1
|
Saglam-Metiner P, Yanasik S, Odabasi YC, Modamio J, Negwer M, Biray-Avci C, Guler A, Erturk A, Yildirim E, Yesil-Celiktas O. ICU patient-on-a-chip emulating orchestration of mast cells and cerebral organoids in neuroinflammation. Commun Biol 2024; 7:1627. [PMID: 39639082 PMCID: PMC11621364 DOI: 10.1038/s42003-024-07313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Propofol and midazolam are the current standard of care for prolonged sedation in Intensive Care Units (ICUs). However, the effects and mechanism of these sedatives in brain tissue are unclear. Herein, the development of an ICU patient-on-a-chip platform to elucidate those effects is reported. The humanized neural tissue compartment combines mast cells differentiated from human induced pluripotent stem cells (hiPSCs) with cerebral organoids in a three-dimensional (3D) matrix, which is covered with a membrane populated with human cerebral microvascular endothelial cells (hCMEC/D3) that separates the tissue chamber from the vascular lumen, where sedatives were infused for four days to evaluate neurotoxicity and cell-mediated immune responses. Subsequent to propofol administration, gene expressions of CD40 and TNF-α in mast cells, AIF1 in microglia and GFAP/S100B/OLIG2/MBP in macroglia were elevated, as well as NOS2, CD80, CD40, CD68, IL6 and TNF-α mediated proinflammation is noted in cerebral organoids, which resulted in higher expressions of GJB1, GABA-A and NMDAR1 in the tissue construct of the platform. Besides, midazolam administration stimulated expression of CD40 and CD203c+ reactivated mast cell proliferation and compromised BBB permeability and decreased TEER values with higher barrier disruption, whereas increased populations of CD11b+ microglia, higher expressions of GFAP/DLG4/GJB1 and GABA-A-/NMDAR1- identities, as well as glutamate related neurotoxicity and IL1B, IFNG, IFNA1, IL6 genes mediated proinflammation, resulting in increased apoptotic zones are observed in cerebral organoids. These results suggest that different sedatives cause variations in cell type activation that modulate different pathways related to neuroinflammation and neurotoxicity in the ICU patient-on-chip platform.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Yusuf Caglar Odabasi
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Jennifer Modamio
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ayse Guler
- Department of Neuroscience, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- ODTÜ MEMS Center, Ankara, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
- ODTÜ MEMS Center, Ankara, Türkiye.
| |
Collapse
|
2
|
Chae MS, Kim JY, Koh HJ. Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1342. [PMID: 39202623 PMCID: PMC11356384 DOI: 10.3390/medicina60081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The impact of anesthetic agents on memory and cognitive function following general anesthesia is of great interest, particularly regarding their effects on the developing pediatric brain. While numerous studies have examined the relationship between anesthetic drugs and brain function, research focusing on early cognitive function following sedation remains limited. Materials and Methods: This study was a prospective, randomized controlled trial involving 148 pediatric patients scheduled for hematological procedures, specifically bone marrow aspiration (BMA) and intrathecal chemotherapy (ITC). Patients were divided into two groups based on the primary anesthetic used: the inhalational sedation group (IHG), in which sevoflurane was used, and the intravenous sedation group (IVG), which received propofol infusion. Apart from the main anesthetic agent, all sedation methods were consistent across both groups. A cognitive function test administered before sedation involved memorizing four distinct images, each associated with a different number. Then, the patients were asked to identify the omitted image upon awakening in the recovery room. Herein, this pre- vs. post-sedation test is called the early recognition assessment (ERA) tool. The primary outcome was the correct response rate after sedation for the two groups. Secondary outcomes included the sedation score, the behavior response score, and the correct response rates according to the number of sedation procedures. Results: This study included 130 patients in the final analysis, with 74 originally assigned to each group. The initial cognitive assessment revealed no significant difference in performance between the anesthetic agents. In addition, no differences were observed in the rates of correct responses or post-sedation scores after repeated procedures. However, the IVG demonstrated higher behavior response scores compared to the IHG. Conclusions: There were no significant differences in the rates of correct responses using the ERA tool between the two groups, irrespective of the number of sedation procedures performed. While some differences were noted in preoperative, intraoperative, and post-anesthesia care, these did not significantly impact the cognitive outcomes measured.
