1
|
Kim G, Lee SY, Oh S, Jang JW, Lee J, Kim HS, Son KH, Byun K. Anti-Inflammatory Effects of Extracellular Vesicles from Ecklonia cava on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation in Mice. Int J Mol Sci 2024; 25:12522. [PMID: 39684233 DOI: 10.3390/ijms252312522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Steroids, which are often used to treat the inflammation associated with various skin diseases, have several negative side effects. As Ecklonia cava extract has anti-inflammatory effects in various diseases, we evaluated the efficacy of Ecklonia cava-derived extracellular vesicles (EVEs) in decreasing 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. We determined the effect of the EVEs on the TLR4/NF-κB/NLRP3 inflammasome in human keratinocytes and mouse ear skin. TPA-treated human keratinocytes showed an increased expression of TLR4 and its ligands HMGB1 and S100A8. TPA also increased the expression of (1) NF-κB; (2) the NLRP3 inflammasome components NLRP3, ASC, and caspase 1; and (3) the pyroptosis-related factors GSDMD-NT, IL-18, and IL-1β. However, the expression of these molecules decreased in the TPA-treated human keratinocytes after EVE treatment. Similar to the in vitro results, TPA increased the expression of these molecules in mouse ear skin, and EVE treatment decreased their expression. The TPA treatment of skin increased edema, redness, neutrophil infiltration, and epidermal thickness, and EVE reduced these symptoms of inflammation. In conclusion, the EVEs decreased TPA-induced skin inflammation, which was associated with a decrease in the TLR4/NF-κB/NLRP3 inflammasome.
Collapse
Affiliation(s)
- Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Hyun-Seok Kim
- Kim Hyun Seok Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
2
|
Zhong B, Zhou JQ, Lyu X, Liu H, Yuan K, Guo ML, Duncan SR, Sanders YY. Anti-Heat Shock Protein 70 Autoantibodies from Patients with Idiopathic Pulmonary Fibrosis Epigenetically Enhance Lung Fibroblast Apoptosis Resistance and Bcl-2 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1150-1156. [PMID: 39248593 PMCID: PMC11458357 DOI: 10.4049/jimmunol.2400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
IgG autoantibodies to heat shock protein 70 (HSP70) are found in many immune-mediated clinical syndromes, and their presence among patients with idiopathic pulmonary fibrosis (IPF) portends especially poor outcomes. However, pathological effects of IPF anti-HSP70 have not been studied extensively. IPF lung fibroblasts are apoptosis resistant, and this dysregulation contributes to the accumulation of fibroblasts that characterizes the disease. During stress, HSP70 protein is exported extracellularly, where it binds to cognate cell surface receptors that mediate a variety of functional effects, including apoptosis inhibition. We hypothesized anti-HSP70 could engage HSP70-receptor complexes on fibroblasts that alter their apoptosis susceptibility. We found HSP70 is ubiquitously expressed on primary human lung fibroblasts. Treatment with anti-HSP70 isolated from patients with IPF with acute exacerbations increased Bcl-2 expression in human lung fibroblasts and reduced their susceptibility to staurosporine-induced apoptosis. Chromatin immunoprecipitation assays showed Bcl-2 gene promoter regions are enriched with the active histone mark H4 lysine 16 acetylation, and this was increased in the autoantibody-treated fibroblasts. When H4 lysine 16 acetylation was decreased by knocking down its acetyltransferase, MOF (males absent on the first), the anti-HSP70 treatments failed to upregulate Bcl-2. This study describes a heretofore unknown, to our knowledge, pathogenic consequence of autoimmunity in which autoantibodies affect the epigenetic regulation of fibroblast apoptosis. In addition to IPF, this autoimmune process could also have relevance in other immunological syndromes characterized by anti-HSP70 autoimmunity. These findings lend credence to the importance of autoimmunity in IPF and illustrate pathways that could be targeted in innovative therapies for this morbid, medically refractory lung disease.
Collapse
Affiliation(s)
- Baiyun Zhong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Q Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Xing Lyu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Kayu Yuan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ming-Lei Guo
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Steven R Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology and Molecular Cellular Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
3
|
Yin M, Lei D, Liu Y, Qin T, Gao H, Lv W, Liu Q, Qin L, Jin W, Chen Y, Liang H, Wang B, Gao M, Zhang J, Lu J. NIR triggered polydopamine coated cerium dioxide nanozyme for ameliorating acute lung injury via enhanced ROS scavenging. J Nanobiotechnology 2024; 22:321. [PMID: 38849841 PMCID: PMC11162040 DOI: 10.1186/s12951-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Acute lung injury (ALI) is a life threatening disease in critically ill patients, and characterized by excessive reactive oxygen species (ROS) and inflammatory factors levels in the lung. Multiple evidences suggest that nanozyme with diversified catalytic capabilities plays a vital role in this fatal lung injury. At present, we developed a novel class of polydopamine (PDA) coated cerium dioxide (CeO2) nanozyme (Ce@P) that acts as the potent ROS scavenger for scavenging intracellular ROS and suppressing inflammatory responses against ALI. Herein, we aimed to identify that Ce@P combining with NIR irradiation could further strengthen its ROS scavenging capacity. Specifically, NIR triggered Ce@P exhibited the most potent antioxidant and anti-inflammatory behaviors in lipopolysaccharide (LPS) induced macrophages through decreasing the intracellular ROS levels, down-regulating the levels of TNF-α, IL-1β and IL-6, up-regulating the level of antioxidant cytokine (SOD-2), inducing M2 directional polarization (CD206 up-regulation), and increasing the expression level of HSP70. Besides, we performed intravenous (IV) injection of Ce@P in LPS induced ALI rat model, and found that it significantly accumulated in the lung tissue for 6 h after injection. It was also observed that Ce@P + NIR presented the superior behaviors of decreasing lung inflammation, alleviating diffuse alveolar damage, as well as promoting lung tissue repair. All in all, it has developed the strategy of using Ce@P combining with NIR irradiation for the synergistic enhanced treatment of ALI, which can serve as a promising therapeutic strategy for the clinical treatment of ROS derived diseases as well.
