in negative feedback regulation in response to increased neuronal activity and intracellular Ca2+ levels. Calcineurin inhibitors (e.g., cyclosporine and tacrolimus) are widely used as immunosuppressants in tissue and organ transplantation recipients and for treating autoimmune diseases but can cause severe pain in some patients. Furthermore, diminished calcineurin activity at the spinal cord level may play a major role in the transition from acute to chronic neuropathic pain after nerve injury. Restoring calcineurin activity at the spinal cord level produces long-lasting pain relief in animal models of neuropathic pain. In this article, we provide an overview of recent studies on the critical roles of calcineurin in regulating glutamate NMDA and AMPA receptors, voltage-gated Ca2+ channels, potassium channels, and transient receptor potential channels expressed in the spinal dorsal horn and primary sensory neurons.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Zhang J, Chen SR, Zhou MH, Jin D, Chen H, Wang L, DePinho RA, Pan HL. HDAC2 in Primary Sensory Neurons Constitutively Restrains Chronic Pain by Repressing α2δ-1 Expression and Associated NMDA Receptor Activity. J Neurosci 2022; 42:8918-8935. [PMID: 36257688 PMCID: PMC9732832 DOI: 10.1523/jneurosci.0735-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
α2δ-1 (encoded by the Cacna2d1 gene) is a newly discovered NMDA receptor-interacting protein and is the therapeutic target of gabapentinoids (e.g., gabapentin and pregabalin) frequently used for treating patients with neuropathic pain. Nerve injury causes sustained α2δ-1 upregulation in the dorsal root ganglion (DRG), which promotes NMDA receptor synaptic trafficking and activation in the spinal dorsal horn, a hallmark of chronic neuropathic pain. However, little is known about how nerve injury initiates and maintains the high expression level of α2δ-1 to sustain chronic pain. Here, we show that nerve injury caused histone hyperacetylation and diminished enrichment of histone deacetylase-2 (HDAC2), but not HDAC3, at the Cacna2d1 promoter in the DRG. Strikingly, Hdac2 knockdown or conditional knockout in DRG neurons in male and female mice consistently induced long-lasting mechanical pain hypersensitivity, which was readily reversed by blocking NMDA receptors, inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDA receptor interaction at the spinal cord level. Hdac2 deletion in DRG neurons increased histone acetylation levels at the Cacna2d1 promoter, upregulated α2δ-1 in the DRG, and potentiated α2δ-1-dependent NMDA receptor activity at primary afferent central terminals in the spinal dorsal horn. Correspondingly, Hdac2 knockdown-induced pain hypersensitivity was blunted in Cacna2d1 knockout mice. Thus, our findings reveal that HDAC2 functions as a pivotal transcriptional repressor of neuropathic pain via constitutively suppressing α2δ-1 expression and ensuing presynaptic NMDA receptor activity in the spinal cord. HDAC2 enrichment levels at the Cacna2d1 promoter in DRG neurons constitute a unique epigenetic mechanism that governs acute-to-chronic pain transition.SIGNIFICANCE STATEMENT Excess α2δ-1 proteins produced after nerve injury directly interact with glutamate NMDA receptors to potentiate synaptic NMDA receptor activity in the spinal cord, a prominent mechanism of nerve pain. Because α2δ-1 upregulation after nerve injury is long lasting, gabapentinoids relieve pain symptoms only temporarily. Our study demonstrates for the first time the unexpected role of intrinsic HDAC2 activity at the α2δ-1 gene promoter in limiting α2δ-1 gene transcription, NMDA receptor-dependent synaptic plasticity, and chronic pain development after nerve injury. These findings challenge the prevailing view about the role of general HDAC activity in promoting chronic pain. Restoring the repressive HDAC2 function and/or reducing histone acetylation at the α2δ-1 gene promoter in primary sensory neurons could lead to long-lasting relief of nerve pain.