Collapse
Affiliation(s)
| | | | - Hyun Jung Koh
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.S.C.); (J.Y.K.)
| |
Collapse
|
3
|
Jia X, Tan S, Qin Y, Wei Y, Jiang Y, Pan S, Li C, Chen J, Liu T, Xie Y. Experiencing anesthesia and surgery early in life impairs cognitive and behavioral development. Front Neurosci 2024; 18:1406172. [PMID: 39114485 PMCID: PMC11303152 DOI: 10.3389/fnins.2024.1406172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background The impact of anesthesia and surgery on neurocognitive and behavioral development in infants and children remains inadequately understood. Objective To investigate the impact of early-life exposure to general anesthesia and surgery on cognitive and behavioral development. Methods and materials Children aged 0-3 years who underwent general anesthesia and surgical procedures between 2012 and 2015 were included. The cognitive and behavioral development of these children at ages 4-6 years was assessed. Age-, race-, and gender-matched children from the same geographic region, who did not undergo general anesthesia or surgery, served as the control group. The Wechsler Preschool Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) was used to evaluate children's total intelligence quotient (FSIQ) and specific cognitive domains. The Gesell Development Schedules (GSCH) and Child Behavior Checklist (CBCL) were employed to assess behavioral and personality development. Additionally, the study analyzed the effects of various factors including anesthesia drugs, surgery duration, number of surgeries, age, weight, ethnicity, and gender on postoperative neurocognitive and behavioral outcomes. Results The study included 447 children with anesthesia/surgical exposure (AS) and 459 children in the control group. Analysis of cognitive and behavioral development showed a significant difference in the working memory index (WMI) between the AS and control groups (p < 0.05). Exploratory findings indicated that children administered remifentanil exhibited lower developmental quotient (DQ) values, whereas those given fentanyl showed higher (worse) Child Behavior Checklist (CBCL) total scores. Moreover, increased anesthesia/surgical exposures, younger age and lower body weight at exposure, and longer surgery durations were associated with cognitive and behavioral developmental challenges. Conclusion This study examined the impact of early-life exposure to surgery and anesthesia on postoperative cognitive and behavioral development. Findings indicate that higher frequency of exposure to surgery and anesthesia, younger age, and lower body weight at exposure could negatively influence cognitive and behavioral development. Furthermore, variations in the effects of different anesthetics on behavior and cognition were observed. Caution is advised regarding the use of opioid analgesics such as remifentanil and fentanyl for more rigorous clinical applications.
Collapse
Affiliation(s)
- Xuqin Jia
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yinying Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlai Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianxiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Xu J, Wen J, Mathena RP, Singh S, Boppana SH, Yoon OI, Choi J, Li Q, Zhang P, Mintz CD. Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway. Int J Mol Sci 2024; 25:6743. [PMID: 38928447 PMCID: PMC11203812 DOI: 10.3390/ijms25126743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to general anesthetics can adversely affect brain development, but there is little study of sedative agents used in intensive care that act via similar pharmacologic mechanisms. Using quantitative immunohistochemistry and neurobehavioral testing and an established protocol for murine sedation, we tested the hypothesis that lengthy, repetitive exposure to midazolam, a commonly used sedative in pediatric intensive care, interferes with neuronal development and subsequent cognitive function via actions on the mechanistic target of rapamycin (mTOR) pathway. We found that mice in the midazolam sedation group exhibited a chronic, significant increase in the expression of mTOR activity pathway markers in comparison to controls. Furthermore, both neurobehavioral outcomes, deficits in Y-maze and fear-conditioning performance, and neuropathologic effects of midazolam sedation exposure, including disrupted dendritic arborization and synaptogenesis, were ameliorated via treatment with rapamycin, a pharmacologic mTOR pathway inhibitor. We conclude that prolonged, repetitive exposure to midazolam sedation interferes with the development of neural circuitry via a pathologic increase in mTOR pathway signaling during brain development that has lasting consequences for both brain structure and function.