Collapse
Affiliation(s)
- Mingjing Yin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Doudou Lei
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yalan Liu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tao Qin
- Department of Intensive Care Unit, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Huyang Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wenquan Lv
- Department of Emergency, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Qianyue Liu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Weiqian Jin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Hao Liang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bailei Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jianfeng Zhang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| |
Collapse
|
4
|
Deng B, He X, Wang Z, Kang J, Zhang G, Li L, Kang X. HSP70 protects PC12 cells against TBHP-induced apoptosis and oxidative stress by activating the Nrf2/HO-1 signaling pathway. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00924-0. [PMID: 38807023 DOI: 10.1007/s11626-024-00924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
5
|
Batsukh S, Oh S, Lee JM, Joo JHJ, Son KH, Byun K. Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin. Mar Drugs 2024; 22:223. [PMID: 38786614 PMCID: PMC11123375 DOI: 10.3390/md22050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Min Lee
- Doctors Dermatologic Clinic, Gangdong Godeok, Seoul 05269, Republic of Korea
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Hino C, Chan G, Jordaan G, Chang SS, Saunders JT, Bashir MT, Hansen JE, Gera J, Weisbart RH, Nishimura RN. Cellular protection from H 2O 2 toxicity by Fv-Hsp70: protection via catalase and gamma-glutamyl-cysteine synthase. Cell Stress Chaperones 2023; 28:429-439. [PMID: 37171750 PMCID: PMC10352194 DOI: 10.1007/s12192-023-01349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
Heat shock proteins (HSPs), especially Hsp70 (HSPA1), have been associated with cellular protection from various cellular stresses including heat, hypoxia-ischemia, neurodegeneration, toxins, and trauma. Endogenous HSPs are often synthesized in direct response to these stresses but in many situations are inadequate in protecting cells. The present study addresses the transduction of Hsp70 into cells providing protection from acute oxidative stress by H2O2. The recombinant Fv-Hsp70 protein and two mutant Fv-Hsp70 proteins minus the ATPase domain and minus the ATPase and terminal lid domains were tested at 0.5 and 1.0 μM concentrations after two different concentrations of H2O2 treatment. All three recombinant proteins protected SH-SY5Y cells from acute H2O2 toxicity. This data indicated that the protein binding domain was responsible for cellular protection. In addition, experiments pretreating cells with inhibitors of antioxidant proteins catalase and gamma-glutamylcysteine synthase (GGCS) before H2O2 resulted in cell death despite treatment with Fv-Hsp70, implying that both enzymes were protected from acute oxidative stress after treatment with Fv-Hsp70. This study demonstrates that Fv-Hsp70 is protective in our experiments primarily by the protein-binding domain. The Hsp70 terminal lid domain was also not necessary for protection.
Collapse
Affiliation(s)
- Chris Hino
- Dept. of Internal Medicine, Loma Linda School of Medicine, Loma Linda, CA, 92350, USA
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Grace Chan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Gwen Jordaan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Sophia S Chang
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Jacquelyn T Saunders
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Mohammad T Bashir
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - James E Hansen
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Joseph Gera
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Richard H Weisbart
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Robert N Nishimura
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA.
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
9
|
Dietary intake of Spirulina platensis alters HSP70 gene expression profiles in the brain of rats in an experimental model of mixed stress. J Genet 2022. [DOI: 10.1007/s12041-022-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Geng X, Gao J, Wehbe A, Li F, Chaudhry N, Peng C, Ding Y. Reperfusion and reperfusion injury after ischemic stroke. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_12_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Tylicka M, Guszczyn T, Maksimowicz M, Kamińska J, Matuszczak E, Karpińska M, Koper-Lenkiewicz OM. The Concentration of Selected Inflammatory Cytokines (IL-6, IL-8, CXCL5, IL-33) and Damage-Associated Molecular Patterns (HMGB-1, HSP-70) Released in an Early Response to Distal Forearm Fracture and the Performed Closed Reduction With Kirschner Wire Fixation in Children. Front Endocrinol (Lausanne) 2021; 12:749667. [PMID: 34956079 PMCID: PMC8696271 DOI: 10.3389/fendo.2021.749667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The evaluation of trauma after surgery through objective analysis of biochemical markers can help in selecting the most appropriate therapy. Thus the aim of the study was the evaluation of the concentration of selected inflammatory cytokines (IL-6, IL-8, CXCL5, IL-33), C-reactive protein (CRP), and damaged-associated molecular patterns (DAMPs): HMGB-1, HSP-70 in the plasma of children in response to bone fracture and 12-14 hours after subsequent surgery performed by closed reduction with percutaneous Kirschner wire fixation (CRKF). The study will answer the question if the CRFK procedure leads to excessive production of inflammatory and damage markers. Blood samples from 29 children with distal forearm fractures were collected 30 min. before CRKF procedure and 12-14 hours after performance of the procedure. The control group was composed of 17 healthy children. IL-6 and CRP concentrations were analyzed using routinely performed in vitro diagnostics tests; the remaining proteins were analyzed with the use of the ELISA method. Increased values of IL-6, CRP, and HSP-70 represented an early inflammatory response to distal forearm fractures classified as SH-II type according to the Salter-Harris classification system. However, the median CRP concentration was within the reference values not indicative of inflammation. The CRKF procedure may be a good solution for the treatment of bone fractures, as damaged associated molecular patterns - HMGB-1 and HSP-70 - did not significantly differ 12-14 hours after the approach was applied as compared to the control group. Moreover, the increase in IL-6 concentration after the CRKF procedure was 1.5-fold to the level before CRKF, while the increase of this marker in response to the distal forearm fracture was 4.3-fold compared to the control group. Based on this data, it appears reasonable to suggest that the CRKF approach caused less damage and inflammatory response in comparison to the response to the fracture itself.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Białystok, Białystok, Poland
| | - Michał Maksimowicz
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Białystok, Białystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Białystok, Poland
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | | |
Collapse
|
13
|
Saad AH, Ahmed MS, Aboubakr M, Ghoneim HA, Abdel-Daim MM, Albadrani GM, Arafat N, Fadl SE, Abdo W. Impact of Dietary or Drinking Water Ruminococcus sp. Supplementation and/or Heat Stress on Growth, Histopathology, and Bursal Gene Expression of Broilers. Front Vet Sci 2021; 8:663577. [PMID: 34268345 PMCID: PMC8275643 DOI: 10.3389/fvets.2021.663577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
This research was conducted to evaluate the impact of dietary or drinking water Ruminococcus sp. supplementation and/or heat stress (HS) on the growth, serum biochemistry, tissue antioxidant, phagocytic assay, histopathology, and bursa gene expression of broilers. Day-old broiler chicks were allotted into six groups according to HS and/or Ruminococcus with or without enzyme supplementation. The first group was the control one, with a formulated diet and normal environmental temperature but without any supplement. The second group fed on Ruminococcus-supplemented diet (1 kg/kg diet). The third group fed on a formulated diet without supplement, and Ruminococcus and digestive enzymes were given in drinking water (0.1 ml/L). The fourth one was the heat stress group, with a normal formulated diet. The fifth and the sixth groups served as second and third groups, respectively, but with heat stress. The results of this experiment indicated that thermal temperature negatively affected the parameters of growth performance, serum biochemical, tissue antioxidants, and phagocytic assay. Moreover, heat stress led to pathological lesions in the internal organs and affected the expression of some genes related to heat stress, including proapoptotic genes such as caspase8 and bax, inflammatory genes such as NF-κβ1, and heat shock protein such as HSP 70 in the bursal tissue. These bad effects and abnormalities were mitigated by Ruminococcus alone or with enzyme supplementation, which improved all the above-mentioned parameters.
