1
|
Gudlavalleti RH, Xi X, Legassey A, Chan PY, Li J, Burgess D, Giardina C, Papadimitrakopoulos F, Jain F. Highly Miniaturized, Low-Power CMOS ASIC Chip for Long-Term Continuous Glucose Monitoring. J Diabetes Sci Technol 2024; 18:1179-1184. [PMID: 36772835 PMCID: PMC11418493 DOI: 10.1177/19322968231153419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The objective of this work is to develop a highly miniaturized, low-power, biosensing platform for continuous glucose monitoring (CGM). This platform is based on an application-specific integrated circuit (ASIC) chip that interfaces with an amperometric glucose-sensing element. To reduce both size and power requirements, this custom ASIC chip was implemented using 65-nm complementary metal oxide semiconductor (CMOS) technology node. Interfacing this chip to a frequency-counting microprocessor with storage capabilities, a miniaturized transcutaneous CGM system can be constructed for small laboratory animals, with long battery life. METHOD A 0.45 mm × 1.12 mm custom ASIC chip was first designed and implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm CMOS technology node. This ASIC chip was then interfaced with a multi-layer amperometric glucose-sensing element and a frequency-counting microprocessor with storage capabilities. Variation in glucose levels generates a linear increase in frequency response of this ASIC chip. In vivo experiments were conducted in healthy Sprague Dawley rats. RESULTS This highly miniaturized, 65-nm custom ASIC chip has an overall power consumption of circa 36 µW. In vitro testing shows that this ASIC chip produces a linear (R2 = 99.5) frequency response to varying glucose levels (from 2 to 25 mM), with a sensitivity of 1278 Hz/mM. In vivo testing in unrestrained healthy rats demonstrated long-term CGM (six days/per charge) with rapid glucose response to glycemic variations induced by isoflurane anesthesia and tail vein injection. CONCLUSIONS The miniature footprint of the biosensor platform, together with its low-power consumption, renders this CMOS ASIC chip a versatile platform for a variety of highly miniaturized devices, intended to improve the quality of life of patients with type 1 and type 2 diabetes.
Collapse
Affiliation(s)
| | - Xiangyi Xi
- University of Connecticut, Storrs, CT, USA
| | | | | | - Jin Li
- University of Connecticut, Storrs, CT, USA
| | | | | | | | - Faquir Jain
- University of Connecticut, Storrs, CT, USA
- Biorasis Inc., Storrs, CT, USA
| |
Collapse
|
2
|
Hönigsperger C, Storm JF, Arena A. Laminar evoked responses in mouse somatosensory cortex suggest a special role for deep layers in cortical complexity. Eur J Neurosci 2024; 59:752-770. [PMID: 37586411 DOI: 10.1111/ejn.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.
Collapse
Affiliation(s)
| | - Johan F Storm
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Kim G, Nakamura M, Cho JH, Nam S, Jang IS. Sevoflurane modulation of tetrodotoxin-resistant Na+ channels in small-sized dorsal root ganglion neurons of rats. Neuroreport 2021; 32:1335-1340. [PMID: 34718245 DOI: 10.1097/wnr.0000000000001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Volatile anesthetics are widely used for general anesthesia during surgical operations. Voltage-gated Na+ channels expressed in central neurons are major targets for volatile anesthetics; but it is unclear whether these drugs modulate native tetrodotoxin-resistant (TTX-R) Na+ channels, which are involved in the development and maintenance of inflammatory pain. METHODS In this study, we examined the effects of sevoflurane on TTX-R Na+ currents (INa) in acutely isolated rat dorsal root ganglion neurons, using a whole-cell patch-clamp technique. RESULTS Sevoflurane slightly potentiated the peak amplitude of transient TTX-R INa but more potently inhibited slow voltage-ramp-induced persistent INa in a concentration-dependent manner. Sevoflurane (0.86 ± 0.02 mM) (1) slightly shifted the steady-state fast inactivation relationship to hyperpolarizing ranges without affecting the voltage-activation relationship, (2) reduced the extent of use-dependent inhibition of Na+ channels, (3) accelerated the onset of inactivation and (4) delayed the recovery from inactivation of TTX-R Na+ channels. Thus, sevoflurane has diverse effects on TTX-R Na+ channels expressed in nociceptive neurons. CONCLUSIONS The present results suggest that the inhibition of persistent INa and the modulation of the voltage dependence and inactivation might be, at least in part, responsible for the analgesic effects elicited by sevoflurane.
Collapse
Affiliation(s)
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | | | | | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Yang E, Bu W, Suma A, Carnevale V, Grasty KC, Loll PJ, Woll K, Bhanu N, Garcia BA, Eckenhoff RG, Covarrubias M. Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels. ACS Chem Neurosci 2021; 12:3898-3914. [PMID: 34607428 DOI: 10.1021/acschemneuro.1c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.
Collapse
Affiliation(s)
- Elaine Yang
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Antonio Suma
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
- Dipartimento di Fisica, Universit̀a di Bari, and Sezione INFN di Bari, via Amendola 173, Bari 70126, Italy
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kimberly C. Grasty
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Patrick J. Loll
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Kellie Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Natarajan Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
- Bluemle Life Sciences Building, 233 S 10th Street, Room 231, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
5
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
6
|
Sevoflurane excites nociceptive sensory neurons by inhibiting K + conductances in rats. Neurosci Lett 2021; 756:135951. [PMID: 33984431 DOI: 10.1016/j.neulet.2021.135951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Sevoflurane, which is preferentially used as a day-case anesthetic based on its low blood solubility, acts on the central nervous system and exerts analgesic effects. However, it still remains unknown whether sevoflurane affects the excitability of nociceptive sensory neurons. Therefore, we conducted this study to examine the effects of sevoflurane on the excitability of small-sized dorsal root ganglion (DRG) neurons of rats using the whole-cell patch-clamp technique. In a voltage-clamp condition, sevoflurane elicited the membrane current in a concentration-dependent manner, in which the reversal potential was similar to the equilibrium potential of K+. In a current-clamp condition, sevoflurane directly depolarized the membrane potentials in a concentration-dependent manner. Moreover, at a clinically relevant concentration, sevoflurane decreased the threshold for action potential generation. These findings suggest that sevoflurane acts on the leak K+ channels to increase the excitability of DRG neurons. Sevoflurane increased the half-width of single action potentials, which resulted from the inhibition of voltage-gated K+ currents, including the fast inactivating A-type and non-inactivating delayed rectifier K+ currents. Our study indicates that sevoflurane could exhibit pronociceptive effects on nociceptive sensory neurons by inhibiting K+ conductances.
Collapse
|
7
|
The effects of the general anesthetic sevoflurane on neurotransmission: an experimental and computational study. Sci Rep 2021; 11:4335. [PMID: 33619298 PMCID: PMC7900247 DOI: 10.1038/s41598-021-83714-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
The brain functions can be reversibly modulated by the action of general anesthetics. Despite a wide number of pharmacological studies, an extensive analysis of the cellular determinants of anesthesia at the microcircuits level is still missing. Here, by combining patch-clamp recordings and mathematical modeling, we examined the impact of sevoflurane, a general anesthetic widely employed in the clinical practice, on neuronal communication. The cerebellar microcircuit was used as a benchmark to analyze the action mechanisms of sevoflurane while a biologically realistic mathematical model was employed to explore at fine grain the molecular targets of anesthetic analyzing its impact on neuronal activity. The sevoflurane altered neurotransmission by strongly increasing GABAergic inhibition while decreasing glutamatergic NMDA activity. These changes caused a notable reduction of spike discharge in cerebellar granule cells (GrCs) following repetitive activation by excitatory mossy fibers (mfs). Unexpectedly, sevoflurane altered GrCs intrinsic excitability promoting action potential generation. Computational modelling revealed that this effect was triggered by an acceleration of persistent sodium current kinetics and by an increase in voltage dependent potassium current conductance. The overall effect was a reduced variability of GrCs responses elicited by mfs supporting the idea that sevoflurane shapes neuronal communication without silencing neural circuits.