Collapse
Affiliation(s)
- Jing Xu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710061, China
| | - Jieqiong Wen
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710000, China;
| | - Reilley Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Shreya Singh
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Sri Harsha Boppana
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Olivia Insun Yoon
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Jun Choi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Qun Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710000, China;
| | - Cyrus David Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| |
Collapse
|
5
|
Zhou T, Shen Y, Lyu J, Yang L, Wang HJ, Hong S, Ji Y. Medication Usage Record-Based Predictive Modeling of Neurodevelopmental Abnormality in Infants under One Year: A Prospective Birth Cohort Study. Healthcare (Basel) 2024; 12:713. [PMID: 38610136 PMCID: PMC11011488 DOI: 10.3390/healthcare12070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Early identification of children with neurodevelopmental abnormality is a major challenge, which is crucial for improving symptoms and preventing further decline in children with neurodevelopmental abnormality. This study focuses on developing a predictive model with maternal sociodemographic, behavioral, and medication-usage information during pregnancy to identify infants with abnormal neurodevelopment before the age of one. In addition, an interpretable machine-learning approach was utilized to assess the importance of the variables in the model. In this study, artificial neural network models were developed for the neurodevelopment of five areas of infants during the first year of life and achieved good predictive efficacy in the areas of fine motor and problem solving, with median AUC = 0.670 (IQR: 0.594, 0.764) and median AUC = 0.643 (IQR: 0.550, 0.731), respectively. The final model for neurodevelopmental abnormalities in any energy region of one-year-old children also achieved good prediction performance. The sensitivity is 0.700 (IQR: 0.597, 0.797), the AUC is 0.821 (IQR: 0.716, 0.833), the accuracy is 0.721 (IQR: 0.696, 0.739), and the specificity is 0.742 (IQR: 0.680, 0.748). In addition, interpretable machine-learning methods suggest that maternal exposure to drugs such as acetaminophen, ferrous succinate, and midazolam during pregnancy affects the development of specific areas of the offspring during the first year of life. This study established predictive models of neurodevelopmental abnormality in infants under one year and underscored the prediction value of medication exposure during pregnancy for the neurodevelopmental outcomes of the offspring.
Collapse
Affiliation(s)
- Tianyi Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Yaojia Shen
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Jinlang Lyu
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Li Yang
- Tongzhou Maternal and Child Health Care Hospital of Beijing, Beijing 101101, China;
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing 100191, China;
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| |
Collapse
|
6
|
Nguyen NM, Meyer D, Meyer L, Chand S, Jagadesan S, Miravite M, Guda C, Yelamanchili SV, Pendyala G. Identification of YWHAH as a Novel Brain-Derived Extracellular Vesicle Marker Post Long-Term Midazolam Exposure during Early Development. Cells 2023; 12:966. [PMID: 36980307 PMCID: PMC10047367 DOI: 10.3390/cells12060966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Recently, the long-term use of sedative agents in the neonatal intensive care unit (NICU) has raised concerns about neurodevelopmental outcomes in exposed neonates. Midazolam (MDZ), a common neonatal sedative in the NICU, has been suggested to increase learning disturbances and cognitive impairment in children. However, molecular mechanisms contributing to such outcomes with long-term MDZ use during the early stages of life remain unclear. In this study, we for the first time elucidate the role of brain-derived extracellular vesicles (BDEVs), including mining the BDEV proteome post long-term MDZ exposure during early development. Employing our previously established rodent model system that mimics the exposure of MDZ in the NICU using an increasing dosage regimen, we isolated BDEVs from postnatal 21-days-old control and