1
|
Nakken G, Kirk J, Fjordbakk CT. Cytokine enrichment in equine conditioned serum is not reliant on incubation in specialized containers. Vet Immunol Immunopathol 2023; 258:110576. [PMID: 36863108 DOI: 10.1016/j.vetimm.2023.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Autologous conditioned serum (ACS), i.e serum enriched with anti-inflammatory cytokines and growth factors, is a popular orthobiologic therapy used in equine practice. Costly specialized tubes containing glass beads are commonly used for ACS production. The objective of this in vitro study was to compare cytokine and growth factor levels in equine serum after incubation in three different tubes: commercial plastic ACS tubes (COMM); sterile 50 ml plastic centrifugation tubes (CEN); and 10 ml plastic vacutainer tubes (VAC). Blood from 15 healthy horses was incubated in the different tubes at 37°C for 22-24 h. The concentration of IL-1β, IL-1Ra, IL-10, IGF-1 and PDGF-BB was determined by ELISA and compared between tubes. There was no difference in concentration of IL-1Ra and IGF-1 between CEN and COMM. PDGF-BB was higher in CEN vs. COMM (P < 0.0001). IL-1Ra and PDGF-BB was higher (P < 0.005 and P = 0.02, respectively) whereas IGF-1 was lower in VAC (P < 0.003) vs. the other tubes. The centrifuge tube performed similarly to the commercial ACS tube in cytokine and growth factor enrichment and has the potential to dramatically reduce the cost of ACS treatment. Cytokine enrichment of equine serum does not require blood incubation in specialized ACS containers.
Collapse
Affiliation(s)
- Gina Nakken
- Norwegian University of Life Sciences, Department of Companion Animal Clinical Sciences, Equine Teaching Hospital, Oluf Thesens vei 24, 1432 Aas, Norway
| | - Joseph Kirk
- Clinical Science & Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Cathrine T Fjordbakk
- Norwegian University of Life Sciences, Department of Companion Animal Clinical Sciences, Equine Teaching Hospital, Oluf Thesens vei 24, 1432 Aas, Norway.
| |
Collapse
|
2
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
4
|
Sun K, Wang C, Xiao J, Brodt MD, Yuan L, Yang T, Alippe Y, Hu H, Hao D, Abu-Amer Y, Silva MJ, Shen J, Mbalaviele G. Fracture healing is delayed in the absence of gasdermin - interleukin-1 signaling. eLife 2022; 11:75753. [PMID: 35244027 PMCID: PMC8923664 DOI: 10.7554/elife.75753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Amino-terminal fragments from proteolytically cleaved gasdermins (GSDMs) form plasma membrane pores that enable the secretion of interleukin-1β (IL-1β) and IL-18. Excessive GSDM-mediated pore formation can compromise the integrity of the plasma membrane thereby causing the lytic inflammatory cell death, pyroptosis. We found that GSDMD and GSDME were the only GSDMs that were readily expressed in bone microenvironment. Therefore, we tested the hypothesis that GSDMD and GSDME are implicated in fracture healing owing to their role in the obligatory inflammatory response following injury. We found that bone callus volume and biomechanical properties of injured bones were significantly reduced in mice lacking either GSDM compared with wild-type (WT) mice, indicating that fracture healing was compromised in mutant mice. However, compound loss of GSDMD and GSDME did not exacerbate the outcomes, suggesting shared actions of both GSDMs in fracture healing. Mechanistically, bone injury induced IL-1β and IL-18 secretion in vivo, a response that was mimicked in vitro by bone debris and ATP, which function as inflammatory danger signals. Importantly, the secretion of these cytokines was attenuated in conditions of GSDMD deficiency. Finally, deletion of IL-1 receptor reproduced the phenotype of Gsdmd or Gsdme deficient mice, implying that inflammatory responses induced by the GSDM-IL-1 axis promote bone healing after fracture.