Collapse
Affiliation(s)
- Adel Hassan Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Mohamed S Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed Aboubakr
- Pharmacology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Hanan A Ghoneim
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
14
|
Hao D, Li Y, Shi J, Jiang J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol Med 2021; 27:53. [PMID: 34053448 PMCID: PMC8165801 DOI: 10.1186/s10020-021-00309-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction and progressive lung inflammation. As the primary ingredient of a traditional Chinese medical herb, Baicalin has been previously shown to possess anti-inflammatory abilities. Thus, the current study aimed to elucidate the mechanism by which baicalin alleviates COPD. METHODS Baicalin was adopted to treat cigarette smoke in extract-exposed MLE-12 cells after which cell viability and apoptosis were determined. The production of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8 were determined by enzyme-linked immunoassay. A COPD mouse model was constructed via exposure to cigarette smoke and lipopolysaccharide, baicalin treatment. Lung function and inflammatory cell infiltration were determined and the production of Muc5AC, TNF-α, IL-6, IL-8 in the bronchoalveolar lavage fluid (BALF) was assayed by ELISA. The effect of HSP72 and JNK on COPD following treatment with baicalin was assessed both in vivo and in vitro by conducting loss- and gain- function experiments. RESULTS Baicalin improved lung function evidenced by reduction in inflammatory cell infiltration and Muc5AC, TNF-α, IL-6 and IL-8 levels observed in BALF in mice. Baicalin was further observed to elevate cell viability while inhibited apoptosis and TNF-α, IL-6 and IL-8 levels in MLE-12 cells. Baicalin treatment increased HSP72 expression, while its depletion reversed the effect of baicalin on COPD. HSP72 inhibited the activation of JNK, while JNK activation was found to inhibit the effect of baicalin on COPD. CONCLUSIONS Baicalin upregulated the expression of HSP72, resulting in the inhibition of JNK signaling activation, which ultimately alleviates COPD.
Collapse
Affiliation(s)
- Dexun Hao
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan Province, China
| | - Yanshuang Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan Province, China
| | - Junguang Jiang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
15
|
Jiang Q, Stone CR, Elkin K, Geng X, Ding Y. Immunosuppression and Neuroinflammation in Stroke Pathobiology. Exp Neurobiol 2021; 30:101-112. [PMID: 33972464 PMCID: PMC8118752 DOI: 10.5607/en20033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Over the preceding decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. One such advance has been an increased understanding of the multifarious crosstalk in which the nervous and immune systems engage in order to maintain homeostasis. By interrupting the immune-nervous nexus, it is thought that stroke induces change in both systems. Additionally, it has been found that both innate and adaptive immunosuppression play protective roles against the effects of stroke. The release of danger-/damage-associated molecular patterns (DAMPs) activates Toll-like receptors (TLRs), contributing to the harmful inflammatory effects of ischemia/reperfusion injury after stroke; the Tyro3, Axl, and MerTK (TAM)/Gas6 system, however, has been shown to suppress inflammation via downstream signaling molecules that inhibit TLR signaling. Anti-inflammatory cytokines have also been found to promote neuroprotection following stroke. Additionally, adaptive immunosuppression merits further consideration as a potential endogenous protective mechanism. In this review, we highlight recent studies regarding the effects and mechanism of immunosuppression on the pathophysiology of stroke, with the hope that a better understanding of the function of both of innate and adaptive immunity in this setting will facilitate the development of effective therapies for post-stroke inflammation.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit 48201, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit 48201, MI, USA
| |
Collapse
|
16
|
Zhang X, Eliasberg CD, Rodeo SA. Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci 2021; 1490:29-41. [PMID: 33843069 DOI: 10.1111/nyas.14599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Tendinopathy is a common musculoskeletal condition that affects a wide range of patients, including athletes, laborers, and older patients. Tendinopathy is often characterized by pain, swelling, and impaired performance and function. The etiology of tendinopathy is multifactorial, including both intrinsic and extrinsic mechanisms. Various treatment strategies have been described, but outcomes are often variable, as tendons have poor intrinsic healing potential compared with other tissues. Therefore, several novel targets for tendon regeneration have been identified and are being explored. Mitochondria are organelles that generate adenosine triphosphate, and they are considered to be the power generators of the cell. Recently, mitochondrial dysfunction verified by increased reactive oxygen species (ROS), decreased superoxide dismutase activity, cristae disorganization, and decreased number of mitochondria has been identified as a mechanism that may contribute to tendinopathy. This has provided new insights for studying tendinopathy pathogenesis and potential treatments via antioxidant, metabolic modulation, or ROS inhibition. In this review, we present the current understanding of mitochondrial dysfunction in tendinopathy. The review summarizes the potential mechanism by which mitochondrial dysfunction contributes to the development of tendinopathy, as well as the potential therapeutic benefits of mitochondrial protectants in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Sports Medicine & Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Claire D Eliasberg
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|
17
|
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration.
Collapse
|
18
|
Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells 2020; 9:cells9092020. [PMID: 32887360 PMCID: PMC7563654 DOI: 10.3390/cells9092020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Mei Ying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| |
Collapse
|
19
|
Qu J, Wang W, Zhang Q, Li S. Inhibition of Lipopolysaccharide-Induced Inflammation of Chicken Liver Tissue by Selenomethionine via TLR4-NF-κB-NLRP3 Signaling Pathway. Biol Trace Elem Res 2020; 195:205-214. [PMID: 31332706 DOI: 10.1007/s12011-019-01841-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023]
Abstract
Selenium (Se) is important in many physiological processes, such as antioxidant processes and inflammation. The aim of our experiments was to investigate the molecular mechanism that selenomethionine could reduce the lipopolysaccharide (LPS)-induced inflammation by inhibiting the TLR4-NF-κB-NLRP3 signaling pathway. Eighty broilers were randomly and evenly divided into two groups, giving normal Se content diets (Con group, 0.2 mg Se/kg diet) and Se-rich basal diets (Se group, 0.5 mg selenomethionine/kg diet) for 90 days. Se-rich basal diets were based on 0.2 mg/kg sodium selenite contained. Five hours before euthanized, 20 broilers were randomly selected from each group and given lipopolysaccharide (200 μg/kg BW) by intraperitoneal injection, Con+LPS group and Se+LPS group, respectively. The Con group and Se group were given equal saline by intraperitoneal injection. We observed the microscopic pathological changes of liver tissue detected oxidative stress by kit and detected the expression of inflammatory factors, heat shock protein (HSP), and nod-like receptor protein 3 (NLRP3)-related genes by qRT-PCR and Western blot. With the microscope, we found the Con+LPS group had obvious inflammatory lesions such as sinusoidal congestion, but the damage was significantly alleviated in the Se+LPS group. In the Con+LPS group, the activity of GSH-Px and the content of GSH were significantly decreased compared with those in the Con group; however, they are increased in the Se group and in the Se + LPS group. Inflammatory factors (MyD88, NF-κB, TNF-α, IL-1β, IL-6, IL-12, IL-18, iNOS, and COX-2), heat shock proteins (HSP27, HSP60, HSP70, and HSP90), and the expression of NLRP3 and caspase-1 increased in the Con+LPS group compared with those in the Con group, while they were lower in the Se+LPS group than in the Con+LPS group. We concluded that selenomethionine inhibits the LPS-induced inflammation of liver tissue via suppressing the TLR4-NF-κB-NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jingrui Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
20
|
Heat shock protein signaling in brain ischemia and injury. Neurosci Lett 2019; 715:134642. [PMID: 31759081 DOI: 10.1016/j.neulet.2019.134642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) are chaperones that catalyze the refolding of denatured proteins. In addition to their ability to prevent protein denaturation and aggregation, the HSPs have also been shown to modulate many signaling pathways. Among HSPs, the inducible 70 kDa HSP (HSP70) has especially been shown to improve neurological outcome in experimental models of brain ischemia and injury. HSP70 can modulate various aspects of the programmed cell death pathways and inflammation. This review will focus on potential mechanisms of the neuroprotective effects of HSP70 in stroke and brain trauma models. We also comment on potential ways in which HSP70 could be translated into clinical therapies.