Collapse
|
8
|
Volatile Anesthetics Activate a Leak Sodium Conductance in Retrotrapezoid Nucleus Neurons to Maintain Breathing during Anesthesia in Mice. Anesthesiology 2020; 133:824-838. [PMID: 32773689 DOI: 10.1097/aln.0000000000003493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics moderately depress respiratory function at clinically relevant concentrations. Phox2b-expressing chemosensitive neurons in the retrotrapezoid nucleus, a respiratory control center, are activated by isoflurane, but the underlying mechanisms remain unclear. The hypothesis of this study was that the sodium leak channel contributes to the volatile anesthetics-induced modulation of retrotrapezoid nucleus neurons and to respiratory output. METHODS The contribution of sodium leak channels to isoflurane-, sevoflurane-, and propofol-evoked activity of Phox2b-expressing retrotrapezoid nucleus neurons and respiratory output were evaluated in wild-type and genetically modified mice lacking sodium leak channels (both sexes). Patch-clamp recordings were performed in acute brain slices. Whole-body plethysmography was used to measure the respiratory activity. RESULTS Isoflurane at 0.42 to 0.50 mM (~1.5 minimum alveolar concentration) increased the sodium leak channel-mediated holding currents and conductance from -75.0 ± 12.9 to -130.1 ± 34.9 pA (mean ± SD, P = 0.002, n = 6) and 1.8 ± 0.5 to 3.6 ± 1.0 nS (P = 0.001, n = 6), respectively. At these concentrations, isoflurane increased activity of Phox2b-expressing retrotrapezoid nucleus neurons from 1.1 ± 0.2 to 2.8 ± 0.2 Hz (P < 0.001, n = 5), which was eliminated by bath application of gadolinium or genetic silencing of sodium leak channel. Genetic silencing of sodium leak channel in the retrotrapezoid nucleus resulted in a diminished ventilatory response to carbon dioxide in mice under control conditions and during isoflurane anesthesia. Sevoflurane produced an effect comparable to that of isoflurane, whereas propofol did not activate sodium leak channel-mediated holding conductance. CONCLUSIONS Isoflurane and sevoflurane increase neuronal excitability of chemosensitive retrotrapezoid nucleus neurons partly by enhancing sodium leak channel conductance. Sodium leak channel expression in the retrotrapezoid nucleus is required for the ventilatory response to carbon dioxide during anesthesia by isoflurane and sevoflurane, thus identifying sodium leak channel as a requisite determinant of respiratory output during anesthesia of volatile anesthetics. EDITOR’S PERSPECTIVE
Collapse
|
9
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Horishita T, Ogata Y, Horishita R, Fukui R, Moriwaki K, Ueno S, Yanagihara N, Uezono Y, Sudo Y, Minami K. Carvacrol inhibits the neuronal voltage-gated sodium channels Na v1.2, Na v1.6, Na v1.3, Na v1.7, and Na v1.8 expressed in Xenopus oocytes with different potencies. J Pharmacol Sci 2020; 142:140-147. [PMID: 31982332 DOI: 10.1016/j.jphs.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Carvacrol is the predominant monoterpene in essential oils from many aromatic plants. Several animal studies showing analgesic effects of carvacrol indicate potential of carvacrol as a new medication for patients with refractory pain. Voltage-gated sodium channels (Nav) are thought to have crucial roles in the development of inflammatory and neuropathic pain, but there is limited information about whether the analgesic mechanism of carvacrol involves Nav. We used whole-cell, two-electrode, voltage-clamp techniques to examine the effects of carvacrol on sodium currents in Xenopus oocytes expressing α subunits of Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8. Carvacrol dose-dependently suppressed sodium currents at a holding potential that induced half-maximal current. The half-maximal inhibitory concentration values for Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 were 233, 526, 215, 367, and 824 μmol/L, respectively, indicating that carvacrol had more potent inhibitory effects towards Nav1.2 and Nav1.6 than Nav1.3, Nav1.7, and Nav1.8. Gating analysis showed a depolarizing shift of the activation curve and a hyperpolarizing shift of the inactivation curve in all five α subunits following carvacrol treatment. Furthermore, carvacrol exhibits a use-dependent block for all five α Nav subunits. These findings provide a better understanding of the mechanisms associated with the analgesic effect of carvacrol.
Collapse
Affiliation(s)
- Takafumi Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Yuichi Ogata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiko Horishita
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryo Fukui
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kuniaki Moriwaki
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobuyuki Yanagihara
- Laboratory of Pharmacology, Faculty of Food and Nutrition, Kyushu Nutrition Welfare University, Kitakyushu, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuka Sudo
- Department of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | |
Collapse
|
11
|
Isoflurane Modulates Hippocampal Cornu Ammonis Pyramidal Neuron Excitability by Inhibition of Both Transient and Persistent Sodium Currents in Mice. Anesthesiology 2020; 131:94-104. [PMID: 31166240 DOI: 10.1097/aln.0000000000002753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Volatile anesthetics inhibit presynaptic voltage-gated sodium channels to reduce neurotransmitter release, but their effects on excitatory neuron excitability by sodium current inhibition are unclear. The authors hypothesized that inhibition of transient and persistent neuronal sodium currents by the volatile anesthetic isoflurane contributes to reduced hippocampal pyramidal neuron excitability. METHODS Whole-cell patch-clamp recordings of sodium currents of hippocampal cornu ammonis pyramidal neurons were performed in acute mouse brain slices. The actions of isoflurane on both transient and persistent sodium currents were analyzed at clinically relevant concentrations of isoflurane. RESULTS The median inhibitory concentration of isoflurane for inhibition of transient sodium currents was 1.0 ± 0.3 mM (~3.7 minimum alveolar concentration [MAC]) from a physiologic holding potential of -70 mV. Currents from a hyperpolarized holding potential of -120 mV were minimally inhibited (median inhibitory concentration = 3.6 ± 0.7 mM, ~13.3 MAC). Isoflurane (0.55 mM; ~2 MAC) shifted the voltage-dependence of steady-state inactivation by -6.5 ± 1.0 mV (n = 11, P < 0.0001), but did not affect the voltage-dependence of activation. Isoflurane increased the time constant for sodium channel recovery from 7.5 ± 0.6 to 12.7 ± 1.3 ms (n = 13, P < 0.001). Isoflurane also reduced persistent sodium current density (median inhibitory concentration = 0.4 ± 0.1 mM, ~1.5 MAC) and resurgent currents. Isoflurane (0.55 mM; ~2 MAC) reduced action potential amplitude, and hyperpolarized resting membrane potential from -54.6 ± 2.3 to -58.7 ± 2.1 mV (n = 16, P = 0.001). CONCLUSIONS Isoflurane at clinically relevant concentrations inhibits both transient and persistent sodium currents in hippocampal cornu ammonis pyramidal neurons. These mechanisms may contribute to reductions in both hippocampal neuron excitability and synaptic neurotransmission.
Collapse
|
12
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
13
|
Desflurane and Surgery Exposure During Pregnancy Decrease Synaptic Integrity and Induce Functional Deficits in Juvenile Offspring Mice. Neurochem Res 2019; 45:418-427. [DOI: 10.1007/s11064-019-02932-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
|
14
|
Denomme N, Hull JM, Mashour GA. Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness. Pharmacol Rev 2019; 71:450-466. [PMID: 31471460 DOI: 10.1124/pr.118.016592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite continuous clinical use for more than 170 years, the mechanism of general anesthetics has not been completely characterized. In this review, we focus on the role of voltage-gated sodium channels in the sedative-hypnotic actions of halogenated ethers, describing the history of anesthetic mechanisms research, the basic neurobiology and pharmacology of voltage-gated sodium channels, and the evidence for a mechanistic interaction between halogenated ethers and sodium channels in the induction of unconsciousness. We conclude with a more integrative perspective of how voltage-gated sodium channels might provide a critical link between molecular actions of the halogenated ethers and the more distributed network-level effects associated with the anesthetized state across species.