Collapse
Affiliation(s)
- Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Michael D Brodt
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, United States
| | - Luorongxin Yuan
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| | - Huimin Hu
- Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, United States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
5
|
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022; 25:99. [PMID: 35088882 PMCID: PMC8809050 DOI: 10.3892/mmr.2022.12615] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra-articular proinflammatory and anti-inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti-inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self-repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti-inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL-1β, TNF-α, IL-6, IL-15, IL-17 and IL-18, as well as the key anti-inflammatory factors reducing OA-related articular damage, including IL-4, insulin-like growth factor and TGF-β. The predominance of proinflammatory over anti-inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Shengsheng Jian
- Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China
| | - Feifei Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yuan Yang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zicai Fu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Huanyu Xie
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
6
|
Hale J, Hughes K, Hall S, Labens R. Effects of Production Method and Repeated Freeze Thaw Cycles on Cytokine Concentrations and Microbial Contamination in Equine Autologous Conditioned Serum. Front Vet Sci 2021; 8:759828. [PMID: 34901249 PMCID: PMC8656450 DOI: 10.3389/fvets.2021.759828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Autologous conditioned serum (ACS) is a common intra-articular treatment for osteoarthritis in horses. The objective of this study was to investigate the influence of ACS preparation method on product contamination and concentrations of relevant cytokines and the influence of multiple freeze/thaw cycles. Blood was obtained from 10 healthy Thoroughbred horses and processed in parallel using a commercial and a non-commercial method to obtain ACS. Fluorescent microsphere immunoassay (FMIA) analysis was performed to quantify Interleukin 1 receptor antagonist (IL-1Ra), Interleukin-10 (IL-10), Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations in ACS obtained by both production methods. Effect of 3, 4 and 5 freeze/thaw cycles on concentrations of IL-1Ra, IL-10, IL-1β and TNF-α were assessed against baseline samples (2 cycles) in commercial ACS products. Standard aerobic and anaerobic culture methods were applied to both ACS products. Mixed effect one-way analyses of variance (ANOVA) were used to compare the two ACS production method for each cytokine. Repeated measures, mixed effect ANOVA were used to assess the effect of freeze/thaw on cytokine concentrations. Significance was set at P < 0.05. There was no difference in cytokine concentration between production methods (IL-1Ra P = 0.067, IL-1β P = 0.752, IL-10 P = 0.211 and TNF-α P = 0.25). Microbial growth was only observed in two samples obtained using the commercial production method. When compared to baseline, IL-1Ra concentration was decreased following the 5th freeze/thaw cycle (P < 0.001). These results suggest that the concentration of important cytokines are not influenced by ACS production method. When storing ACS samples for future use, freeze/thaw cycles associated with standard clinical practice are unlikely to influence cytokine concentrations. However, the lack of outcome measures associated with 1 or 2 freeze/thaw cycles represents a limitation of this study.
Collapse
Affiliation(s)
- Josephine Hale
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sarah Hall
- Animal & Veterinary Sciences Department, Scotland's Rural College, Edinburgh, United Kingdom
| | - Raphael Labens
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
7
|
Lange C, Madry H, Venkatesan JK, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. rAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes. Am J Sports Med 2021; 49:3696-3707. [PMID: 34643471 DOI: 10.1177/03635465211049414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. PURPOSE To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-hsox9 relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro-computed tomography. RESULTS Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV-lacZ treatment. The application of rAAV-FLAG-hsox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV-lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-hsox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV-lacZ. CONCLUSION rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-hsox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. CLINICAL RELEVANCE The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.
Collapse
Affiliation(s)
- Cliff Lange
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | | | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
8
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am J Sports Med 2021; 49:958-969. [PMID: 33606561 DOI: 10.1177/0363546521988941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.