Collapse
|
21
|
Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR, Clemens TL. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci U S A 2019; 116:17980-17989. [PMID: 31434789 PMCID: PMC6731662 DOI: 10.1073/pnas.1905489116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fat mass and obesity-associated gene (FTO) encodes an m6A RNA demethylase that controls mRNA processing and has been linked to both obesity and bone mineral density in humans by genome-wide association studies. To examine the role of FTO in bone, we characterized the phenotype of mice lacking Fto globally (FtoKO ) or selectively in osteoblasts (FtoOcKO ). Both mouse models developed age-related reductions in bone volume in both the trabecular and cortical compartments. RNA profiling in osteoblasts following acute disruption of Fto revealed changes in transcripts of Hspa1a and other genes in the DNA repair pathway containing consensus m6A motifs required for demethylation by FtoFto KO osteoblasts were more susceptible to genotoxic agents (UV and H2O2) and exhibited increased rates of apoptosis. Importantly, forced expression of Hspa1a or inhibition of NF-κB signaling normalized the DNA damage and apoptotic rates in Fto KO osteoblasts. Furthermore, increased metabolic stress induced in mice by feeding a high-fat diet induced greater DNA damage in osteoblast of FtoOc KO mice compared to controls. These data suggest that FTO functions intrinsically in osteoblasts through Hspa1a-NF-κB signaling to enhance the stability of mRNA of proteins that function to protect cells from genotoxic damage.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Qian Yang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Clifford R Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Denis C Guttridge
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Naomi Dirckx
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | | | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287;
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
22
|
Azedi F, Mehrpour M, Talebi S, Zendedel A, Kazemnejad S, Mousavizadeh K, Beyer C, Zarnani AH, Joghataei MT. Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res 2019; 1723:146401. [PMID: 31445031 DOI: 10.1016/j.brainres.2019.146401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Even today, ischemic stroke is a major cause of death and disabilities because of its high incidence, limited treatments and poor understanding of the pathophysiology of ischemia/reperfusion, neuroinflammation and secondary injuries following ischemic stroke. The function of microglia as a part of the immune system of the brain following ischemic stroke can be destructive or protective. Recent surveys indicate that melatonin, a strong antioxidant agent, has receptors on microglial cells and can regulate them to protective form; yet, more findings are required for better understanding of this mechanism, particularly in the reperfusion phase. In this study, we initially aimed to evaluate the therapeutic efficacy of melatonin intra-arterially and to clarify the underlying mechanisms. After that by using an in vitro approach, we evaluated the protective effects of melatonin on microglial cells following the hypoxia condition. Our results proved that a single dose of melatonin at the beginning of reperfusion phase improved structural and behavioral outcomes. Melatonin increased NeuN and decreased GFAP, Iba1 and active caspase-3 at protein level. Furthermore, melatonin elevated BDNF, MAP2, HSPA1A and reduced VEGF at mRNA level. We also showed that melatonin receptor 1B highly expressed in microglial cells after 3 h hypoxia. Besides, melatonin increased the ratio of TREM2/iNOS as a marker of the most protective form of microglia (M2). In summary, our data suggest that melatonin has the possibility to serve as targeting microglial action for preventing secondary injury of reperfusion phase after ischemic stroke.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Crenshaw BJ, Kumar S, Bell CR, Jones LB, Williams SD, Saldanha SN, Joshi S, Sahu R, Sims B, Matthews QL. Alcohol Modulates the Biogenesis and Composition of Microglia-Derived Exosomes. BIOLOGY 2019; 8:biology8020025. [PMID: 31035566 PMCID: PMC6627924 DOI: 10.3390/biology8020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Exosomes are small extracellular vesicles that have emerged as an important tool for intercellular communication. In the central nervous system, exosomes can mediate glia and neuronal communication. Once released from the donor cell, exosomes can act as discrete vesicles and travel to distant and proximal recipient cells to alter cellular function. Microglia cells secrete exosomes due to stress stimuli of alcohol abuse. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of exosomes derived from microglia cell line BV-2. The BV-2 cells were cultured in exosome-free media and were either mock treated (control) or treated with 50 mM or 100 mM of alcohol for 48 and 72 h. Our results demonstrated that alcohol significantly impacted BV-2 cell morphology, viability, and protein content. Most importantly, our studies revealed that exosome biogenesis and composition was affected by alcohol treatment.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sparkle D Williams
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sabita N Saldanha
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sameer Joshi
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
24
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
25
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
26
|
Wang YL, Lin CH, Chen CC, Chang CP, Lin KC, Su FC, Chou W. Exercise Preconditioning Attenuates Neurological Injury by Preserving Old and Newly Formed HSP72-Containing Neurons in Focal Brain Ischemia Rats. Int J Med Sci 2019; 16:675-685. [PMID: 31217735 PMCID: PMC6566739 DOI: 10.7150/ijms.32962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Exercise preconditioning (EP+) is a useful and important procedure for the prevention of stroke. We aimed to ascertain whether EP+ protects against ischemic brain injury by preserving heat shock protein (HSP) 72-containing neurons in ischemic brain tissues. Methods: Adult male Sprague-Dawley rats (n=240) were used to assess the contribution of HSP72-containing neurons to the neuroprotective effects of EP+ on ischemic brain injury caused by transient middle cerebral artery occlusion. Results: Significant (P<0.05) increases in the percentages of both old HSP72-containing neurons (NeuN+HSP72 double positive cells) (18~20% vs. 40~50%) and newly formed HSP72-containing neurons (BrdU+NeuN+HSP72 triple positive cells); (2~3% vs. 16~20%) after 3 weeks of exercise coincided with significant (P<0.05) reductions in brain ischemia volume (250 mm3 vs. 100 mm3), brain edema (78% vs. 74% brain water content), blood-brain barrier disruption (1.5 μg/g vs. 0.7 μg/g tissue Evans Blue dye extravasation) and neurological motor deficits (neurological severity scores of 12 vs. 6 and maximal angles of 60° vs. 20°) in brain ischemia rats. Reductions in the percentages of both old (from 40~50% to 10~12%) and newly formed (from 18~20% to 5~7%) HSP72-containing neurons by gene silencing with an intracerebral injection of pSUPER small interfering RNA showed a significant (P<0.05) reversal in the neuroprotective outcomes. Our data provide an inverse correlation between the EP+-mediated increases in both old and newly formed HSP72-containing neurons and the extent of cerebral ischemic injury. Conclusions: The percentages of both old and newly formed HSP72-containing neurons are inversely correlated with the outcomes of ischemic brain injury. Additionally, preischemic treadmill exercise improves the outcomes of ischemic brain injury by preserving both the old and newly formed HSP72-containing neurons in rats.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Kao-Chang Lin