Collapse
Affiliation(s)
- Nicholas Denomme
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - Jacob M Hull
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - George A Mashour
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Zhou C, Johnson KW, Herold KF, Hemmings HC. Differential Inhibition of Neuronal Sodium Channel Subtypes by the General Anesthetic Isoflurane. J Pharmacol Exp Ther 2019; 369:200-211. [PMID: 30792243 DOI: 10.1124/jpet.118.254938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/19/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics depress neurotransmitter release in a brain region- and neurotransmitter-selective manner by unclear mechanisms. Voltage-gated sodium channels (Navs), which are coupled to synaptic vesicle exocytosis, are inhibited by volatile anesthetics through reduction of peak current and modulation of gating. Subtype-selective effects of anesthetics on Nav might contribute to observed neurotransmitter-selective anesthetic effects on release. We analyzed anesthetic effects on Na+ currents mediated by the principal neuronal Nav subtypes Nav1.1, Nav1.2, and Nav1.6 heterologously expressed in ND7/23 neuroblastoma cells using whole-cell patch-clamp electrophysiology. Isoflurane at clinically relevant concentrations induced a hyperpolarizing shift in the voltage dependence of steady-state inactivation and slowed recovery from fast inactivation in all three Nav subtypes, with the voltage of half-maximal steady-state inactivation significantly more positive for Nav1.1 (-49.7 ± 3.9 mV) than for Nav1.2 (-57.5 ± 1.2 mV) or Nav1.6 (-58.0 ± 3.8 mV). Isoflurane significantly inhibited peak Na+ current (I Na) in a voltage-dependent manner: at a physiologically relevant holding potential of -70 mV, isoflurane inhibited peak I Na of Nav1.2 (16.5% ± 5.5%) and Nav1.6 (18.0% ± 7.8%), but not of Nav1.1 (1.2% ± 0.8%). Since Nav subtypes are differentially expressed both between neuronal types and within neurons, greater inhibition of Nav1.2 and Nav1.6 compared with Nav1.1 could contribute to neurotransmitter-selective effects of isoflurane on synaptic transmission.
Collapse
Affiliation(s)
- Cheng Zhou
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Kenneth W Johnson
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Karl F Herold
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Hugh C Hemmings
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| |
Collapse
|
17
|
Palanca BJA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth 2019; 119:573-582. [PMID: 29121298 DOI: 10.1093/bja/aex244] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
Sevoflurane, a volatile anaesthetic agent well-tolerated for inhalation induction, provides a useful opportunity to elucidate the processes whereby halogenated ethers disrupt consciousness and cognition. Multiple molecular targets of sevoflurane have been identified, complementing imaging and electrophysiologic markers for the mechanistically obscure progression from wakefulness to unconsciousness. Recent investigations have more precisely detailed scalp EEG activity during this transition, with practical clinical implications. The relative timing of scalp potentials in frontal and parietal EEG signals suggests that sevoflurane might perturb the propagation of neural information between underlying cortical regions. Spatially distributed brain activity during general anaesthesia has been further investigated with positron emission tomography (PET) and resting-state functional magnetic resonance imaging (fMRI). Combined EEG and PET investigations have identified changes in cerebral blood flow and metabolic activity in frontal, parietal, and thalamic regions during sevoflurane-induced loss of consciousness. More recent fMRI investigations have revealed that sevoflurane weakens the signal correlations among brain regions that share functionality and specialization during wakefulness. In particular, two such resting-state networks have shown progressive breakdown in intracortical and thalamocortical connectivity with increasing anaesthetic concentrations: the Default Mode Network (introspection and episodic memory) and the Ventral Attention Network (orienting of attention to salient feature of the external world). These data support the hypotheses that perturbations in temporally correlated activity across brain regions contribute to the transition between states of sevoflurane sedation and general anaesthesia.
Collapse
Affiliation(s)
- B J A Palanca
- Division of Biology and Biomedical Sciences.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - M S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G A Mashour
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. Propofol inhibits prokaryotic voltage-gated Na + channels by promoting activation-coupled inactivation. J Gen Physiol 2018; 150:1299-1316. [PMID: 30018038 PMCID: PMC6122921 DOI: 10.1085/jgp.201711924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
19
|
Brown PL, Zanos P, Wang L, Elmer GI, Gould TD, Shepard PD. Isoflurane but Not Halothane Prevents and Reverses Helpless Behavior: A Role for EEG Burst Suppression? Int J Neuropsychopharmacol 2018; 21:777-785. [PMID: 29554264 PMCID: PMC6070045 DOI: 10.1093/ijnp/pyy029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The volatile anesthetic isoflurane may exert a rapid and long-lasting antidepressant effect in patients with medication-resistant depression. The mechanism underlying the putative therapeutic actions of the anesthetic have been attributed to its ability to elicit cortical burst suppression, a distinct EEG pattern with features resembling the characteristic changes that occur following electroconvulsive therapy. It is currently unknown whether the antidepressant actions of isoflurane are shared by anesthetics that do not elicit cortical burst suppression. METHODS In vivo electrophysiological techniques were used to determine the effects of isoflurane and halothane, 2 structurally unrelated volatile anesthetics, on cortical EEG. The effects of anesthesia with either halothane or isoflurane were also compared on stress-induced learned helplessness behavior in rats and mice. RESULTS Isoflurane, but not halothane, anesthesia elicited a dose-dependent cortical burst suppression EEG in rats and mice. Two hours of isoflurane, but not halothane, anesthesia reduced the incidence of learned helplessness in rats evaluated 2 weeks following exposure. In mice exhibiting a learned helplessness phenotype, a 1-hour exposure to isoflurane, but not halothane, reversed escape failures 24 hours following burst suppression anesthesia. CONCLUSIONS These results are consistent with a role for cortical burst suppression in mediating the antidepressant effects of isoflurane. They provide rationale for additional mechanistic studies in relevant animal models as well as a properly controlled clinical evaluation of the therapeutic benefits associated with isoflurane anesthesia in major depressive disorder.
Collapse
Affiliation(s)
- P Leon Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Leiming Wang
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Greg I Elmer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Paul D Shepard
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland,Correspondence: Paul D. Shepard, PhD, Department of Psychiatry, Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, MD ()
| |
Collapse
|
20
|
Gianti E, Carnevale V. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:25-59. [DOI: 10.1016/bs.mie.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lin SH, Lai HY, Lo YC, Chou C, Chou YT, Yang SH, Sun I, Chen BW, Wang CF, Liu GT, Jaw FS, Chen SY, Chen YY. Decreased Power but Preserved Bursting Features of Subthalamic Neuronal Signals in Advanced Parkinson's Patients under Controlled Desflurane Inhalation Anesthesia. Front Neurosci 2017; 11:701. [PMID: 29311782 PMCID: PMC5733027 DOI: 10.3389/fnins.2017.00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) surgery of the subthalamic nucleus (STN) under general anesthesia (GA) had been used in Parkinson's disease (PD) patients who are unable tolerate awake surgery. The effect of anesthetics on intraoperative microelectrode recording (MER) remains unclear. Understanding the effect of anesthetics on MER is important in performing STN DBS surgery with general anesthesia. In this study, we retrospectively performed qualitive and quantitative analysis of STN MER in PD patients received STN DBS with controlled desflurane anesthesia or LA and compared their clinical outcome. From January 2005 to March 2006, 19 consecutive PD patients received bilateral STN DBS surgery in Hualien Tzu-Chi hospital under either desflurane GA (n = 10) or LA (n = 9). We used spike analysis (frequency and modified burst index [MBI]) and the Hilbert transform to obtain signal power measurements for background and spikes, and compared the characterizations of intraoperative microelectrode signals between the two groups. Additionally, STN firing pattern characteristics were determined using a combined approach based on the autocorrelogram and power spectral analysis, which was employed to investigate differences in the oscillatory activities between the groups. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) before and after surgery. The results revealed burst firing was observed in both groups. The firing frequencies were greater in the LA group and MBI was comparable in both groups. Both the background and spikes were of significantly greater power in the LA group. The power spectra of the autocorrelograms were significantly higher in the GA group between 4 and 8 Hz. Clinical outcomes based on the UPDRS were comparable in both groups before and after DBS surgery. Under controlled light desflurane GA, burst features of the neuronal firing patterns are preserved in the STN, but power is reduced. Enhanced low-frequency (4–8 Hz) oscillations in the MERs for the GA group could be a characteristic signature of desflurane's effect on neurons in the STN.