MDZ groups using a differential sucrose density gradient. BDEVs from the control and MDZ groups were then characterized using a ZetaView nanoparticle tracking analyzer and transmission electron microscopy analysis. Next, using RT-qPCR, we examined the expression of key ESCRT-related genes involved in EV biogenesis. Lastly, using quantitative mass spectrometry-based proteomics, we mined the BDEV protein cargo that revealed key differentially expressed proteins and associated molecular pathways to be altered post long-term MDZ exposure. Our study characterized the proteome in BDEV cargo from long-term MDZ exposure at early development. Importantly, we identified and validated the expression of YWHAH as a potential target for further characterization of its downstream mechanism and a potential biomarker for the early onset of neurodevelopment and neurodegenerative diseases. Overall, the present study demonstrated long-term exposure to MDZ at early development stages could influence BDEV protein cargo, which potentially impact neural functions and behavior at later stages of development.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Daniel Meyer
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Luke Meyer
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Maireen Miravite
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- National Strategic Research Institute, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| |
Collapse
|
7
|
Silva NF, Mascarenhas FNADP, Ribeiro DL, Zanon RG. Alterations in the dentate gyrus of the offspring of rats treated with alprazolam during gestation. J Chem Neuroanat 2023; 129:102253. [PMID: 36841439 DOI: 10.1016/j.jchemneu.2023.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Benzodiazepine (BZD) abuse is a global problem, including pregnant women. For this population, the drug of choice is usually alprazolam, which acts as a GABAergic agonist and may compromise the development of integrative areas of the nervous system, such as the dentate gyrus (DG) of the hippocampus. In this context, we studied the changes in the DG of the offspring of rats treated with alprazolam during gestation: control, treatment 1 (T1: 1.25 mg/animal), and an overdose group (T2: 30 mg/animal). Alprazolam was administered orally ten days before mating and during the gestational period. After birth, newborns were counted, sexed, and the body mass of each pup was measured. The newborns' brains were extracted and processed for morphological study of the DG or for total protein extraction of the hippocampus. The results showed that alprazolam can affect the cell number and area, and increased euchromatin in both granular and molecular layers of the DG, especially in the overdose group. Also, alprazolam upregulated the NF-κB and reduced GFAP and caspase-3. Based on our findings, we conclude that the DG is a plausible region of influence by BZDs during embryogenesis. An overdose during gestation may cause structural changes in the DG.
Collapse
|
8
|
Pediatric Intensive Care Unit Patients: Sedation, Monitoring, and Neurodevelopmental Outcomes. J Neurosurg Anesthesiol 2023; 35:147-152. [PMID: 36745180 DOI: 10.1097/ana.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
The design and conduct of pediatric sedation studies in critically ill patients have historically been challenging due to the complexity of the pediatric intensive care unit (PICU) environment and the difficulty of establishing equipoise. Clinical trials, for instance, represent 1 important means of advancing our knowledge in this field, but there is a paucity of such studies in the literature. Accounting for ground-level factors in planning for each trial phase (eg, enrollment, intervention, assessment, and follow-up) and the presence of broader system limitations is of key importance. In addition, there is a need for early planning, coordination, and obtaining buy-in from individual study sites and staff to ensure success, particularly for multicenter studies. This review synthesizes the current state of pediatric sedation research and the myriad of challenges in designing and conducting successful trials in this particular area. The review poses consideration for future research directions, including novel study designs, and discusses electroencephalography monitoring and neurodevelopmental outcomes of PICU survivors.