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
27
|
Ramos E, Romero A, Marco-Contelles J, López-Muñoz F, Del Pino J. Modulation of Heat Shock Response Proteins by ASS234, Targeted for Neurodegenerative Diseases Therapy. Chem Res Toxicol 2018; 31:839-842. [PMID: 30133257 DOI: 10.1021/acs.chemrestox.8b00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ASS234 is a new multitarget molecule with multiple neuroprotective actions that significantly elevate mRNA levels of NRF2 and HSF1 transcriptional factors and of HSP105, HSP90AB1, HSPA1A, HSPA1B, HSPA5, HSPA8, HSPA9, HSP60, DNAJA1, DNAJB1, DNAJB6, DNAJC3, DNAJC5, DNAJC6, HSPB1, HSPB2, HSPB5, HSPB6, HSPB8, and HSP10 heat shock proteins (HSPs) family members in SH-SY5Y cells. This NRF2 and HSF1 overexpression may explain the upregulation of both the antioxidant enzymes previously described and the members of the HSPs family observed. These findings suggest that ASS234 is a potent HSPs inductor, which might be beneficial for preventing protein misfolding aggregation and cell death in Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Complutense University of Madrid , 28040 Madrid , Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Complutense University of Madrid , 28040 Madrid , Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) , C/Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Francisco López-Muñoz
- School of Health , Camilo José Cela University , Villanueva de la Cañada, 28692 Madrid , Spain.,Neuropsychopharmacology Unit , "Hospital 12 de Octubre" Research Institute , 28041 Madrid , Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine , Complutense University of Madrid , 28040 Madrid , Spain
| |
Collapse
|
28
|
|
29
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
30
|
Zhang G, Guo X, Chen L, Li B, Gu B, Wang H, Wu G, Kong J, Chen W, Yu Y. Interferon-γ Promotes Neuronal Repair by Transplanted Neural Stem Cells in Ischemic Rats. Stem Cells Dev 2018; 27:355-366. [PMID: 29298609 DOI: 10.1089/scd.2017.0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke represents the leading cause of adult neurological disability, with no effective therapeutic strategy. Stem cell transplantation promises a new promising for treating stroke, through cell replacement and cytokine paracrine. However, due to the effect of hostile immune microenvironment, the survival and differentiation of stem cells are limited in vivo. Furthermore, the delayed inflammatory response to stroke induced secondary neurological injury. IFN-γ as pro-inflammatory cytokine has the potential to protect stem cell population during inflammatory response, as well as stimulates neurogenesis of stem cells. The purpose of this study was to investigate whether co-injection of neural stem cells and IFN-γ can improve therapeutic outcomes in ischemic stroke model. In this study, we found that IFN-γ did not interfere with the proliferation of neural stem cells (NSCs) in vitro and induced levels of subsequent neuronal differentiation significantly superior to those of other four cytokines BDNF, VEGF, TGF-β, and IGF-1. Co-delivery of IFN-γ (concentration: 50 ng) enhanced the effectiveness of NSC transplantation therapy in ischemic rats. And combined IFN-γ treatment significantly increased neurogenesis in vivo, with more BrdU/DCX dual-positive cells found in ischemic areas. Moreover, co-treatment with IFN-γ and NSCs exerted additional neurological benefits compared with NSC transplantation alone. In conclusion, low concentration of IFN-γ can promote the functions of transplanted NSCs and facilitate their ability of neurological repair. Thus, our findings suggest that co-delivery of NSCs and IFN-γ without genetic modification may be an effective, simple, and novel approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guilong Zhang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Xiaoyuan Guo
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Lukui Chen
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Bingqian Li
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Bin Gu
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Hong Wang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Guojian Wu
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Jun Kong
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Wanghao Chen
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Yongbo Yu
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| |
Collapse
|
31
|
Mo ZT, Li WN, Zhai YR, Gao SY. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury. PHARMACEUTICAL BIOLOGY 2017; 55:848-852. [PMID: 28140748 PMCID: PMC6130580 DOI: 10.1080/13880209.2017.1281968] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/22/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT The effects of icariin, a chief constituent of flavonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown. OBJECTIVE To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability. MATERIALS AND METHODS PC12 cells were treated with icariin (10-7, 10-6 or 10-5 mol/L) for 3 h (1 h before oxygen-glucose deprivation (OGD) plus 2 h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS After 2 h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3 ± 1.9 ng/L, HSP-60: 199 ± 16 ng/L, HSP-70: 195 ± 17 ng/L, NSE: 1487 ± 125 ng/L), and cell viability was significantly decreased (0.26 ± 0.03), while icariin (10-7, 10-6, or 10-5 mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1 ± 1.4, 22.6 ± 1.8, 15.7 ± 2.1, HSP-60: 100 ± 12, 89 ± 6, 113 ± 11, HSP-70: 139 ± 9, 118 ± 7, 95 ± 9 and NSE: 1121 ± 80, 1019 ± 52, 731 ± 88), and improved cell viability (0.36 ± 0.03, 0.38 ± 0.04, 0.37 ± 0.03) in OGD-treated PC12 cells. DISCUSSION AND CONCLUSION These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wen-Na Li
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yu-Rong Zhai
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shu-Ying Gao
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
32
|
Clausen BH, Lundberg L, Yli-Karjanmaa M, Martin NA, Svensson M, Alfsen MZ, Flæng SB, Lyngsø K, Boza-Serrano A, Nielsen HH, Hansen PB, Finsen B, Deierborg T, Illes Z, Lambertsen KL. Fumarate decreases edema volume and improves functional outcome after experimental stroke. Exp Neurol 2017; 295:144-154. [PMID: 28602832 DOI: 10.1016/j.expneurol.2017.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Oxidative stress and inflammation exacerbate tissue damage in the brain after ischemic stroke. Dimethyl-fumarate (DMF) and its metabolite monomethyl-fumarate (MMF) are known to stimulate anti-oxidant pathways and modulate inflammatory responses. Considering these dual effects of fumarates, we examined the effect of MMF treatment after ischemic stroke in mice. METHODS Permanent middle cerebral artery occlusion (pMCAO) was performed using adult, male C57BL/6 mice. Thirty minutes after pMCAO, 20mg/kg MMF was administered intravenously. Outcomes were evaluated 6, 24 and 48h after pMCAO. First, we examined whether a bolus of MMF was capable of changing expression of kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor (Nrf)2 in the infarcted brain. Next, we studied the effect of MMF on functional recovery. To explore mechanisms potentially influencing functional changes, we examined infarct volumes, edema formation, the expression of heat shock protein (Hsp)72, hydroxycarboxylic acid receptor 2 (Hcar2), and inducible nitric oxide synthase (iNOS) in the infarcted brain using real-time PCR and Western blotting. Concentrations of a panel of pro- and anti-inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, TNF) were examined in both the infarcted brain tissue and plasma samples 6, 24 and 48h after pMCAO using multiplex electrochemoluminiscence analysis. RESULTS Administration of MMF increased the protein level of Nrf2 6h after pMCAO, and improved functional outcome at 24 and 48h after pMCAO. MMF treatment did not influence infarct size, however reduced edema volume at both 24 and 48h after pMCAO. MMF treatment resulted in increased Hsp72 expression in the brain 6h after pMCAO. Hcar2 mRNA levels increased significantly 24h after pMCAO, but were not different between saline- and MMF-treated mice. MMF treatment also increased the level of the anti-inflammatory cytokine IL-10 in the brain and plasma 6h after pMCAO, and additionally reduced the level of the pro-inflammatory cytokine IL-12p70 in the brain at 24 and 48h after pMCAO. CONCLUSIONS A single intravenous bolus of MMF improved sensory-motor function after ischemic stroke, reduced edema formation, and increased the levels of the neuroprotective protein Hsp72 in the brain. The early increase in IL-10 and reduction in IL-12p70 in the brain combined with changes in systemic cytokine levels may also contribute to the functional recovery after pMCAO.