Collapse
Affiliation(s)
- Sheng-Huang Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chin Chou
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yi-Ting Chou
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical and Computer Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - I Sun
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming University, Taipei, China
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Guan-Tze Liu
- Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Liang P, Li F, Liu J, Liao D, Huang H, Zhou C. Sevoflurane activates hippocampal CA3 kainate receptors (Gluk2) to induce hyperactivity during induction and recovery in a mouse model. Br J Anaesth 2017; 119:1047-1054. [PMID: 28981700 DOI: 10.1093/bja/aex043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In addition to general anaesthetic effects, sevoflurane can also induce hyperactive behaviours during induction and recovery, which may contribute to neurotoxicity; however, the mechanism of such effects is unclear. Volatile anaesthetics including isoflurane have been found to activate the kainate (GluK2) receptor. We developed a novel mouse model and further explored the involvement of kainate (GluK2) receptors in sevoflurane-induced hyperactivity. METHODS Maximal speed, mean speed, total movement distance and resting percentage of C57BL/6 mice were quantitatively measured using behavioural tracking software before and after sevoflurane anaesthesia. Age dependence of this model was also analysed and sevoflurane-induced hyperactivity was evaluated after intracerebral injection of the GluK2 receptor blocker NS-102. Neurones from the hippocampal CA3 region were used to undertake in vitro electrophysiological measurement of kainate currents and miniature excitatory postsynaptic potential (mEPSP). RESULTS Sevoflurane induced significant hyperactivities in mice under sevoflurane 1% anaesthesia and during the recovery period, characterized as increased movement speed and total distance. The hyperactivity was significantly increased in young mice compared with adults (P<0.01) and pre-injection of NS-102 significantly prevented this sevoflurane-induced hyperactivity. In electrophysiological experiments, sevoflurane significantly increased the frequency of mEPSP at low concentrations and evoked kainate currents at high concentrations. CONCLUSIONS We developed a behavioural model in mice that enabled characterization of sevoflurane-induced hyperactivity. The kainate (GluK2) receptor antagonist attenuated these sevoflurane-induced hyperactivities in vivo, suggesting that kainate receptors might be the underlying therapeutic targets for sevoflurane-induced hyperactivities in general anaesthesia.
Collapse
Affiliation(s)
- P Liang
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, China
| | - F Li
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
| | - J Liu
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, China
| | - D Liao
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
| | - H Huang
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
- Department of Anaesthesiology, West China Second Hospital of Sichuan University, Sichuan, China
| | - C Zhou
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, China
| |
Collapse
|
23
|
Herold KF, Andersen OS, Hemmings HC. Divergent effects of anesthetics on lipid bilayer properties and sodium channel function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:617-626. [PMID: 28695248 DOI: 10.1007/s00249-017-1239-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
General anesthetics revolutionized medicine by allowing surgeons to perform more complex and much longer procedures. This widely used class of drugs is essential to patient care, yet their exact molecular mechanism(s) are incompletely understood. One early hypothesis over a century ago proposed that nonspecific interactions of anesthetics with the lipid bilayer lead to changes in neuronal function via effects on membrane properties. This model was supported by the Meyer-Overton correlation between anesthetic potency and lipid solubility and despite more recent evidence for specific protein targets, in particular ion-channels, lipid bilayer-mediated effects of anesthetics is still under debate. We therefore tested a wide range of chemically diverse general anesthetics on lipid bilayer properties using a sensitive and functional gramicidin-based assay. None of the tested anesthetics altered lipid bilayer properties at clinically relevant concentrations. Some anesthetics did affect the bilayer, though only at high supratherapeutic concentrations, which are unlikely relevant for clinical anesthesia. These results suggest that anesthetics directly interact with membrane proteins without altering lipid bilayer properties at clinically relevant concentrations. Voltage-gated Na+ channels are potential anesthetic targets and various isoforms are inhibited by a wide range of volatile anesthetics. They inhibit channel function by reducing peak Na+ current and shifting steady-state inactivation toward more hyperpolarized potentials. Recent advances in crystallography of prokaryotic Na+ channels, which are sensitive to volatile anesthetics, together with molecular dynamics simulations and electrophysiological studies will help identify potential anesthetic interaction sites within the channel protein itself.
Collapse
Affiliation(s)
- Karl F Herold
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Devoto JC, Alcalde JL, Otayza F, Sepulveda W. Anesthesia for myelomeningocele surgery in fetus. Childs Nerv Syst 2017; 33:1169-1175. [PMID: 28547209 DOI: 10.1007/s00381-017-3437-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Administering anesthesia for prenatal repair of myelomeningocele reveals several issues that are unique to this new form of treatment. This includes issues such as fetal well-being, surgical conditions and monitoring, among others. Exploring, analyzing, and understanding the different variables that are involved will help us reduce the high level of risk associated with this surgery. OBJECTIVE This review provides a systematic approach to the issues that are faced by anesthesiologists during fetal surgery.
Collapse
Affiliation(s)
- Juan Carlos Devoto
- Department of Anesthesiology, Fetal Surgery Program, Clínica las Condes, Lo fontecilla 441 Las Condes, 7591046, Santiago, Chile.
| | - Juan Luis Alcalde
- Department of Gynecology and Obstetrics, Fetal Surgery Program, Clínica Las Condes, Santiago, Chile
| | - Felipe Otayza
- Department of Neurosurgery, Fetal Surgery Program, Clínica Las Condes, Santiago, Chile
| | | |
Collapse
|
25
|
Sand RM, Gingrich KJ, Macharadze T, Herold KF, Hemmings HC. Isoflurane modulates activation and inactivation gating of the prokaryotic Na + channel NaChBac. J Gen Physiol 2017; 149:623-638. [PMID: 28416648 PMCID: PMC5460948 DOI: 10.1085/jgp.201611600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/04/2016] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of inhaled anesthetics on ion channel function are poorly understood. Sand et al. analyze macroscopic gating of the prokaryotic voltage-gated sodium channel, NaChBac, using a six-state kinetic scheme and demonstrate that isoflurane modulates microscopic gating properties. Voltage-gated Na+ channels (Nav) have emerged as important presynaptic targets for volatile anesthetic (VA) effects on synaptic transmission. However, the detailed biophysical mechanisms by which VAs modulate Nav function remain unclear. VAs alter macroscopic activation and inactivation of the prokaryotic Na+ channel, NaChBac, which provides a useful structural and functional model of mammalian Nav. Here, we study the effects of the common general anesthetic isoflurane on NaChBac function by analyzing macroscopic Na+ currents (INa) in wild-type (WT) channels and mutants with impaired (G229A) or enhanced (G219A) inactivation. We use a previously described six-state Markov model to analyze empirical WT and mutant NaChBac channel gating data. The model reproduces the mean empirical gating manifest in INa time courses and optimally estimates microscopic rate constants, valences (z), and fractional electrical distances (x) of forward and backward transitions. The model also reproduces gating observed for all three channels in the absence or presence of isoflurane, providing further validation. We show using this model that isoflurane increases forward activation and inactivation rate constants at 0 mV, which are associated with estimated chemical free energy changes of approximately −0.2 and −0.7 kcal/mol, respectively. Activation is voltage dependent (z ≈ 2e0, x ≈ 0.3), inactivation shows little voltage dependence, and isoflurane has no significant effect on either. Forward inactivation rate constants are more than 20-fold greater than backward rate constants in the absence or presence of isoflurane. These results indicate that isoflurane modulates NaChBac gating primarily by increasing forward activation and inactivation rate constants. These findings support accumulating evidence for multiple sites of anesthetic interaction with the channel.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Kevin J Gingrich
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Tamar Macharadze
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 .,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
26
|
Carnevale V, Klein ML. Small molecule modulation of voltage gated sodium channels. Curr Opin Struct Biol 2017; 43:156-162. [PMID: 28363194 DOI: 10.1016/j.sbi.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/28/2022]
Abstract
Voltage gated sodium channels are fundamental players in animals physiology. By triggering the depolarization of the lipid membrane they enable generation and propagation of the action potential. The involvement of these channels in numerous pathological conditions makes them relevant target for pharmaceutical intervention. Therefore, modulation of sodium conductance via small molecule binding constitutes a promising strategy to treat a large variety of diseases. However, this approach entails significant challenges: voltage gated sodium channels are complex nanomachines and the details of their workings have only recently started to become clear. Here we review - with emphasis on the computational studies - some of the major milestones in the long-standing search of a quantitative microscopic description of the molecular mechanism and modulation of voltage-gated sodium channels.