Collapse
|
9
|
An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models. J Neurosurg Anesthesiol 2023; 35:104-113. [PMID: 36745171 DOI: 10.1097/ana.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
General Anesthesia and the Premature Baby: Identifying Risks for Poor Neurodevelopmental Outcomes. J Neurosurg Anesthesiol 2023; 35:130-132. [PMID: 36745176 DOI: 10.1097/ana.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
Preterm birth affects 1 in every 10 infants born in the United States. Importantly, more preterm infants are surviving to discharge from hospital, including those born at the cusp of viability (eg, 22 to 24 wk gestation). Such improvements, however, come at a cost as those delivered at less than 28 weeks gestation have the highest rates of morbidity and mortality. To complicate matters, these extremely preterm infants often require multiple surgical procedures resulting in repeated and prolonged exposures to anesthetic, analgesic, and sedative agents both during procedures and in the neonatal intensive care unit. Consequently, all of these factors, including premature birth itself, correlate with a higher risk for neurodevelopmental disabilities. More studies are needed to address the effects of prematurity-related morbidities and drug exposures on this vulnerable population, with the goal of improving neurodevelopmental outcomes. This brief review will discuss risk factors that impact neurodevelopmental outcomes in premature infants, with a particular focus on anesthetic, analgesic, and sedative agents.
Collapse
|
11
|
Nguyen NM, Vellichirammal NN, Guda C, Pendyala G. Decoding the Synaptic Proteome with Long-Term Exposure to Midazolam during Early Development. Int J Mol Sci 2022; 23:ijms23084137. [PMID: 35456952 PMCID: PMC9027542 DOI: 10.3390/ijms23084137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
The intensive use of anesthetic and sedative agents in the neonatal intensive care unit (NICU) has raised controversial concerns about the potential neurodevelopmental risks. This study focused on midazolam (MDZ), a common benzodiazepine regularly used as a sedative on neonates in the NICU. Mounting evidence suggests a single exposure to MDZ during the neonatal period leads to learning disturbances. However, a knowledge gap that remains is how long-term exposure to MDZ during very early stages of life impacts synaptic alterations. Using a preclinical rodent model system, we mimicked a dose-escalation regimen on postnatal day 3 (P3) pups until day 21. Next, purified synaptosomes from P21 control and MDZ animals were subjected to quantitative mass-spectrometry-based proteomics, to identify potential proteomic signatures. Further analysis by ClueGO identified enrichment of proteins associated with actin-binding and protein depolymerization process. One potential hit identified was alpha adducin (ADD1), belonging to the family of cytoskeleton proteins, which was upregulated in the MDZ group and whose expression was further validated by Western blot. In summary, this study sheds new information on the long-term exposure of MDZ during the early stages of development impacts synaptic function, which could subsequently perturb neurobehavioral outcomes at later stages of life.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Neetha N. Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
- Child Health Research Institute, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
12
|
Midazolam Exposure Impedes Oligodendrocyte Development via the Translocator Protein and Impairs Myelination in Larval Zebrafish. Mol Neurobiol 2021; 59:93-106. [PMID: 34626343 DOI: 10.1007/s12035-021-02559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Anesthetics are commonly used in various medical procedures. Accumulating evidence suggests that early-life anesthetics exposure in infants and children affects brain development, causing psychiatric and neurological disorders. However, the underlying mechanisms are poorly understood. Using zebrafish larvae as a model, we found that the proliferation and migration of oligodendrocyte progenitor cells (OPCs) were severely impaired by the exposure of midazolam (MDZ), an anesthetic widely used in pediatric surgery and intensive care medicine, leading to a reduction of oligodendroglial lineage cell in the dorsal spinal cord. This defect was mimicked by the bath application of translocator protein (TSPO) agonists and partially rescued by genetic downregulation of TSPO. Cell transplantation experiments showed that requirement of TSPO for MDZ-induced oligodendroglial lineage cell defects is cell-autonomous. Furthermore, transmission electron microscopy and in vivo electrophysiological recording experiments demonstrated that MDZ exposure caused axon hypomyelination and action potential propagation retardation, resulting in delayed behavior initiation. Thus, our findings reveal that MDZ affects oligodendroglial lineage cell development and myelination in young animals, raising the care about its clinic use in infants and children.