Collapse
Affiliation(s)
- Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Louise Lundberg
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark
| | - Minna Yli-Karjanmaa
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Nellie Anne Martin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark.
| | - Martina Svensson
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Maria Zeiler Alfsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Simon Bertram Flæng
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Kristina Lyngsø
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21 3rd, DK-5000 Odense C, Denmark.
| | - Antonio Boza-Serrano
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark.
| | - Pernille B Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21 3rd, DK-5000 Odense C, Denmark.
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| |
Collapse
|
33
|
Yoo K, Suh KY, Choi GH, Kwak IS, Seo DK, Kym D, Yoon H, Cho YS, Kim HO. Serial Changes of Heat Shock Protein 70 and Interleukin-8 in Burn Blister Fluid. Ann Dermatol 2017; 29:194-199. [PMID: 28392647 PMCID: PMC5383745 DOI: 10.5021/ad.2017.29.2.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022] Open
Abstract
Background It has been reported that heat shock protein 70 (HSP70) and interleukin-8 (IL-8) play an important role in cells during the wound healing process. However, there has been no report on the effect of HSP70 and IL-8 on the blisters of burn patients. Objective This study aimed to evaluate the serial quantitative changes of HSP70 and IL-8 in burn blisters. Methods Twenty-five burn patients were included, for a total of 36 cases: twenty cases on the first day, six cases on the second, five cases on the third, three cases on the fourth, and two cases on the fifth. A correlation analysis was performed to determine the relationship between the concentration of HSP70 and IL-8 and the length of the treatment period. Results The HSP70 concentration was the highest on the first day, after which it decreased down to near zero. Most HSP70 was generated during the first 12 hours after the burn accident. There was no correlation between the concentration of HSP70 on the first day and the length of the treatment period. No measurable concentration of IL-8 was detected before 5 hours, but the concentration started to increase after 11 hours. The peak value was measured on the fourth day. Conclusion While HSP70 increased in the first few hours and decreased afterwards, IL-8 was produced after 11 hours and increased afterward in burn blister fluid. These findings provide new evidence on serial changes of inflammatory mediators in burn blister fluid.
Collapse
Affiliation(s)
- Kicheol Yoo
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kang Yeol Suh
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Gi Hun Choi
- Department of Emergency Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - In-Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dong Kook Seo
- Department of Plasticsurgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dohern Kym
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hyeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yong Se Cho
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. J Clin Neurol 2017; 13:1-9. [PMID: 28079313 PMCID: PMC5242162 DOI: 10.3988/jcn.2017.13.1.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is caused by arterial occlusion due to a thrombus or an embolus. Such occlusion induces multiple and concomitant pathophysiological processes that involve bioenergetic failure, acidosis, loss of cell homeostasis, excitotoxicity, and disruption of the blood-brain barrier. All of these mechanisms contribute to neuronal death, mainly via apoptosis or necrosis. The immune system is involved in this process in the early phases after brain injury, which contributes to potential enlargement of the infarct size and involves the penumbra area. Whereas inflammation and the immune system both exert deleterious effects, they also contribute to brain protection by stimulating a preconditioning status and to the concomitant repair of the injured parenchyma. This review describes the main phases of the inflammatory process occurring after arterial cerebral occlusion, with an emphasis on the role of single mediators.
Collapse
Affiliation(s)
- Simone Vidale
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy.
| | - Arturo Consoli
- Department of Interventional Neurovascular Unit, Careggi University Hospital, Florence, Italy
| | - Marco Arnaboldi
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy
| | - Domenico Consoli
- Department of Neurology, G. Jazzolino Hospital, Vibo Valentia, Italy
| |
Collapse
|
35
|
Mechanisms of islet damage mediated by pancreas cold ischemia/rewarming. Cryobiology 2016; 73:126-34. [DOI: 10.1016/j.cryobiol.2016.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/25/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
|
36
|
Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6032306. [PMID: 27777645 PMCID: PMC5061974 DOI: 10.1155/2016/6032306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs) are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.
Collapse
|
37
|
Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72. Int Immunopharmacol 2016; 40:139-145. [PMID: 27588914 DOI: 10.1016/j.intimp.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
Baicalin is the main ingredient of traditional Chinese herbal medicine, Scutellaria baicalensis, which has been widely used clinically as an anti-inflammatory agent. However, molecular mechanism of action of this drug is not yet clear. In the present study, the protective mechanism of baicalin against lipopolysaccharide (LPS) induced inflammatory injury in cow mammary epithelial cells (CMECs) was explored. For this purpose, in vitro cultured CMECs were treated with baicalin (10μg/mL) and LPS (10μg/mL) for 24 and 12h, respectively, and the cell viability was measured by using cell counting kit-8 (CCK-8). The results revealed that LPS induced inflammatory responses, as p-p65/p65 and p-IκBα/IκBα ratios and TNF-α and IL-1β production was increased in the CMECs. Both Bcl-2/Bax ratio and cell viability were decreased and caspase-3 cleaved following LPS treatment, indicating apoptosis of CMECs. Moreover, both LPS and baicalin increased HSP72 expression of the CMECs. However, cellular inflammatory responses and apoptosis were significantly reduced in baicalin treated CMECs. In conclusion, baicalin ameliorated inflammation and apoptosis of the CMECs induced by LPS via inhibiting NF-κB activation and up regulation of HSP72.