Collapse
Affiliation(s)
- Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
27
|
Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc Natl Acad Sci U S A 2017; 114:3109-3114. [PMID: 28265069 DOI: 10.1073/pnas.1611717114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10-100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.
Collapse
|
28
|
Covarrubias M, Barber AF, Carnevale V, Treptow W, Eckenhoff RG. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics. Biophys J 2016; 109:2003-11. [PMID: 26588560 DOI: 10.1016/j.bpj.2015.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Annika F Barber
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, Universidade de Brasilia, Brazil
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Castro Fonseca MD, Da Silva JH, Ferraz VP, Gomez RS, Guatimosim C. Comparative presynaptic effects of the volatile anesthetics sevoflurane and isoflurane at the mouse neuromuscular junction. Muscle Nerve 2015; 52:876-84. [DOI: 10.1002/mus.24589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Matheus De Castro Fonseca
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| | - Janice Henriques Da Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| | - Vany Perpetua Ferraz
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; MG Brasil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte MG Brasil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| |
Collapse
|
30
|
Pal D, Jones JM, Wisidagamage S, Meisler MH, Mashour GA. Reduced Nav1.6 Sodium Channel Activity in Mice Increases In Vivo Sensitivity to Volatile Anesthetics. PLoS One 2015; 10:e0134960. [PMID: 26252017 PMCID: PMC4529172 DOI: 10.1371/journal.pone.0134960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/16/2015] [Indexed: 11/22/2022] Open
Abstract
Nav1.6 is a major voltage-gated sodium channel in the central and peripheral nervous systems. Within neurons, the channel protein is concentrated at the axon initial segment and nodes of Ranvier, where it functions in initiation and propagation of action potentials. We examined the role of Nav1.6 in general anesthesia using two mouse mutants with reduced activity of Nav1.6, Scn8amedJ/medJ and Scn8a9J/9J. The mice were exposed to the general anesthetics isoflurane and sevoflurane in step-wise increments; the concentration required to produce loss of righting reflex, a surrogate for anesthetic-induced unconsciousness in rodents, was determined. Mice homozygous for these mutations exhibited increased sensitivity to both isoflurane and sevoflurane. The increased sensitivity was observed during induction of unconsciousness but not during the recovery phase, suggesting that the effect is not attributable to compromised systemic physiology. Electroencephalographic theta power during baseline waking was lower in mutants, suggesting decreased arousal and reduced neuronal excitability. This is the first report linking reduced activity of a specific voltage-gated sodium channel to increased sensitivity to general anesthetics in vivo.
Collapse
Affiliation(s)
- Dinesh Pal
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150, West Medical Center Drive, Ann Arbor, Michigan, United States of America
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie M. Jones
- Department of Human Genetics, University of Michigan, 4808 Medical Science Building 2, 1241 East Catherine Street, Ann Arbor, Michigan, United States of America
| | - Stella Wisidagamage
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150, West Medical Center Drive, Ann Arbor, Michigan, United States of America
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, 4808 Medical Science Building 2, 1241 East Catherine Street, Ann Arbor, Michigan, United States of America
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150, West Medical Center Drive, Ann Arbor, Michigan, United States of America
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
Guo J, Zhou C, Liang P, Huang H, Li F, Chen X, Liu J. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8748-8755. [PMID: 25674241 PMCID: PMC4313979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R(2) = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R(2) = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients).
Collapse
Affiliation(s)
- Jiao Guo
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Cheng Zhou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Peng Liang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Fengshan Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, P. R. China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
| |
Collapse
|
32
|
Herold KF, Sanford RL, Lee W, Schultz MF, Ingólfsson HI, Andersen OS, Hemmings HC. Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties. J Gen Physiol 2014; 144:545-60. [PMID: 25385786 PMCID: PMC4242807 DOI: 10.1085/jgp.201411172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023] Open
Abstract
Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Na(v)). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Na(v) function and lipid bilayer properties. We examined the effects of these agents on Na(v) in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Na(v) and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Na(v) function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia.
Collapse
Affiliation(s)
- Karl F Herold
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - R Lea Sanford
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - William Lee
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Margaret F Schultz
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Helgi I Ingólfsson
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Olaf S Andersen
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| | - Hugh C Hemmings
- Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065 Department of Anesthesiology, Department of Physiology and Biophysics, and Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
33
|
Neurosteroids Allopregnanolone Sulfate and Pregnanolone Sulfate Have Diverse Effect on the α Subunit of the Neuronal Voltage-gated Sodium Channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 Expressed in Xenopus Oocytes. Anesthesiology 2014; 121:620-31. [DOI: 10.1097/aln.0000000000000296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background:
The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels.
Methods:
Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits.
Results:
APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) μmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7.
Conclusion:
APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.
Collapse
|
34
|
Foadi N, Berger C, Pilawski I, Stoetzer C, Karst M, Haeseler G, Wegner F, Leffler A, Ahrens J. Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid. Anesth Analg 2014; 118:1238-45. [PMID: 24755846 DOI: 10.1213/ane.0000000000000188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The synthetic cannabinoid ajulemic acid has been demonstrated to alleviate pain in patients suffering from chronic neuropathic pain. Cannabinoids interact with several molecules within the pain circuit, including a potent inhibition of voltage-gated sodium channels. In this study, we closely characterized this property on neuronal and nonneuronal sodium channels. METHODS The inhibition of sodium inward currents by ajulemic acid was studied in vitro. Human embryonic kidney 293t cells were used as the expression system for Nav1.2, 1.3, 1.4, 1.5, 1.5N406K, 1.5F1760A, and 1.7; Nav1.8 was transiently expressed in ND7/23 cells. Nav1.2, Nav1.3, and Nav 1.8 were from rats, and Nav1.4, Nav1.5, and Nav1.7 were of human origin. Sodium currents were analyzed by means of the whole cell patch-clamp technique. The investigated concentrations of ajulemic acid were 0.1, 0.3, 1, 3, 10, and 30 μmol/L. RESULTS Ajulemic acid reversibly and concentration-dependently inhibited all voltage-gated sodium channel (Nav) isoforms investigated in this study, including Nav1.2, 1.3, 1.4, 1.5, 1.7, and 1.8. Tonic block of resting channels yielded half-maximal inhibitory concentration values between 2 and 9 μmol/L and was strongly enhanced on inactivated channels, suggesting state-dependent inhibition by ajulemic acid. Tonic block did not differ significantly when comparing Nav1.2 and Nav1.3, Nav1.4 and Nav1.5, and Nav1.7 and Nav1.8. Statistical analysis of other combinations of subunits (e.g., Nav1.2 and Nav1.4) by analysis of variance yielded a significant difference in block. Although we did not observe any relevant use-dependent block, ajulemic acid induced a strong hyperpolarizing shift of the voltage dependency of fast inactivation and modest shift of slow inactivation. The local anesthetic-insensitive Nav1.5 constructs N406K and F1760A displayed a preserved sensitivity to block by ajulemic acid. Finally, we found that low concentrations of ajulemic acid efficiently inhibited Navβ4 peptide-mediated resurgent currents in Nav1.5. CONCLUSIONS Our data suggest that block of sodium channels can be a relevant mechanism by which ajulemic acid alleviates neuropathic pain. The potent inhibition of resurgent currents and the preserved block on local anesthetic-insensitive channels indicates that ajulemic acid interacts with a conserved but yet unknown site of sodium channels.