Collapse
Affiliation(s)
- Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
22
|
Jin D, Chen H, Huang Y, Chen SR, Pan HL. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance. Neuropharmacology 2022; 217:109202. [PMID: 35917874 DOI: 10.1016/j.neuropharm.2022.109202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
δ-Opioid receptors (DORs, encoded by the Oprd1 gene) are expressed throughout the peripheral and central nervous system, and DOR stimulation reduces nociception. Previous studies suggest that DORs promote the development of analgesic tolerance of μ-opioid receptor (MOR) agonists. It is uncertain whether DORs expressed in primary sensory neurons are involved in regulating chronic pain and MOR agonist-induced tolerance. In this study, we generated Oprd1 conditional knockout (Oprd1-cKO) mice by crossing Advillin-Cre mice with Oprd1-floxed mice. DOR expression in the dorsal root ganglion was diminished in Oprd1-cKO mice. Systemic or intrathecal injection of the DOR agonist SNC-80 produced analgesia in wild-type (WT), but not Oprd1-cKO, mice. In contrast, intracerebroventricular injection of SNC-80 produced a similar analgesic effect in WT and Oprd1-cKO mice. However, morphine-induced analgesia, hyperalgesia, or analgesic tolerance did not differ between WT and Oprd1-cKO mice. Compared with WT mice, Oprd1-cKO mice showed increased mechanical and heat hypersensitivity after nerve injury or tissue inflammation. Furthermore, blocking DORs with naltrindole increased nociceptive sensitivity induced by nerve injury or tissue inflammation in WT, but not Oprd1-cKO, mice. In addition, naltrindole potentiated glutamatergic input from primary afferents to spinal dorsal horn neurons increased by nerve injury or CFA in WT mice; this effect was absent in Oprd1-cKO mice. Our findings indicate that DORs in primary sensory neurons are critically involved in the analgesic effect of DOR agonists but not morphine-induced analgesic tolerance. Presynaptic DORs at primary afferent central terminals constitutively inhibit inflammatory and neuropathic pain by restraining glutamatergic input to spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Zhang H, Wu ZS, Liu JQ, Huang H. Serum calcium channel subunit α2δ-1 concentrations and outcomes in patients with acute spontaneous intracerebral hemorrhage. Clin Chim Acta 2022; 527:17-22. [PMID: 35007528 DOI: 10.1016/j.cca.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Voltage-gated calcium channel subunit α2δ-1 plays an important role in acute brain injury. We attempted to investigate whether serum α2δ-1 subunit concentrations are correlated with severity and prognosis following intracerebral hemorrhage (ICH). METHODS Serum α2δ-1 subunit concentrations were quantified in 103 ICH patients and 103 healthy controls. National Institutes of Health Stroke Scale (NIHSS) score and hematoma volume were estimated for assessing illness severity. Modified Rankin scale score of 3-6 at 90 days after stroke onset was defined as a worse outcome. RESULTS Serum α2δ-1 subunit concentrations were markedly higher in patients than in controls (median, 875.1 vs. 209.3 pg/ml). Serum α2δ-1 subunit concentrations of patients were tightly correlated with NIHSS score (r = 0.589) and hematoma volume (r = 0.594). Serum α2δ-1 subunit concentrations ≥ 875.1 pg/ml independently discriminated development of 90-day poor outcome with odds ratio of 5.228 (95% CI, 2.201-12.418) and area under the receiver operating characteristic curve of 0.794 (95% CI, 0.703-0.867). Serum α2δ-1 subunit concentrations > 973.4 pg/ml predicted 90-day poor outcome with 64.0% sensitivity and 90.6% specificity. The prognostic predictive ability of serum α2δ-1 concentrations was equivalent to those of NIHSS score and hematoma volume (both P > 0.05), and serum α2δ-1 concentrations also significantly improved the prognostic predictive capabilities of NIHSS score and hematoma volume (both P < 0.05). CONCLUSIONS Serum α2δ-1 subunit concentrations are intimately correlated with illness severity and are independently associated with poor 90-day outcome, substantializing serum α2δ-1 subunit as a potential prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Emergency Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China
| | - Ze-Sheng Wu
- Department of Emergency Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China
| | - Jing-Quan Liu
- Department of Urology, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, China
| | - Huan Huang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
24
|