Collapse
Affiliation(s)
- Yannik P Morscheid
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
10
|
Szwedowski D, Szczepanek J, Paczesny Ł, Pękała P, Zabrzyński J, Kruczyński J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches. Int J Mol Sci 2020; 21:E5430. [PMID: 32751537 PMCID: PMC7432875 DOI: 10.3390/ijms21155430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Cartilage lesions have a multifactorial nature, and genetic factors are their strongest determinants. As biochemical and genetic studies have dramatically progressed over the past decade, the molecular basis of cartilage pathologies has become clearer. Several homeostasis abnormalities within cartilaginous tissue have been found, including various structural changes, differential gene expression patterns, as well as altered epigenetic regulation. However, the efficient treatment of cartilage pathologies represents a substantial challenge. Understanding the complex genetic background pertaining to cartilage pathologies is useful primarily in the context of seeking new pathways leading to disease progression as well as in developing new targeted therapies. A technology utilizing gene transfer to deliver therapeutic genes to the site of injury is quickly becoming an emerging approach in cartilage renewal. The goal of this work is to provide an overview of the genetic basis of chondral lesions and the different approaches of the most recent systems exploiting therapeutic gene transfer in cartilage repair. The integration of tissue engineering with viral gene vectors is a novel and active area of research. However, despite promising preclinical data, this therapeutic concept needs to be supported by the growing body of clinical trials.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy;
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Przemysław Pękała
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30705 Krakow, Poland;
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jacek Kruczyński
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60512 Poznań, Poland;
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The decreased contact area, edge loading, and increased stress in the adjacent area cartilage resulting from chondral defects are believed to predispose this tissue to degenerative changes that have significant economic implications, especially when considering its progression to osteoarthritis of the knee. Growth factors are considered therapeutic possibilities to enhance healing of chondral injuries and modify the progression to degenerative arthritis. Thus, the purposes of this review are to first to summarize important points for defect preparation and recent advances in techniques for marrow stimulation and second, and to identify specific growth factors and cytokines that have the capacity to advance cartilage regeneration and the treatment of osteoarthritis in light of recent laboratory and clinical studies. RECENT FINDINGS TGF-β, BMP-2, BMP-7, IGF-1, as IL-1 receptor antagonist, and recombinant human FGF-18 are some of the promising growth factor/cytokine treatments with pioneering and evolving clinical developments. The bulk of the review describes and discusses these developments in light of fundamental basic science. It is crucial to also understand the other underlying advances made in the surgical management of cartilage defects prior to onset of OA. These advances are in techniques for defect preparation and marrow stimulation, a common cartilage repair procedure used in combination with growth factor/cytokine augmentation. Multiple growth factor/cytokine modulation therapies are currently undergoing clinical trial investigation including Invossa (currently in phase III study), Kineret (currently in phase I study), and Sprifermin (currently in phase II study) for the treatment of symptomatic osteoarthritis.
Collapse
|
12
|
Marques-Smith P, Kallerud AS, Johansen GM, Boysen P, Jacobsen AM, Reitan KM, Henriksen MM, Löfgren M, Fjordbakk CT. Is clinical effect of autologous conditioned serum in spontaneously occurring equine articular lameness related to ACS cytokine profile? BMC Vet Res 2020; 16:181. [PMID: 32513154 PMCID: PMC7278142 DOI: 10.1186/s12917-020-02391-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/26/2020] [Indexed: 11/20/2022] Open
Abstract
Background Biologic’ therapies, such as autologous conditioned serum (ACS), are gaining popularity in treating orthopaedic conditions in equine veterinary medicine. Evidence is scarce regarding ACS constituents, and large inter-individual differences in cytokine and growth factor content have been demonstrated. The objective of the current study was to investigate the potential association between cytokine and growth factor content of ACS and clinical effect in harness racehorses with spontaneously occurring low-grade articular lameness. Horses received 3 intra-articular injections of ACS administered at approximately 2-week intervals. Lameness evaluation consisting of a trot-up with subsequent flexions tests was performed at inclusion and approximately 2 weeks after the last treatment (re-evaluation); horses were classified as responders when there was no detectable lameness on trot-up and a minimum of 50% reduction in flexion test scores at re-evaluation. Association between clinical outcome (responders vs. non-responders) and age, lameness grades at inclusion (both initial trot-up and after flexion tests), treatment interval, follow-up time and the ACS content of IL-1Ra, IGF-1 and TGF-β was determined by regression modelling. Results Outcome analysis was available for 19 of 20 included horses; 11 responded to treatment whereas 8 did not. There was considerable inter-individual variability in cytokine/growth factor content of ACS, and in the majority of the horses, the level of IL-10, IL-1β and TNF-α was below the detection limit. In the final multivariate logistic regression model, ACS content of IGF-1 and IL-1Ra was significantly associated with clinical response (P = 0.01 and P = 0.03, respectively). No association with clinical response was found for the other tested variables. Conclusions The therapeutic benefit of ACS may be related to higher levels of IL-1Ra and IGF-1. Our study corroborates previous findings of considerable inter-individual variability of cytokine- and growth factor content in ACS.