Collapse
Affiliation(s)
- Nilufar Foadi
- From the *Department of Anesthesia and Critical Care Medicine, and † Department of Neurology and Clinical Neurophysiology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nowicki M, Baum P, Kosacka J, Stockinger M, Klöting N, Blüher M, Bechmann I, Toyka KV. Effects of isoflurane anesthesia on F-waves in the sciatic nerve of the adult rat. Muscle Nerve 2014; 50:257-61. [PMID: 24347162 DOI: 10.1002/mus.24150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Nerve conduction studies provide insights into the functional consequences of axonal and myelin pathology in peripheral neuropathies. We investigated whether isoflurane inhalation anesthesia alters F-wave latencies and F-persistence in the sciatic nerve of adult rats. METHODS Ten rats were investigated at 3 different isoflurane concentrations followed by ketamine-xylazine injection anesthesia. To assess F-wave latencies, a stimulation paradigm was chosen to minimize H-reflex masking of F-waves. RESULTS F-wave persistence rates were reduced with 3.5% isoflurane concentration at 4 and 10 Hz supramaximal stimulation and marginally reduced with 2.5% isoflurane when compared with ketamine-xylazine. F-wave amplitudes decreased progressively with rising stimulus frequency in all types of anesthesia and most at 3.5% isoflurane concentration. CONCLUSIONS The type of anesthesia and the stimulus repetition rate have an impact on some F-wave parameters. Higher isoflurane concentrations and repetition rates are not recommended in experimental studies using rat neuropathy models where F-waves are of interest.
Collapse
Affiliation(s)
- Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc Natl Acad Sci U S A 2014; 111:6726-31. [PMID: 24753583 DOI: 10.1073/pnas.1405768111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na(+) (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action.
Collapse
|
37
|
Okura D, Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Sata T. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. Anesth Analg 2014; 118:554-62. [PMID: 24557103 DOI: 10.1213/ane.0000000000000070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Anandamide is an endocannabinoid that regulates multiple physiological functions by pharmacological actions, in a manner similar to marijuana. Recently, much attention has been paid to the analgesic effect of endocannabinoids in terms of identifying new pharmacotherapies for refractory pain management, but the mechanisms of the analgesic effects of anandamide are still obscure. Voltage-gated sodium channels are believed to play important roles in inflammatory and neuropathic pain. We investigated the effects of anandamide on 4 neuronal sodium channel α subunits, Nav1.2, Nav1.6, Nav1.7, and Nav1.8, to explore the mechanisms underlying the antinociceptive effects of anandamide. METHODS We studied the effects of anandamide on Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits with β1 subunits by using whole-cell, 2-electrode, voltage-clamp techniques in Xenopus oocytes. RESULTS Anandamide inhibited sodium currents of all subunits at a holding potential causing half-maximal current (V1/2) in a concentration-dependent manner. The half-maximal inhibitory concentration values for Nav1.2, Nav1.6, Nav1.7, and Nav1.8 were 17, 12, 27, and 40 μmol/L, respectively, indicating an inhibitory effect on Nav1.6, which showed the highest potency. Anandamide raised the depolarizing shift of the activation curve as well as the hyperpolarizing shift of the inactivation curve in all α subunits, suggesting that sodium current inhibition was due to decreased activation and increased inactivation. Moreover, anandamide showed a use-dependent block in Nav1.2, Nav1.6, and Nav1.7 but not Nav1.8. CONCLUSION Anandamide inhibited the function of α subunits in neuronal sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8. These results help clarify the mechanisms of the analgesic effects of anandamide.
Collapse
Affiliation(s)
- Dan Okura
- From the *Department of Anesthesiology, School of Medicine; †Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, ‡Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Fukuoka; §Department of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo university of Science, Chiba; and ‖Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Diniz PHC, Guatimosim C, Binda NS, Costa FLP, Gomez MV, Gomez RS. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices. Cell Mol Neurobiol 2014; 34:71-81. [PMID: 24081560 DOI: 10.1007/s10571-013-9988-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/14/2013] [Indexed: 12/13/2022]
Abstract
GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics. In conclusion, the present study suggests that sevoflurane and halothane increase the accumulation of GABA by inducing the reverse transport of this neurotransmitter. Therefore, volatile anesthetics could interfere with neuronal excitability by increasing the action of GABA on synaptic and extrasynaptic GABA receptors.
Collapse
Affiliation(s)
- Paulo H C Diniz
- Programa de Pós-graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
40
|
Raju SG, Barber AF, LeBard DN, Klein ML, Carnevale V. Exploring volatile general anesthetic binding to a closed membrane-bound bacterial voltage-gated sodium channel via computation. PLoS Comput Biol 2013; 9:e1003090. [PMID: 23785267 PMCID: PMC3681623 DOI: 10.1371/journal.pcbi.1003090] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/26/2013] [Indexed: 01/07/2023] Open
Abstract
Despite the clinical ubiquity of anesthesia, the molecular basis of anesthetic action is poorly understood. Amongst the many molecular targets proposed to contribute to anesthetic effects, the voltage gated sodium channels (VGSCs) should also be considered relevant, as they have been shown to be sensitive to all general anesthetics tested thus far. However, binding sites for VGSCs have not been identified. Moreover, the mechanism of inhibition is still largely unknown. The recently reported atomic structures of several members of the bacterial VGSC family offer the opportunity to shed light on the mechanism of action of anesthetics on these important ion channels. To this end, we have performed a molecular dynamics "flooding" simulation on a membrane-bound structural model of the archetypal bacterial VGSC, NaChBac in a closed pore conformation. This computation allowed us to identify binding sites and access pathways for the commonly used volatile general anesthetic, isoflurane. Three sites have been characterized with binding affinities in a physiologically relevant range. Interestingly, one of the most favorable sites is in the pore of the channel, suggesting that the binding sites of local and general anesthetics may overlap. Surprisingly, even though the activation gate of the channel is closed, and therefore the pore and the aqueous compartment at the intracellular side are disconnected, we observe binding of isoflurane in the central cavity. Several sampled association and dissociation events in the central cavity provide consistent support to the hypothesis that the "fenestrations" present in the membrane-embedded region of the channel act as the long-hypothesized hydrophobic drug access pathway.
Collapse
Affiliation(s)
- S. G. Raju
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Annika F. Barber
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David N. LeBard
- Department of Chemistry, Yeshiva University, New York, New York, United States of America
| | - Michael L. Klein
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
41
|
Barber AF, Liang Q, Covarrubias M. Novel activation of voltage-gated K(+) channels by sevoflurane. J Biol Chem 2012; 287:40425-32. [PMID: 23038249 DOI: 10.1074/jbc.m112.405787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Halogenated inhaled anesthetics modulate voltage-gated ion channels by unknown mechanisms. RESULTS Biophysical analyses revealed novel activation of K(v) channels by the inhaled anesthetic sevoflurane. CONCLUSION K(v) channel activation by sevoflurane results from the positive allosteric modulation of activation gating. SIGNIFICANCE The unique activation of K(v) channels by sevoflurane demonstrates novel anesthetic specificity and offers new insights into allosteric modulation of channel gating. Voltage-gated ion channels are modulated by halogenated inhaled general anesthetics, but the underlying molecular mechanisms are not understood. Alkanols and halogenated inhaled anesthetics such as halothane and isoflurane inhibit the archetypical voltage-gated Kv3 channel homolog K-Shaw2 by stabilizing the resting/closed states. By contrast, sevoflurane, a more heavily fluorinated ether commonly used in general anesthesia, specifically activates K-Shaw2 currents at relevant concentrations (0.05-1 mM) in a rapid and reversible manner. The concentration dependence of this modulation is consistent with the presence of high and low affinity interactions (K(D) = 0.06 and 4 mM, respectively). Sevoflurane (<1 mM) induces a negative shift in the conductance-voltage relation and increases the maximum conductance. Furthermore, suggesting possible roles in general anesthesia, mammalian Kv1.2 and Kv1.5 channels display similar changes. Quantitative description of the observations by an economical allosteric model indicates that sevoflurane binding favors activation gating and eliminates an unstable inactivated state outside the activation pathway. This study casts light on the mechanism of the novel sevoflurane-dependent activation of Kv channels, which helps explain how closely related inhaled anesthetics achieve specific actions and suggests strategies to develop novel Kv channel activators.