Collapse
|
13
|
Doi H, Matsuda T, Sakai A, Matsubara S, Hoka S, Yamaura K, Nakashima K. Early-life midazolam exposure persistently changes chromatin accessibility to impair adult hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A 2021; 118:e2107596118. [PMID: 34526402 PMCID: PMC8463898 DOI: 10.1073/pnas.2107596118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Linkage between early-life exposure to anesthesia and subsequent learning disabilities is of great concern to children and their families. Here we show that early-life exposure to midazolam (MDZ), a widely used drug in pediatric anesthesia, persistently alters chromatin accessibility and the expression of quiescence-associated genes in neural stem cells (NSCs) in the mouse hippocampus. The alterations led to a sustained restriction of NSC proliferation toward adulthood, resulting in a reduction of neurogenesis that was associated with the impairment of hippocampal-dependent memory functions. Moreover, we found that voluntary exercise restored hippocampal neurogenesis, normalized the MDZ-perturbed transcriptome, and ameliorated cognitive ability in MDZ-exposed mice. Our findings thus explain how pediatric anesthesia provokes long-term adverse effects on brain function and provide a possible therapeutic strategy for countering them.
Collapse
Affiliation(s)
- Hiroyoshi Doi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Atsuhiko Sakai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Shuzo Matsubara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 831-8501 Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| |
Collapse
|
14
|
Turner AD, Sullivan T, Drury K, Hall TA, Williams CN, Guilliams KP, Murphy S, Iqbal O’Meara AM. Cognitive Dysfunction After Analgesia and Sedation: Out of the Operating Room and Into the Pediatric Intensive Care Unit. Front Behav Neurosci 2021; 15:713668. [PMID: 34483858 PMCID: PMC8415404 DOI: 10.3389/fnbeh.2021.713668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
In the midst of concerns for potential neurodevelopmental effects after surgical anesthesia, there is a growing awareness that children who require sedation during critical illness are susceptible to neurologic dysfunctions collectively termed pediatric post-intensive care syndrome, or PICS-p. In contrast to healthy children undergoing elective surgery, critically ill children are subject to inordinate neurologic stress or injury and need to be considered separately. Despite recognition of PICS-p, inconsistency in techniques and timing of post-discharge assessments continues to be a significant barrier to understanding the specific role of sedation in later cognitive dysfunction. Nonetheless, available pediatric studies that account for analgesia and sedation consistently identify sedative and opioid analgesic exposures as risk factors for both in-hospital delirium and post-discharge neurologic sequelae. Clinical observations are supported by animal models showing neuroinflammation, increased neuronal death, dysmyelination, and altered synaptic plasticity and neurotransmission. Additionally, intensive care sedation also contributes to sleep disruption, an important and overlooked variable during acute illness and post-discharge recovery. Because analgesia and sedation are potentially modifiable, understanding the underlying mechanisms could transform sedation strategies to improve outcomes. To move the needle on this, prospective clinical studies would benefit from cohesion with regard to datasets and core outcome assessments, including sleep quality. Analyses should also account for the wide range of diagnoses, heterogeneity of this population, and the dynamic nature of neurodevelopment in age cohorts. Much of the related preclinical evidence has been studied in comparatively brief anesthetic exposures in healthy animals during infancy and is not generalizable to critically ill children. Thus, complementary animal models that more accurately "reverse translate" critical illness paradigms and the effect of analgesia and sedation on neuropathology and functional outcomes are needed. This review explores the interactive role of sedatives and the neurologic vulnerability of critically ill children as it pertains to survivorship and functional outcomes, which is the next frontier in pediatric intensive care.