Hu XM, Yang W, Zhang MT, Du LX, Tian JH, Zhu JY, Chen Y, Hai F, Liu SB, Mao-Ying QL, Chu YX, Zhou H, Wang YQ, Mi WL. Glial IL-33 signaling through an ST2-to-CXCL12 pathway in the spinal cord contributes to morphine-induced hyperalgesia and tolerance. Sci Signal 2021; 14:eabe3773. [PMID: 34516755 DOI: 10.1126/scisignal.abe3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xue-Ming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Encephalopathy, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang 321017, China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-He Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Hai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shen-Bin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Deciphering the mechanisms of regulation of an excitatory synapse via cyclooxygenase-2. A review. Biochem Pharmacol 2021; 192:114729. [PMID: 34400127 DOI: 10.1016/j.bcp.2021.114729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a heme-containing enzyme that produces prostaglandins (PGs) via a pathway known as the arachidonic acid (AA) cascade. Two isoforms of COX enzyme (COX-1 and COX-2) and splice variant (COX-3) have been described so far. COX-2 is a neuronal enzyme that is intensively produced during activation of the synapse and glutamate (Glu) release. The end product of COX-2 action, prostaglandin E2 (PGE2), regulates Glu level in a retrograde manner. At the same time, the level of Glu, the primary excitatory neurotransmitter, is regulated in the excitatory synapse via Glu receptors, both ionotropic and metabotropic ones. Glu receptors are known modulators of behavior, engaged in cognition and mood. So far, the interaction between ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic glutamate (mGluRs) receptors and COX-2 was found. Here, based on literature data and own research, a new mechanism of action of COX-2 in an excitatory synapse will be presented.
Collapse
|
26
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
27
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
28
|
Li J, Song G, Jin Q, Liu L, Yang L, Wang Y, Zhang X, Zhao Z. The α2δ-1/NMDA receptor complex is involved in brain injury after intracerebral hemorrhage in mice. Ann Clin Transl Neurol 2021; 8:1366-1375. [PMID: 34032393 PMCID: PMC8283164 DOI: 10.1002/acn3.51372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH), a common cerebrovascular disease, seriously threatens human health and has severe secondary injuries, while existing treatment methods have many limitations. α2δ‐1 is a subunit of voltage‐gated Ca2+ channels (VGCCs) and can act on glutamate receptor N‐methyl‐D‐aspartate receptors (NMDARs) to relieve neuropathic pain. Methods We first performed ICH modeling on WT mice and Cacna2d1 knockout (KO) mice. The expression levels of GluN1 and α2δ‐1 were measured by Western blot and q‐PCR, and the interaction between the two proteins was evaluated by co‐precipitation. The neuronal apoptosis was detected by the TUNEL assay, and the expression levels of inflammatory factors were assessed by ELISA. The nerve functions of mice were evaluated using behavioral experiments including corner turn test and forelimb use asymmetry. Cerebral hematoma was indicated by brain water content and lesion volume. Results ICH up‐regulated the expression levels of α2δ‐1 and GluN1. KO of Cacna2d1 significantly reduced the ICH‐induced apoptosis. The treatment of gabapentin on α2δ‐1 also significantly reduced the occurrence of apoptosis. KO of Cacna2d1 also reduced the ICH‐induced levels of inflammatory factors. Furthermore, neural functions were also significantly improved. Conclusion Cacna2d1 KO alleviates cerebral hematoma in ICH mice, exhibits a significant regulating effect on its secondary injuries such as neuronal apoptosis and inflammation, and restores the nerve functions of ICH mice. Loss of Cacna2d1 can provide useful therapeutic clues for ICH treatment.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Guoqiang Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Yuanyu Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Xuesong Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
29
|
Li Q, Zhang H, Jia Z, Zhang L, Li Y, Xu R, Wang C, Yu Y. Hydrogen enriched saline alleviates morphine tolerance via inhibiting neuroinflammation, GLT-1, GS nitration and NMDA receptor trafficking and functioning in the spinal cord of rats. Neurosci Lett 2021; 755:135847. [PMID: 33774150 DOI: 10.1016/j.neulet.2021.135847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