Collapse
Affiliation(s)
- Annika F Barber
- Department of Neuroscience, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
Inhibition of voltage-gated sodium channels by emulsified isoflurane may contribute to its subarachnoid anesthetic effect in beagle dogs. Reg Anesth Pain Med 2012; 36:553-9. [PMID: 21989153 DOI: 10.1097/aap.0b013e3182324d18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Volatile anesthetics, in addition to their general anesthesia action, have been proven to produce regional anesthetic effect in various animal models. The major aim of this study was to examine whether emulsified isoflurane (EI) could also produce subarachnoid anesthesia and to investigate its possible mechanism. METHODS Beagle dogs were randomly assigned into 5 groups (n = 6/group): intrathecally receiving 1% lidocaine 0.1 mL/kg, 30% intralipid 0.1 mL/kg (control), or 8% EI at doses of 0.05, 0.075, or 0.1 mL/kg, respectively. Consciousness state, motor function of limbs, and response to nociceptive stimulus were observed after drug administration. The effect of EI on voltage-gated Na channel was recorded from isolated spinal neurons of rats, using the whole-cell patch-clamp technique. Inhibition of peak sodium currents and effect of EI on Na channel gating were analyzed. RESULTS Emulsified isoflurane produced subarachnoid anesthesia in a dose-dependent manner, and at the dose of 0.1 mL/kg, the effect of 8% EI was similar to 1% lidocaine. Sodium channel currents were inhibited by EI at clinically relevant concentrations, with the IC50 (median inhibitory concentration) at 0.69 ± 0.08 mM. Voltage activation of Na channels was positive, shifted by isoflurane at the concentration of 0.77 mM, and V½ of activation (voltage for half-maximal activation) shifted from -12.4 ± 2.7 mV to -7.3 ± 2.3 mV (P < 0.01). CONCLUSIONS Emulsified isoflurane produced dose-dependent subarachnoid anesthesia, and this effect might be mediated by inhibition of EI on voltage-gated Na channels in the spinal cord.
Collapse
|
43
|
Zhou C, Liu J, Chen XD. General anesthesia mediated by effects on ion channels. World J Crit Care Med 2012; 1:80-93. [PMID: 24701405 PMCID: PMC3953864 DOI: 10.5492/wjccm.v1.i3.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/24/2011] [Accepted: 05/25/2012] [Indexed: 02/06/2023] Open
Abstract
Although it has been more than 165 years since the first introduction of modern anesthesia to the clinic, there is surprisingly little understanding about the exact mechanisms by which general anesthetics induce unconsciousness. As a result, we do not know how general anesthetics produce anesthesia at different levels. The main handicap to understanding the mechanisms of general anesthesia is the diversity of chemically unrelated compounds including diethyl ether and halogenated hydrocarbons, gases nitrous oxide, ketamine, propofol, benzodiazepines and etomidate, as well as alcohols and barbiturates. Does this imply that general anesthesia is caused by many different mechanisms Until now, many receptors, molecular targets and neuronal transmission pathways have been shown to contribute to mechanisms of general anesthesia. Among these molecular targets, ion channels are the most likely candidates for general anesthesia, in particular γ-aminobutyric acid type A, potassium and sodium channels, as well as ion channels mediated by various neuronal transmitters like acetylcholine, amino acids amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid or N-methyl-D-aspartate. In addition, recent studies have demonstrated the involvement in general anesthesia of other ion channels with distinct gating properties such as hyperpolarization-activated, cyclic- nucleotide-gated channels. The main aim of the present review is to summarize some aspects of current knowledge of the effects of general anesthetics on various ion channels.
Collapse
Affiliation(s)
- Cheng Zhou
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin Liu
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiang-Dong Chen
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
44
|
Oose Y, Miura M, Inoue R, Andou N, Aosaki T, Nishimura K. Imbalanced suppression of excitatory and inhibitory synaptic transmission onto mouse striatal projection neurons during induction of anesthesia with sevoflurane in vitro. Eur J Neurosci 2012; 35:1396-405. [DOI: 10.1111/j.1460-9568.2012.08065.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Herold KF, Hemmings HC. Sodium channels as targets for volatile anesthetics. Front Pharmacol 2012; 3:50. [PMID: 22479247 PMCID: PMC3316150 DOI: 10.3389/fphar.2012.00050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/07/2012] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic effects on central nervous system depression. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic end points: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics at high concentrations. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions at clinical concentrations. Volatile anesthetics reduce peak Na+ current (INa) and shift the voltage of half-maximal steady-state inactivation (h∞) toward more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed, together with enhanced use-dependent block during pulse train protocols. These effects can depress presynaptic excitability, depolarization and Ca2+ entry, and ultimately reduce transmitter release. This reduction in transmitter release is more potent for glutamatergic compared to GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of their effects.
Collapse
Affiliation(s)
- Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College New York, NY, USA
| | | |
Collapse
|
46
|
Holder JW. Physical and physicochemical factors effecting transport of chlorohydrocarbon gases from lung alveolar air to blood as measured by the causation of narcosis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:42-80. [PMID: 22458856 DOI: 10.1080/10590501.2012.653888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This systematic investigation examines gas transport in the lung for two sets of chlorohydrocarbons (CHCs): the chloromethanes (C1) and chloroethanes (C2). The C1 series includes chloromethane, methylene chloride, chloroform, and carbon tetrachloride, and the C2 series includes chloroethane, 1,2-dichloroethane, 1, 1, 2-trichloroethane, and 1, 1, 2, 2-tetrachloroethane. Most CHC gases cause narcosis. The comprehensive narcosis work of Lehmann and colleagues on CHCs was used as a basis for the narcosis endpoint in the present examination. The sites for narcosis are located in the brain (midline cortex and posterior parietal area), the spine, and at many peripheral nerve sites. Central nervous system (CNS) exposure executes a multisite, neural transmission set of inhibitions that promotes rapid loss of consciousness, sensory feeling, and current and stored memory while providing temporary amnesia. Absorption into the system requires dissolution into many lipid membranes and binding to lipoproteins. Lipophilicity is a CHC property shared with many anesthetics according to the Meyer-Overton Rule. Many structurally different lipid chemicals produce the narcosis response when the lipid concentration exceeds -67 mM. This suggests narcotic or anesthetic dissolution into CNS membranes until the lipid organization is disrupted or perturbed. This perturbation includes loading of Na(+)- and K(+)-channel transmembrane lipoprotein complexes and disrupting their respective channel functional organizations. The channel functions become attenuated or abrogated until the CHC exposure ceases and CHC loading reverses. This investigation demonstrates how the CHC physical and chemical properties influence the absorption of these CHCs via the lung and the alveolar system on route to the blood. Narcosis in test animals was used here as an objective biological endpoint to study the effects of the physical factors Bp, Vp, Kd (oil: gas) partition, Henry's constant (HK), and water solubility (S%) on gas transport. Narcosis is immediate after gas exposure and requires no chemical activation only absorption into the blood and circulation to CNS narcotic sites. The three physical factors Bp, K(d) (oil: air), and S% vary directly with unitary narcosis (UN) whereas Vp and HK vary inversely with UN in linear log-log relationships for the C2 series but not for the C1 series. Physicochemical properties of C1 series gases indicate why they depart from what is usually assumed to be an Ideal Gas. An essential discriminating process in the distal lung is the limiting alveolar film layer (AFL) and the membrane layer of the alveolar acini. The AFL step influences gas uptake by physically limiting the absorption process. Interaction with and dissolution into aqueous solvent of the AFL is required for transport and narcotic activity. Narcotics or anesthetics must engage the aqueous AFL with sufficient strength to allow transport and absorption for downstream CNS binding. CHCs that do not engage well with the AFL are not narcotic. Lipophilicity and amphipathicity are also essential solvency properties driving narcotics' transport through the alveolar layer, delivery to the blood fats and lipoproteins, and into critical CNS lipids, lipoproteins, and receptor sites that actuate narcosis. AFL disruption is thought to be strongly related to a number of serious pulmonary diseases such acute respiratory distress syndrome, infant respiratory distress syndrome, emphysema, chronic obstructive pulmonary disease, asthma, chronic bronchitis, pneumonia, pulmonary infections, and idiopathic pulmonary fibrosis. The physical factors (Bp, Vp, Kd [oil: gas] partition, Henry's constant, and water solubility [S%]) combine to affect a specific transport through the AFL if lung C > C(0) (threshold concentration for narcosis). The degree of blood CHC absorption depends on dose, lipophilicity, and lung residence time. AFL passage can be manipulated by physical factors of increased pressure (kPa) or increased gas exposure (moles). Molecular lipophilicity facilitates narcosis but lipophilicity alone does not explain narcosis. Vapor pressure is also required for narcosis. Narcotic activity apparently requires stereospecific processing in the AFL and/or down-stream inhibition at stereospecific lipoproteins at CNS inhibitory sites. It is proposed that CHCs likely cannot proceed through the AFL without perturbation or disruption of the integrity of the AFL at the alveoli. CHC physicochemical properties are not expected to allow their transport through the AFL as physiological CO(2) and O(2) naturally do in respiration. This work considers CHC inspiration and systemic absorption into the blood with special emphasis on the CHC potential perturbation effects on the lipid, protein liquid layer supra to the alveolar membrane (AFL). A heuristic gas transport model for the CHCs is presented as guidance for this examination. The gas transport model can be used to study absorption for other gas delivery endpoints of environmental concern such as carcinogens.