Collapse
Affiliation(s)
- Ashley D. Turner
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Travis Sullivan
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kurt Drury
- Department of Pediatrics, Division of Pediatric Critical Care, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Trevor A. Hall
- Department of Pediatrics, Division of Pediatric Psychology, Pediatric Critical Care and Neurotrauma Recovery Program, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Cydni N. Williams
- Department of Pediatrics, Division of Pediatric Critical Care, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Kristin P. Guilliams
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sarah Murphy
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - A. M. Iqbal O’Meara
- Department of Pediatrics, Child Health Research Institute, Children’s Hospital of Richmond at Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
15
|
Yörükoğlu HU, İçli D, Aksu C, Cesur S, Kuş A, Gürkan Y. Erector spinae block for postoperative pain management in lumbar disc hernia repair. J Anesth 2021; 35:420-425. [PMID: 33751203 DOI: 10.1007/s00540-021-02920-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Lumbar disc herniation is the most common spinal disorder and various less invasive techniques such as microdiscectomy have been described. However, postoperative pain management in patients undergoing discectomy is still commonly inadequate. Erector spinae plane (ESP) block is a relatively easier technique with lower risks of complications, and can be performed to provide postoperative analgesia for various procedures. The current study aimed to determine the effect of ESP block on postoperative analgesia in patients who underwent elective lumbar disc herniation repair surgeries. METHODS Fifty-four ASA I-II patients aged 18-65 years scheduled for elective discectomy surgery were included in the study. Patients were randomized either to the ESP or control group. Ultrasound-guided ESP block with 20 mL of 0.25% bupivacaine was performed preoperatively in the ESP group patients and a sham block was performed with 20 mL normal saline in the control group patients. All the patients were provided with intravenous patient-controlled analgesia devices containing morphine. Morphine consumption and numeric rating scale (NRS) scores for pain were recorded 1, 6, 12, and 24 h after surgery. RESULTS A significantly lower morphine consumption was observed at 6, 12, and 24 h timepoints in the ESP group (p < 0.05 for each timepoint). Total morphine consumption at 24 h after surgery decreased by 57% compared to that of the control group (11.3 ± 9.5 mg in the ESP group and 27 ± 16.7 mg in the control group). NRS scores were similar between the two groups. CONCLUSION This study showed that ESP block provided effective analgesia in patients who underwent lumbar disc herniation surgery. CLINICAL TRIALS REGISTRY NCT03744689.
Collapse
Affiliation(s)
- Hadi Ufuk Yörükoğlu
- Anesthesiology and Reanimation Clinic, Tatvan State Hospital, Bitlis, Turkey.
| | - Dilek İçli
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Turkey
| | - Can Aksu
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Turkey
| | - Sevim Cesur
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Turkey
| | - Alparslan Kuş
- Department of Anesthesiology and Reanimation, Kocaeli University, Kocaeli, Turkey
| | - Yavuz Gürkan
- Department of Anesthesiology and Reanimation, Koç University, İstanbul, Turkey
| |
Collapse
|
16
|
Zhao X, Ji M, Wen X, Chen D, Huang F, Guan X, Tian J, Xie J, Shao J, Wang J, Huang L, Lin H, Ye L, Chen H. Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells In Vitro. Front Endocrinol (Lausanne) 2021; 12:765251. [PMID: 34867807 PMCID: PMC8632869 DOI: 10.3389/fendo.2021.765251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Midazolam is a neurological drug with diverse functions, including sedation, hypnosis, decreased anxiety, anterograde amnesia, brain-mediated muscle relaxation, and anticonvulsant activity. Since it is frequently used in children and adolescents for extended periods of time, there is a risk that it may affect their pubertal development. Here, we report a potential effect of the drug on the development of Leydig cells (LCs), the testosterone (T)-producing cells in the testis. METHODS Stem LCs (SLCs), isolated from adult rat testes by a magnetic-activated cell sorting technique, were induced to differentiate into LCs in vitro for 3 weeks. Midazolam (0.1-30 μM) was added to the culture medium, and the effects on LC development were assayed. RESULTS Midazolam has dose-dependent effects on SLC differentiation. At low concentrations (0.1-5 μM), the drug can mildly increase SLC differentiation (increased T production), while at higher concentrations (15-30 μM), it inhibits LC development (decreased T production). T increases at lower levels may be due to upregulations of scavenger receptor class b Member 1 (SCARB1) and cytochrome P450 17A1 (CYP17A1), while T reductions at higher levels of midazolam could be due to changes in multiple steroidogenic proteins. The uneven changes in steroidogenic pathway proteins, especially reductions in CYP17A1 at high midazolam levels, also result in an accumulation of progesterone. In addition to changes in T, increases in progesterone could have additional impacts on male reproduction. The loss in steroidogenic proteins at high midazolam levels may be mediated in part by the inactivation of protein kinase B/cAMP response element-binding protein (AKT/CREB) signaling pathway. CONCLUSION Midazolam has the potential to affect adult Leydig cell (ALC) development at concentrations comparable with the blood serum levels in human patients. Further studies are needed to test the effects on human cells.