The development and maintenance of morphine tolerance showed association with neuroinflammation and dysfunction of central glutamatergic system (such as nitration of glutamate transporter). Recent evidence indicated that hydrogen could reduce the levels of neuroinflammation and oxidative stress, but its role in morphine tolerance has not been studied. The rats were intrathecally administered with morphine (10 μg/10 μL each time, twice/day for 5 days). Hydrogen enriched saline (HS) or saline was given intraperitoneally at 1, 3 and 10 mL/kg for 10 min before each dose of morphine administration. The tail-flick latency, mechanical threshold and thermal latency were assessed one day (baseline) before and daily for up to 5 days during morphine injection. The pro-inflammatory cytokine expressions [tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6)] (by western blotting), astrocyte activation (by immunofluorescence and western blotting), and nitration of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) (by immunoprecipitation), membrane and total expression of N-methyl-d-aspartic acid (NMDA) receptor NR1 and NR2B subunits were carried out in the spinal dorsal horns. Chronic morphine administration induced antinociceptive tolerance, and together led to increased TNF-α, IL-1β and IL-6 expression, astrocyte activation, GLT-1 and GS nitration, increased membrane and total NR1, NR2B expression. Injection of HS attenuated morphine tolerance in a dose-dependent manner, decreased proinflammatory cytokine expression, inhibited astrocyte activation, decreased GLT-1 and GS nitration, and inhibited membrane trafficking of NMDA receptor. Our result showed that hydrogen pretreatment prevented morphine tolerance by reducing neuroinflammation, GLT-1, GS nitration, NMDA receptor trafficking in the spinal dorsal horn. Pretreatment with hydrogen might be considered as a novel therapeutic strategy for the prevention of morphine tolerance.
Collapse
Affiliation(s)
- Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Haifang Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Rubin Xu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, 300192, PR China.
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, PR China.
| |
Collapse
|
30
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
31
|
Risher WC, Eroglu C. Emerging roles for α2δ subunits in calcium channel function and synaptic connectivity. Curr Opin Neurobiol 2020; 63:162-169. [PMID: 32521436 DOI: 10.1016/j.conb.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Central nervous system function requires the proper formation and function of synapses. The α2δ auxiliary subunits of voltage-gated calcium channels have emerged as regulators of a number of critical events associated with regulation of synaptic function, including channel trafficking and localization, as well as the initial establishment of synaptic structures. In this review, we will discuss some of these recent studies which have uncovered novel mechanisms for α2δ function at the synapse, including the regulation of calcium channel α1 subunit specificity and the promotion of dendritic spine growth. Moreover, we will cover recent advances that have been made in understanding the consequences of aberrant α2δ signaling in injury and disease.
Collapse
Affiliation(s)
- William Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25705, United States.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, United States; Regeneration Next Initiative, Duke University, Durham, NC 27710, United States
| |
Collapse
|
32
|
Taylor CP, Harris EW. Analgesia with Gabapentin and Pregabalin May Involve N-Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. J Pharmacol Exp Ther 2020; 374:161-174. [DOI: 10.1124/jpet.120.266056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
|
33
|
Calcineurin Inhibition Causes α2δ-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. J Neurosci 2020; 40:3707-3719. [PMID: 32269108 DOI: 10.1523/jneurosci.0282-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2δ-1-GluN1 complexes in the spinal cord and the level of α2δ-1-bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide completely reversed the effects of FK506. In α2δ-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2δ-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2δ-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2δ-1-bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2δ-1 and NMDARs and their synaptic trafficking in the spinal cord. α2δ-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2δ-1 or disrupting α2δ-1-NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2δ-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.