Collapse
Affiliation(s)
- Patrick Marques-Smith
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway.
| | - Anne S Kallerud
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Grethe M Johansen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Anna M Jacobsen
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Karoline M Reitan
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Mia M Henriksen
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| | - Maria Löfgren
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Cathrine T Fjordbakk
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0102, Oslo, Norway
| |
Collapse
|
13
|
Boffa A, Previtali D, Altamura SA, Zaffagnini S, Candrian C, Filardo G. Platelet-Rich Plasma Augmentation to Microfracture Provides a Limited Benefit for the Treatment of Cartilage Lesions: A Meta-analysis. Orthop J Sports Med 2020; 8:2325967120910504. [PMID: 32341925 PMCID: PMC7175068 DOI: 10.1177/2325967120910504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Microfracture is the most common first-line option for the treatment of small chondral lesions, although increasing evidence shows that the clinical benefit of microfracture decreases over time. Platelet-rich plasma (PRP) has been suggested as an effective biological augmentation to improve clinical outcomes after microfracture. Purpose: To evaluate the clinical evidence regarding the application of PRP, documenting safety and efficacy of this augmentation technique to improve microfracture for the treatment of cartilage lesions. Study Design: Systematic review; Level of evidence, 3. Methods: A systematic review was performed in PubMed, EBSCOhost database, and the Cochrane Library to identify comparative studies evaluating the clinical efficacy of PRP augmentation to microfracture. A meta-analysis was performed on articles that reported results for visual analog scale (VAS) for pain, International Knee Documentation Committee (IKDC), and American Orthopaedic Foot and Ankle Society (AOFAS) scores. Risk of bias was documented through use of the Cochrane Collaboration Risk of Bias 2.0 and Risk of Bias in Non-randomized Studies of Interventions assessment tools. The quality assessment was performed according to the Grading of Recommendations Assessment, Development and Evaluation guidelines. Results: A total of 7 studies met the inclusion criteria and were included in the meta-analysis: 4 randomized controlled trials, 2 prospective comparative studies, and 1 retrospective comparative study, for a total of 234 patients. Of the 7 studies included, 4 studies evaluated the effects of PRP treatment in the knee, and 3 studies evaluated effects in the ankle. The analysis of all scores showed a difference favoring PRP treatment in knees (VAS, P = .002 and P < .001 at 12 and 24 months, respectively; IKDC, P < .001 at both follow-up points) and ankles (both VAS and AOFAS, P < .001 at 12 months). The improvement offered by PRP did not reach the minimal clinically important difference (MCID). Conclusion: PRP provided an improvement to microfracture in knees and ankles at short-term follow-up. However, this improvement did not reach the MCID, and thus it was not clinically perceivable by the patients. Moreover, the overall low evidence and the paucity of high-level studies indicate further research is needed to confirm the potential of PRP augmentation to microfracture for the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Previtali
- Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
| | | | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Stefano Zaffagnini, MD, Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ()
| | - Christian Candrian
- Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
| | - Giuseppe Filardo
- Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
14
|
Shortt C, Luyt LG, Turley EA, Cowman MK, Kirsch T. A Hyaluronan-binding Peptide (P15-1) Reduces Inflammatory and Catabolic Events in IL-1β-treated Human Articular Chondrocytes. Sci Rep 2020; 10:1441. [PMID: 31996703 PMCID: PMC6989647 DOI: 10.1038/s41598-020-57586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays a critical role in osteoarthritis (OA). It stimulates catabolic events in articular chondrocytes and prevents chondrogenic precursor cells from repairing cartilage lesions, leading to accelerated cartilage degradation. Therefore, the identification of novel factors that reduce catabolic events in chondrocytes and enhances chondrogenic differentiation of precursor cells in an inflammatory environment may provide novel therapeutic strategies for the treatment of OA. The goal of this study was to determine whether a hyaluronan (HA)-binding peptide (P15-1), via interacting with high molecular weight (HMW)HA can enhance the anti-inflammatory properties of HMWHA and decrease catabolic events in interleukin-1beta (IL-1β)-treated human articular chondrocytes. Treatment with P15-1 decreased catabolic events and stimulated anabolic events in articular chondrocytes cultured in an inflammatory environment. P15-1 pre-mixed with HMWHA was more effective in inhibiting catabolic events and stimulating anabolic events than P15-1 or HMWHA alone. Our findings suggest that P15-1 together with HMWHA inhibits catabolic events in articular chondrocytes via the inhibition of p38 mitogen-activated protein kinases (MAPK) and increasing the thickness of the pericellular matrix (PCM) around chondrocytes thereby decreasing catabolic signaling. Finally, conditioned medium from IL-1β and P15-1-treated human articular chondrocytes was less inhibitory for chondrogenic differentiation of precursor cells than conditioned medium from chondrocytes treated with IL-1β alone. In conclusion, P15-1 is proposed to function synergistically with HMWHA to enhance the protective microenvironment for chondrocytes and mesenchymal stem cells during inflammation and regeneration.