Collapse
Affiliation(s)
- Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoqi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| |
Collapse
|
17
|
Baez A, Van Brunt T, Moody G, Wollmuth LP, Hsieh H. Voltage dependent allosteric modulation of IPSCs by benzodiazepines. Brain Res 2020; 1736:146699. [PMID: 32027866 DOI: 10.1016/j.brainres.2020.146699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/04/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
GABAA receptors (GABAAR) are inhibitory ion channels ubiquitously expressed in the central nervous system and play critical roles in brain development and function. Benzodiazepines are positive allosteric modulators of GABAAR, enhancing channel opening frequency when GABA is bound to the receptor. Midazolam is a commonly used benzodiazepine. It is frequently used for premature infants, but the long-term consequences of its use in this patient population are not well established. Here, we studied the acute effects of midazolam on immature synapses. Using a rodent organotypic hippocampal slice preparation, we evaluated how midazolam affects inhibitory synaptic transmission onto CA1 pyramidal neurons. We found that 1 μM midazolam enhances evoked inhibitory post synaptic currents (eIPSCs) at a holding potential of -60 mV. Similarly, 1 μM midazolam enhances miniature IPSCs (mIPSCs) in CA1 pyramidal neurons at holding potentials of -60 mV and -30 mV. At depolarized holding potentials, however, midazolam no longer enhances mIPSCs. Depolarization of the postsynaptic cell by itself increases mIPSC decay, which occludes the allosteric effects of midazolam. These results provide insight into how a benzodiazepine and membrane voltage may modulate GABAAR function in developing circuits.
Collapse
Affiliation(s)
- Alexander Baez
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Trevor Van Brunt
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gabrielle Moody
- Department of Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Helen Hsieh
- Department of Surgery, Stony Brook Medicine, Stony Brook, NY 11794-8191, USA; Department of Pediatrics, Stony Brook Medicine, Stony Brook, NY 11794-8191, USA.
| |
Collapse
|
18
|
Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats. Crit Care Explor 2020; 2:e0105. [PMID: 32426747 PMCID: PMC7188419 DOI: 10.1097/cce.0000000000000105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sedatives are suspected contributors to neurologic dysfunction in PICU patients, to whom they are administered during sensitive neurodevelopment. Relevant preclinical modeling has largely used comparatively brief anesthesia in infant age-approximate animals, with insufficient study of repetitive combined drug administration during childhood. We hypothesized that childhood neurodevelopment is selectively vulnerable to repeated treatment with benzodiazepine and opioid. We report a preclinical model of combined midazolam and morphine in early childhood age-approximate rats.
Collapse
|
19
|
Abstract
This review is intended to provide a summary of the literature pertaining to the perioperative care of neurosurgical patients and patients with neurological diseases. General topics addressed in this review include general neurosurgical considerations, stroke, neurological monitoring, and perioperative disorders of cognitive function.
Collapse
|