Collapse
|
47
|
Zhou C, Gan J, Liu J, Luo WJ, Zhang WS, Chai YF. The Interaction Between Emulsified Isoflurane and Lidocaine Is Synergism in Intravenous Regional Anesthesia in Rats. Anesth Analg 2011; 113:245-50. [DOI: 10.1213/ane.0b013e31821e9797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Hung CH, Chu CC, Chen YC, Chen YW, Hong HJ, Wang JJ. Isoflurane for spinal anesthesia in the rat. Neurosci Lett 2011; 501:138-42. [PMID: 21782005 DOI: 10.1016/j.neulet.2011.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/16/2011] [Accepted: 07/06/2011] [Indexed: 11/27/2022]
Abstract
Although isoflurane, a non-water soluble agent, has been known to block Na+ currents, its spinal anesthetic effect was not exposed. The aim of this experiment was to evaluate the local anesthetic effect of isoflurane in spinal anesthesia. After intrathecal injection of isoflurane on rats, the spinal anesthetic effect in motor function, proprioception and nociception were evaluated. Lidocaine, a common used local anesthetic, was used as control. Isoflurane acted like lidocaine and produced dose-related spinal blockades of motor function, proprioception and nociception. Although isoflurane [27.6 (25.4-30.0)] had less potency when compared with lidocaine [1.0 (0.9-1.1)] (P<0.001) in spinal anesthesia, it caused a much longer duration of spinal blockades than lidocaine at equianesthetic doses (P<0.001). Our results showed that when compared with lidocaine, isoflurane produced a less potency but much longer duration in spinal anesthesia.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Institute & Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Yokoyama T, Minami K, Sudo Y, Horishita T, Ogata J, Yanagita T, Uezono Y. Effects of sevoflurane on voltage-gated sodium channel Na(v)1.8, Na(v)1.7, and Na(v)1.4 expressed in Xenopus oocytes. J Anesth 2011; 25:609-13. [PMID: 21656091 DOI: 10.1007/s00540-011-1167-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
Abstract
Sevoflurane is widely used as a volatile anesthetic in clinical practice. However, its mechanism is still unclear. Recently, it has been reported that voltage-gated sodium channels have important roles in anesthetic mechanisms. Much attention has been paid to the effects of sevoflurane on voltage-dependent sodium channels. To elucidate this, we examined the effects of sevoflurane on Na(v) 1.8, Na(v) 1.4, and Na(v) 1.7 expressed in Xenopus oocytes. The effects of sevoflurane on Na(v) 1.8, Na(v) 1.4, and Na(v) 1.7 sodium channels were studied by an electrophysiology method using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Sevoflurane at 1.0 mM inhibited the voltage-gated sodium channels Na(v)1.8, Na(v)1.4, and Na(v)1.7, but sevoflurane (0.5 mM) had little effect. This inhibitory effect of 1 mM sevoflurane was completely abolished by pretreatment with protein kinase C (PKC) inhibitor, bisindolylmaleimide I. Sevoflurane appears to have inhibitory effects on Na(v)1.8, Na(v)1.4, and Na(v) 1.7 by PKC pathways. However, these sodium channels might not be related to the clinical anesthetic effects of sevoflurane.
Collapse
Affiliation(s)
- Toru Yokoyama
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi 329-0483, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Westphalen RI, Kwak NB, Daniels K, Hemmings HC. Regional differences in the effects of isoflurane on neurotransmitter release. Neuropharmacology 2011; 61:699-706. [PMID: 21651920 DOI: 10.1016/j.neuropharm.2011.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/04/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022]
Abstract
Stimulus evoked neurotransmitter release requires that Na(+) channel-dependent nerve terminal depolarization be transduced into synaptic vesicle exocytosis. Inhaled anesthetics block presynaptic Na(+) channels and selectively inhibit glutamate over GABA release from isolated nerve terminals, indicating mechanistic differences between excitatory and inhibitory transmitter release. We compared the effects of isoflurane on depolarization-evoked [(3)H]glutamate and [(14)C]GABA release from isolated nerve terminals prepared from four regions of rat CNS evoked by 4-aminopyridine (4AP), veratridine (VTD), or elevated K(+). These mechanistically distinct secretegogues distinguished between Na(+) channel- and/or Ca(2+) channel-mediated presynaptic effects. Isoflurane completely inhibited total 4AP-evoked glutamate release (IC(50) = 0.42 ± 0.03 mM) more potently than GABA release (IC(50) = 0.56 ± 0.02 mM) from cerebral cortex (1.3-fold greater potency), hippocampus and striatum, but inhibited glutamate and GABA release from spinal cord terminals equipotently. Na(+) channel-specific VTD-evoked glutamate release from cortex was also significantly more sensitive to inhibition by isoflurane than was GABA release. Na(+) channel-independent K(+)-evoked release was insensitive to isoflurane at clinical concentrations in all four regions, consistent with a target upstream of Ca(2+) entry. Isoflurane inhibited Na(+) channel-mediated (tetrodotoxin-sensitive) 4AP-evoked glutamate release (IC(50) = 0.30 ± 0.03 mM) more potently than GABA release (IC(50) = 0.67 ± 0.04 mM) from cortex (2.2-fold greater potency). The magnitude of inhibition of Na(+) channel-mediated 4AP-evoked release by a single clinical concentration of isoflurane (0.35 mM) varied by region and transmitter: Inhibition of glutamate release from spinal cord was greater than from the three brain regions and greater than GABA release for each CNS region. These findings indicate that isoflurane selectively inhibits glutamate release compared to GABA release via Na(+) channel-mediated transduction in the four CNS regions tested, and that differences in presynaptic Na(+) channel involvement determine differences in anesthetic pharmacology.
Collapse
Affiliation(s)
- Robert I Westphalen
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, United States
| | | | | | | |
Collapse
|