Collapse
|
38
|
Liu W, Chen X, Zhang Y. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke. Am J Transl Res 2016; 8:3179-3187. [PMID: 27508039 PMCID: PMC4969455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES The purpose of our study was aimed to investigate the effects of microRNA-21 (miR-21) and microRNA-24 (miR-24) inhibitors on ischemic stroke. METHODS MiR-21 inhibitor or miR-24 inhibitor was delivered to Sprague Dawley (SD) rats by continuous intracerebroventricular infusion. Two days later, middle cerebral artery occlusion (MCAO) was performed to induce ischemic stroke. Quantitative real-time PCR was performed to confirm transfection efficiency. The number of apoptotic neurons was detected using TUNEL method. Besides, primary hippocampal or cortical neuronal cultures were prepared from embryonic day 16-18 C57BL/6 mice. These cells were transfected with miR-21 inhibitor, miR-24 inhibitor, or negative scramble RNA. Then the cell viability was detected after transfection, as well as the protein levels of Caspase-3, B-cell lymphoma (Bcl)-xL, and heat shock protein (HSP) 70. RESULTS Both the levels of miR-21 and miR-24 were significantly reduced by transfection with inhibitors compared to control group or scramble RNA group (both P < 0.05). The apoptosis was significantly reduced in both hippocampal neuron and cortical neuron by miR-24 inhibitor rather than miR-21 inhibitor (P < 0.05), while the cell viability was significantly increased compared to the control group or the scramble group (P < 0.05). In addition, the levels of Bcl-xL and HSP70 were significantly increased, and the levels of Caspase-3 were statistically decreased by transfection with miR-24 inhibitor. CONCLUSION MiRNA-24 but not miR-21 inhibitor prevents apoptosis in ischemic stroke by regulation of Bcl-xL, Caspase-3 and HSP70.
Collapse
Affiliation(s)
- Wansheng Liu
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Xiaosheng Chen
- Department of Neurological Rehabilitation, The 118th Hospital of Chinese People’s Liberation ArmyWenzhou 325000, Zhejiang, China
| | - Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|
39
|
Hunt NJ, Phillips L, Waters KA, Machaalani R. Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteomics 2016; 138:48-60. [PMID: 26926438 DOI: 10.1016/j.jprot.2016.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Matrix assisted laser desorption/ionisation imaging mass spectrometry (MALDI-IMS) has not previously been utilised to examine sudden infant death syndrome (SIDS). This study aimed to optimise MALDI IMS for use on archived formalin-fixed-paraffin-embedded human infant medulla tissue (n=6, controls; n=6, SIDS) to evaluate differences between multiple nuclei of the medulla by using high resolution IMS. Profiles were compared between SIDS and age/sex matched controls. LC-MALDI identified 55 proteins based on 321 peptides across all samples; 286 peaks were found using IMS, corresponding to these 55 proteins that were directly compared between controls and SIDS. Control samples were used to identify common peptides for neuronal/non-neuronal structures allowing identification of medullary regions. In SIDS, abnormal expression patterns of 41 peptides (p≤0.05) corresponding to 9 proteins were observed; these changes were confirmed with immunohistochemistry. The protein abnormalities varied amongst nuclei, with the majority of variations in the raphe nuclei, hypoglossal and pyramids. The abnormal proteins are not related to a previously identified neurological disease pathway but consist of developmental neuronal/glial/axonal growth, cell metabolism, cyto-architecture and apoptosis components. This suggests that SIDS infants have abnormal neurological development in the raphe nuclei, hypoglossal and pyramids of the brainstem, which may contribute to the pathogenesis of SIDS. BIOLOGICAL SIGNIFICANCE This study is the first to perform an imaging mass spectrometry investigation in the human brainstem and also within sudden infant death syndrome (SIDS). LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue; with abnormal expression patterns present for 41/285 and 9/55 proteins in SIDS using IMS. The abnormal proteins are critical for neurological development; with the impairment supporting the hypothesis that SIDS may be due to delayed neurological maturation. The brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids. This study highlights that basic cyto-architectural proteins are affected in SIDS and that abnormal expression of these proteins in other CNS disorders should be examined. KEY SENTENCES LC MALDI and MALDI IMS identified 55 proteins based on 285 peptides in both control and SIDS tissue. Abnormal expression patterns were present for 41/285 and 9/55 proteins in SIDS using IMS. Brainstem regions mostly affected included the raphe nuclei, hypoglossal and pyramids.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia
| | - Leo Phillips
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, NSW, Australia
| | - Karen A Waters
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia
| | - Rita Machaalani
- Department of Medicine, Central Clinical School, University of Sydney, NSW, Australia; BOSCH Institute of Biomedical Research, University of Sydney, NSW, Australia; The Children's Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
40
|
Stary CM, Hogan MC. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers. J Appl Physiol (1985) 2016; 120:1260-6. [PMID: 26869714 DOI: 10.1152/japplphysiol.01060.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: <3 mmHg) or AMP kinase activation had no effect on HSP72 mRNA levels. These results suggest that the intermittent cytosolic Ca(2+) transient that occurs with skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
41
|
Thompson JW, Dawson VL, Perez-Pinzon MA, Dawson TM. Intracellular Signaling. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Zhang X, Li J, Li C, Li Y, Zhu W, Zhou H, Ding Z, Liu L. HSPA12B attenuates acute lung injury during endotoxemia in mice. Int Immunopharmacol 2015; 29:599-606. [DOI: 10.1016/j.intimp.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 01/24/2023]
|
43
|
Serban AI, Stanca L, Geicu OI, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism? Int J Mol Sci 2015; 16:20100-17. [PMID: 26307981 PMCID: PMC4613191 DOI: 10.3390/ijms160920100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/12/2015] [Accepted: 08/06/2015] [Indexed: 01/21/2023] Open
Abstract
Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs–BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs–BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.
Collapse
Affiliation(s)
- Andreea Iren Serban
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
| | - Loredana Stanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
| | - Ovidiu Ionut Geicu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, district 5, Bucharest 050097, Romania.