Collapse
|
34
|
Weng Y, Wu J, Li L, Shao J, Li Z, Deng M, Zou W. Circular RNA expression profile in the spinal cord of morphine tolerated rats and screen of putative key circRNAs. Mol Brain 2019; 12:79. [PMID: 31533844 PMCID: PMC6751888 DOI: 10.1186/s13041-019-0498-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Morphine tolerance developed after repeated or continuous morphine treatment is a global health concern hindering the control of chronic pain. In our previous research, we have reported that the expression of lncRNAs and microRNAs have been greatly modified in the spinal cord of morphine tolerated rats, and the modulating role of miR-873a-5p, miR-219-5p and miR-365 have already been confirmed. However, whether circular RNAs, another essential kind of non-coding RNA, are involved in the pathogenesis of morphine tolerance is still beyond our knowledge. In this study, we conducted microarray analysis for circRNA profile and found a large number of circRNAs changed greatly in the spinal cord by morphine treatment. Among them, we selected nine circRNAs for validation, and seven circRNAs are confirmed. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) analysis were used for functional annotation. Besides, we confirmed the modified expression of seven circRNAs after validation by real-time PCR, selected 3 most prominently modulated ones among them and predicted their downstream miRNA-mRNA network and analyzed their putative function via circRNA-miRNA-mRNA pathway. Finally, we enrolled the differentially expressed mRNAs derived from the identical spinal cord, these validated circRNAs and their putative miRNA targets for ceRNA analysis and screened a promising circRNA-miRNA-mRNA pathway in the development of morphine tolerance. This study, for the first time, provided valuable information on circRNA profile and gave clues for further study on the circRNA mechanism of morphine tolerance.
Collapse
Affiliation(s)
- Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, Hunan Cancer Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
35
|
Xiao L, Han X, Wang XE, Li Q, Shen P, Liu Z, Cui Y, Chen Y. Spinal Serum- and Glucocorticoid-Regulated Kinase 1 (SGK1) Signaling Contributes to Morphine-Induced Analgesic Tolerance in Rats. Neuroscience 2019; 413:206-218. [PMID: 31220544 DOI: 10.1016/j.neuroscience.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that phosphorylated serum- and glucocorticoid-regulated kinase 1 (SGK1) is associated with spinal nociceptive sensitization by modulating glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined whether spinal SGK1 signaling contributes to the development of morphine analgesic tolerance. Chronic morphine administration markedly induced phosphorylation of SGK1 in the spinal dorsal horn neurons. Intrathecal injection of SGK1 inhibitor GSK-650394 reduced the development of morphine tolerance with a significant leftward shift in morphine dose-effect curve. Furthermore, spinal inhibition of SGK1 suppressed morphine-induced phosphorylation of nuclear factor kappa B (NF-κB) p65 and upregulation of NMDAR NR1 and NR2B expression in the spinal dorsal horn. In contrast, intrathecal administration of NMDAR antagonist MK-801 had no effect on the phosphorylation of SGK1 in morphine-treated rats. In addition, morphine-induced upregulation of NR2B, but not NR1, was significantly abolished by intrathecal pretreatment with PDTC, a specific NF-κB activation inhibitor. Finally, spinal delivery of SGK1 small interfering RNA exhibited similar inhibitory effects on morphine-induced tolerance, phosphorylation of NF-κB p65, as well as upregulation of NR1 and NR2B expression. Our findings demonstrate that spinal SGK1 contributes to the development of morphine tolerance by enhancing NF-κB p65/NMDAR signaling. Interfering spinal SGK1 signaling pathway could be a potential strategy for prevention of morphine tolerance in chronic pain management.
Collapse
Affiliation(s)
- Li Xiao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-E Wang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pu Shen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Liu
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yu Cui
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|