Collapse
Affiliation(s)
- Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- FoodMarble Digestive Health, Dublin, 2, Ireland
| | - Leonard G Luyt
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Eva A Turley
- The University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mary K Cowman
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| |
Collapse
|
15
|
Venkatesan JK, Rey-Rico A, Cucchiarini M. Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Eng Regen Med 2019; 16:345-355. [PMID: 31413939 PMCID: PMC6675832 DOI: 10.1007/s13770-019-00179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Viral vector-based therapeutic gene therapy is a potent strategy to enhance the intrinsic reparative abilities of human orthopaedic tissues. However, clinical application of viral gene transfer remains hindered by detrimental responses in the host against such vectors (immunogenic responses, vector dissemination to nontarget locations). Combining viral gene therapy techniques with tissue engineering procedures may offer strong tools to improve the current systems for applications in vivo. Methods The goal of this work is to provide an overview of the most recent systems exploiting biomaterial technologies and therapeutic viral gene transfer in human orthopaedic regenerative medicine. Results Integration of tissue engineering platforms with viral gene vectors is an active area of research in orthopaedics as a means to overcome the obstacles precluding effective viral gene therapy. Conclusions In light of promising preclinical data that may rapidly expand in a close future, biomaterial-guided viral gene therapy has a strong potential for translation in the field of human orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| |
Collapse
|
16
|
van Geffen EW, van Caam APM, Vitters EL, van Beuningen HM, van de Loo FA, van Lent PLEM, Koenders MI, van der Kraan PM. Interleukin-37 Protects Stem Cell-Based Cartilage Formation in an Inflammatory Osteoarthritis-Like Microenvironment. Tissue Eng Part A 2019; 25:1155-1166. [DOI: 10.1089/ten.tea.2018.0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Elly Louise Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk Maria van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons Adrianus van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marije Ingrid Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mario van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Muir SM, Reisbig N, Baria M, Kaeding C, Bertone AL. The Concentration of Plasma Provides Additional Bioactive Proteins in Platelet and Autologous Protein Solutions. Am J Sports Med 2019; 47:1955-1963. [PMID: 31125271 DOI: 10.1177/0363546519849671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Currently, platelet-poor plasma (PPP) is a discarded waste product of platelet-rich plasma (PRP) and may contain valuable proteins. PURPOSE/HYPOTHESIS The study's goal was to evaluate the concentration of plasma as a potential additive biotherapy for the treatment of osteoarthritis. We hypothesized that a novel polyacrylamide concentration device would efficiently concentrate insulin-like growth factor-1 (IGF-1) from PPP and be additive to PRP or autologous protein solution (APS). STUDY DESIGN Descriptive laboratory study. METHODS A laboratory study was conducted with human and equine whole blood from healthy volunteers/donors. Fresh samples of blood and plasma were processed and characterized for platelet, white blood cell, and growth factor/cytokine content and then quantified by enzyme-linked immunosorbent assays specific for IGF-1, transforming growth factor-β, interleukin-1β, and interleukin-1 receptor antagonist as representatives of cartilage anabolic and inflammatory mediators. RESULTS A potent cartilage anabolic protein, IGF-1, was significantly concentrated by the polyacrylamide concentration device in both human and equine PPP. The polyacrylamide device also substantially increased plasma proteins over whole blood, most dramatically key proteins relevant to the treatment of osteoarthritis, including transforming growth factor-β (29-fold over blood) and interleukin-1 receptor antagonist (70-fold over plasma). CONCLUSION Concentrated PPP is a unique source for biologically relevant concentrations of IGF-1. PRP and APS can produce greater concentrations of other anabolic and anti-inflammatory proteins not found in plasma. CLINICAL RELEVANCE The polyacrylamide device efficiently concentrated PPP to create a unique source of IGF-1 that may supplement orthopaedic biologic therapies.