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, district 5, Bucharest 050095, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, district 5, Bucharest 050095, Romania.
| |
Collapse
|
44
|
Thiopental protects human neuroblastoma cells from apoptotic cell death - Potential role of heat shock protein 70. Life Sci 2015; 139:40-5. [PMID: 26297444 DOI: 10.1016/j.lfs.2015.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/23/2022]
|
45
|
Li J, Yang F, Guo J, Zhang R, Xing X, Qin X. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia. Brain Res 2015; 1610:80-8. [PMID: 25858486 DOI: 10.1016/j.brainres.2015.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022]
Abstract
Neuro-inflammation plays an important role in global cerebral ischemia (GCI). The 72-kDa heat shock protein (Hsp70) has been reported to be involved in the inflammatory response of many central nervous system diseases. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, provide neuroprotection actions in a rat model of traumatic brain injury, and the beneficial effects of 17-AAG were specifically due to up-regulation of Hsp70. However, no experiments have tested whether 17-AAG has beneficial or harmful effects in the setting of GCI. The present study was designed to determine the hypothesis that administration of 17-AAG could attenuate cerebral infarction and improve neuronal survival, thereby ameliorating memory impairment in a rat model of GCI. Furthermore, to test whether any neuroprotective effect of 17-AAG was associated with inflammatory response and neuronal autophagy, we examined the expression of multiplex inflammatory cytokine levels as well as autophagy-associate protein in hippocampal CA1 of rat brain. Our results showed that post-GCI administration of 17-AAG significantly protected rats against GCI induced brain injury, and 17-AAG is also an effective antagonist of the inflammatory response and thereby ameliorates hippocampal CA1 neuronal autophagic death. We therefore believe that the present study provides novel clues in understanding the mechanisms by which 17-AAG exerts its neuroprotective activity in GCI. All data reveal that 17-AAG might be a potential neuroprotective agent for ischemic stroke.
Collapse
Affiliation(s)
- Jianxiong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei Yang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangfeng Xing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
46
|
Kacimi R, Yenari MA. Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia 2015; 63:1200-12. [PMID: 25802219 DOI: 10.1002/glia.22811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
Abstract
The inhibition of the 90-kDa heat shock protein (HSP90) leads to upregulation of the 70-kDa-inducible HSP70. HSP70 has been previously shown to be neuroprotective and anti-inflammatory. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents in cancer, presumably owing to their ability to upregulate HSP70. However, the effects of HSP90 inhibition in brain inflammation are still unclear. We investigate the effect of a panel of HSP90 inhibitors on endotoxin-activated microglia and eventual protection from brain-derived endothelial cells. Prior studies have shown that GA protects brain cells from oxidative stress. We show here that when astrocytes or microglial BV2 cells were pretreated with GA or other HSP90 inhibitors, endotoxin-induced cell death was reduced in cocultures of BV2 microglia and brain-derived endothelial cells (bEND.3). Endotoxin-stimulated BV2 cells led to increased nitric oxide (NO) and inducible nitric oxide synthase which was prevented by treatment with all HSP90 inhibitors. HSP90 inhibitors also prevented lipopolysaccharide (LPS)-induced BV2 cell death. We also found that HSP90 inhibition blocked nuclear translocation of nuclear factor kappa B and attenuated IκBα degradation, and inhibited LPS-activated JAK-STAT phosphorylation. We show that pharmacologic inhibition of HSP90 with subsequent HSP70 induction protects cells that comprise the cerebral vasculature against cell death owing to proinflammatory stimuli. This approach may have therapeutic potential in neurological conditions with an inflammatory component.
Collapse
Affiliation(s)
- Rachid Kacimi
- Department of Neurology, University of California, San Francisco & San Francisco Veterans Affairs Medical Center, San Francisco
| | | |
Collapse
|
47
|
Nathaniel TI, Williams-Hernandez A, Hunter AL, Liddy C, Peffley DM, Umesiri FE, Imeh-Nathaniel A. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models. Brain Res Bull 2015; 114:1-12. [PMID: 25738761 DOI: 10.1016/j.brainresbull.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States.
| | - Ashley Williams-Hernandez
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Anan L Hunter
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Caroline Liddy
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Dennis M Peffley
- University of South Carolina School of Medicine-Greenville, 701 Grove Road, Greenville, SC 29605, United States
| | - Francis E Umesiri
- Chemistry department, John Brown University, 2000 W. University Street, Siloam Springs, AR 72761, United States
| | - Adebobola Imeh-Nathaniel
- Department of Biology, North Greenville University, 7801 North Tigerville Road, Tigerville, SC 29688, United States
| |
Collapse
|
48
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
49
|
Loshaj-Shala A, Poceva Panovska A, Brezovska K, Beretta G, Suturkova L, Apostolski S. Involvement of serum HSP 70 in Guillain-Barré Syndrome: An exploratory study and a review of current literature. MAKEDONSKO FARMACEVTSKI BILTEN 2015. [DOI: 10.33320/maced.pharm.bull.2015.61.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved family of heat shock proteins (HSP) is responsible for protecting cells against different types of stress. Although the levels of HSP can be readily measured in serum, the levels of HSP 70 in patients Guillain-Barre Syndrome (GBS) have not been studied before. To this aim we investigate whether patients with GBS (n=21) had altered serum HSP 70 levels compared to healthy controls (HC, n=9) and to patients affected by other immune disorders such as multifocal motor neuropathy (MMN, n=4) and chronic inflammatory demyelinating polyneuropathy (CIDP, n=6). The highest HSP 70 value (15.78 ± 1.72 ng/mL) was found in one patient in the GBS group, although we have found that serum HSP70 levels were significantly higher in 2 out of the 21 GBS patients (9.5%). Hence, it is of interest to underline that the patient with the highest HSP70 level, had also the best recovery rate. Моrе extensive research is required in order to support the hypothesis that HSP 70 serum concentration may be a useful biomarker for the prediction of remission outcome for GBS patients.
Collapse
|
50
|
Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. ACTA ACUST UNITED AC 2014; 217:1024-39. [PMID: 24671961 DOI: 10.1242/jeb.085381] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many vertebrates are challenged by either chronic or acute episodes of low oxygen availability in their natural environments. Brain function is especially vulnerable to the effects of hypoxia and can be irreversibly impaired by even brief periods of low oxygen supply. This review describes recent research on physiological mechanisms that have evolved in certain vertebrate species to cope with brain hypoxia. Four model systems are considered: freshwater turtles that can survive for months trapped in frozen-over lakes, arctic ground squirrels that respire at extremely low rates during winter hibernation, seals and whales that undertake breath-hold dives lasting minutes to hours, and naked mole-rats that live in crowded burrows completely underground for their entire lives. These species exhibit remarkable specializations of brain physiology that adapt them for acute or chronic episodes of hypoxia. These specializations may be reactive in nature, involving modifications to the catastrophic sequelae of oxygen deprivation that occur in non-tolerant species, or preparatory in nature, preventing the activation of those sequelae altogether. Better understanding of the mechanisms used by these hypoxia-tolerant vertebrates will increase appreciation of how nervous systems are adapted for life in specific ecological niches as well as inform advances in therapy for neurological conditions such as stroke and epilepsy.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry and Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|