Collapse
Affiliation(s)
- Sean M Muir
- The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
18
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Cucchiarini M, Asen AK, Goebel L, Venkatesan JK, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Madry H. Effects of TGF-β Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. Am J Sports Med 2018; 46:1987-1996. [PMID: 29792508 DOI: 10.1177/0363546518773709] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Application of the chondrogenic transforming growth factor beta (TGF-β) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE To evaluate the ability of an rAAV-TGF-β construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN Controlled laboratory study. METHODS Direct administration of the candidate rAAV-human TGF-β (hTGF-β) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS Successful overexpression of TGF-β via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION Gene therapy via direct, local rAAV-hTGF-β injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE Local delivery of therapeutic (TGF-β) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ann-Kathrin Asen
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
20
|
Bellavia D, Veronesi F, Carina V, Costa V, Raimondi L, De Luca A, Alessandro R, Fini M, Giavaresi G. Gene therapy for chondral and osteochondral regeneration: is the future now? Cell Mol Life Sci 2018; 75:649-667. [PMID: 28864934 PMCID: PMC11105387 DOI: 10.1007/s00018-017-2637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcription factors, anti-inflammatory cytokines and, less frequently, by cell signalling proteins, matrix proteins and receptors. Direct injection of the expression vector was used less than indirect injection of cells, with or without scaffolds, transduced with genes of interest and then implanted into the lesion site. Clinical trials (phases I, II or III) on safety, biological activity, efficacy, toxicity or bio-distribution employed adenovirus viral vectors to deliver growth factors or anti-inflammatory cytokines, for the treatment of osteoarthritis or degenerative arthritis, and tumour necrosis factor receptor or interferon for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy.
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy.
| | - F Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - V Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - V Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - L Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - A De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
| | - R Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - G Giavaresi
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopaedic Institute, Via Divisi 83, 90133, Palermo, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
21
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
22
|
Evaluation of Two Protocols Using Autologous Conditioned Serum for Intra-articular Therapy of Equine Osteoarthritis—A Pilot Study Monitoring Cytokines and Cartilage-Specific Biomarkers. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2016.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
24
|
Potencial regenerativo do tecido cartilaginoso por células‐tronco mesenquimais: atualização, limitações e desafios. Rev Bras Ortop 2017. [DOI: 10.1016/j.rbo.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Cruz IBMD, Severo AL, Azzolin VF, Garcia LFM, Kuhn A, Lech O. Regenerative potential of the cartilaginous tissue in mesenchymal stem cells: update, limitations, and challenges. Rev Bras Ortop 2017; 52:2-10. [PMID: 28194374 PMCID: PMC5290078 DOI: 10.1016/j.rboe.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Advances in the studies with adult mesenchymal stem cells (MSCs) have turned tissue regenerative therapy into a promising tool in many areas of medicine. In orthopedics, one of the main challenges has been the regeneration of cartilage tissue, mainly in diarthroses. In the induction of the MSCs, in addition to cytodifferentiation, the microenvironmental context of the tissue to be regenerated and an appropriate spatial arrangement are extremely important factors. Furthermore, it is known that MSC differentiation is fundamentally determined by mechanisms such as cell proliferation (mitosis), biochemical-molecular interactions, movement, cell adhesion, and apoptosis. Although the use of MSCs for cartilage regeneration remains at a research level, there are important questions to be resolved in order to make this therapy efficient and safe. It is known, for instance, that the expansion of chondrocytes in cultivation, needed to increase the number of cells, could end up producing fibrocartilage instead of hyaline cartilage. However, the latest results are promising. In 2014, the first stage I/II clinical trial to evaluate the efficacy and safety of the intra-articular injection of MSCs in femorotibial cartilage regeneration was published, indicating a decrease in injured areas. One issue to be explored is how many modifications in the articulate inflammatory environment could induce differentiation of MSCs already allocated in that region. Such issue arose from studies that suggested that the suppression of the inflammation may increase the efficiency of tissue regeneration. Considering the complexity of the events related to the chondrogenesis and cartilage repair, it can be concluded that the road ahead is still long, and that further studies are needed.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Universidade Federal de Santa Maria (UFSM), Centro de Ciências da Saúde, Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria (UFSM), Laboratório de Biogenômica, Santa Maria, RS, Brazil
| | - Antônio Lourenço Severo
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| | - Verônica Farina Azzolin
- Universidade Federal de Santa Maria (UFSM), Laboratório de Biogenômica, Santa Maria, RS, Brazil
| | | | - André Kuhn
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| | - Osvandré Lech
- Universidade Federal da Fronteira Sul (UFFS), Hospital São Vicente de Paulo, Instituto de Ortopedia e Traumatologia, Passo Fundo, RS, Brazil
| |
Collapse
|
26
|
|
27
|
Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Eng Part A 2016; 22:621-32. [PMID: 26956216 DOI: 10.1089/ten.tea.2016.0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While significant progress has been made toward engineering functional cartilage constructs with mechanical properties suitable for in vivo loading, the impact on these grafts of inflammatory cytokines, chemical factors that are elevated with trauma or osteoarthritis, is poorly understood. Previous work has shown dexamethasone to be a critical compound for cultivating cartilage with functional properties, while also providing chondroprotection from proinflammatory cytokines. This study tested the hypothesis that the incorporation of poly(lactic-co-glycolic acid) (PLGA) (75:25) microspheres that release dexamethasone from within chondrocyte-seeded agarose hydrogel constructs would promote development of constructs with functional properties and protect constructs from the deleterious effects of interleukin-1α (IL-1α). After 28 days of growth culture, experimental groups were treated with IL-1α (10 ng/mL) for 7 days. Reaching native equilibrium moduli and proteoglycan levels, dexamethasone-loaded microsphere constructs exhibited tissue properties similar to microsphere-free control constructs cultured in dexamethasone-supplemented culture media and were insensitive to IL-1α exposure. These findings are in stark contrast to constructs containing dexamethasone-free microspheres or no microspheres, cultured without dexamethasone, where IL-1α exposure led to significant tissue degradation. These results support the use of dexamethasone delivery from within engineered cartilage, through biodegradable microspheres, as a strategy to produce mechanically functional tissues that can also combat the deleterious effects of local proinflammatory cytokine exposure.
Collapse
Affiliation(s)
- Brendan L Roach
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Arta Kelmendi-Doko
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elaine C Balutis
- 3 Department of Orthopedics and Sports Medicine, Mount Sinai Health System , New York, New York
| | - Kacey G Marra
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,6 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
28
|
The detection of a synthetic Interleukin-1 receptor antagonist peptide in a seized product from a racing stable. Drug Test Anal 2015; 8:957-65. [DOI: 10.1002/dta.1869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/07/2022]
|
29
|
McIlwraith CW. Management of joint diseases in horses: Current and future prospects. EQUINE VET EDUC 2015. [DOI: 10.1111/eve.12364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. W. McIlwraith
- Gail Holmes Equine Orthopaedic Research Center; Colorado State University; Fort Collins Colorado USA
| |
Collapse
|
30
|
Mithoefer K, Peterson L, Zenobi-Wong M, Mandelbaum BR. Cartilage issues in football-today's problems and tomorrow's solutions. Br J Sports Med 2015; 49:590-6. [PMID: 25878075 PMCID: PMC4413687 DOI: 10.1136/bjsports-2015-094772] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 02/05/2023]
Abstract
Articular cartilage injury is prevalent in football players and results from chronic joint stress or acute traumatic injuries. Articular cartilage injury can often result in progressive painful impairment of joint function and limit sports participation. Management of articular cartilage injury in athletes aims to return the player to competition, and requires effective and durable joint surface restoration that resembles normal hyaline articular cartilage that can withstand the high joint stresses of football. Existing articular cartilage repair techniques can return the athlete with articular cartilage injury to high-impact sports, but treatment does not produce normal articular cartilage, and this limits the success rate and durability of current cartilage repair in athletes. Novel scientific concepts and treatment techniques that apply modern tissue engineering technologies promise further advancement in the treatment of these challenging injuries in the high demand athletic population. We review the current knowledge of cartilage injury pathophysiology, epidemiology and aetiology, and outline existing management algorithms, developing treatment options and future strategies to manage articular cartilage injuries in football players.
Collapse
Affiliation(s)
- Kai Mithoefer
- Department of Orthopedics and Sports Medicine, Harvard Vanguard Medical Associates, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars Peterson
- Department of Orthopedic Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Marcy Zenobi-Wong
- Cartilage Engineering and Regeneration Laboratory, ETH Zurich, Zurich, Switzerland
| | - Bert R Mandelbaum
- Santa Monica Orthopedics and Sports Medicine Foundation, Los Angeles, USA
| |
Collapse
|
31
|
Goodrich LR, Grieger JC, Phillips JN, Khan N, Gray SJ, McIlwraith CW, Samulski RJ. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther 2015; 22:536-45. [PMID: 25902762 DOI: 10.1038/gt.2015.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022]
Abstract
A gene therapeutic approach to treat osteoarthritis (OA) appears to be on the horizon for millions of people who suffer from this disease. Previously we described optimization of a scAAVIL-1ra gene therapeutic vector and initially tested this in an equine model verifying long-term intrasynovial IL-1ra protein at therapeutic levels. Using this vector, we carried out a dosing trial in six horses to verify protein levels and establish a dose that would express relevant levels of therapeutic protein for extended periods of time (8 months). A novel arthroscopic procedure used to detect green fluorescence protein (GFP) fluorescence intrasynovially confirmed successful transduction of the scAAVGFP vector in both the synovial and cartilage tissues. No evidence of intra-articular toxicity was detected. Immune responses to vector revealed development of neutralizing antibodies (Nabs) within 2 weeks of administration, which persisted for the duration of the study but did not lower protein expression intra-articularly. Re-dosing with a different serotype to attain therapeutic levels of protein confirmed establishment of successful transduction. This is the first study in an equine model to establish a dosing/redosing protocol, as well as examine the Nab response to capsid and supports further clinical investigation to determine the clinical efficacy of scAAVIL-1ra to treat OA.
Collapse
Affiliation(s)
- L R Goodrich
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - J C Grieger
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J N Phillips
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - N Khan
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S J Gray
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C W McIlwraith
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - R J Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther 2015; 15:455-64. [PMID: 25645308 DOI: 10.1517/14712598.2015.1009886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Currently, joint arthroplasty remains the only definitive management of osteoarthritis, while other treatment modalities only provide temporary and symptomatic relief. The use of genetically engineered chondrocytes is currently undergoing clinical trials. Specifically, it has been designed to induce cartilage growth and differentiation in patients with degenerative arthritis, with the aim to play a curative role in the disease process. AREAS COVERED This treatment involves the incorporation of TGF-β1, which has been determined to play an influential role in chondrogenesis and extracellular matrix synthesis. Using genetic manipulation and viral transduction, TGF-β1 is incorporated into human chondrocytes and administered in a minimally invasive fashion directly to the affected joint. Following a database literature search, we evaluated the current evidence on this product and its outcomes. Furthermore, we also briefly reviewed other treatments developed for chondrogenesis and cartilage regeneration for comparison. EXPERT OPINION This treatment method has sustained positive effects on functional outcomes and cartilage growth in initial trials. It allows administration in a minimally invasive manner that does not require extended recovery time. Although several treatment modalities are currently under investigation and appear promising, we hope that these effects can be sustained in further studies. Ultimately, we anticipate that the results may be reproducible in many clinical settings and allow us to effectively treat cartilage damage in patients with degenerative arthritis.
Collapse
Affiliation(s)
- Randa K Elmallah
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Center for Joint Preservation and Replacement , 2401 West Belvedere Avenue, Baltimore, MD 21215 , USA +1 410 601 8500 ; +1 410 601 8501 ; ;
| | | | | | | | | | | |
Collapse
|
33
|
Clark A, Hilt JZ, Milbrandt TA, Puleo DA. Treating Proximal Tibial Growth Plate Injuries Using Poly(Lactic-co-Glycolic Acid) Scaffolds. Biores Open Access 2015; 4:65-74. [PMID: 26309783 PMCID: PMC4497685 DOI: 10.1089/biores.2014.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth plate fractures account for nearly 18.5% of fractures in children. Depending on the type and severity of the injury, inhibited bone growth or angular deformity caused by bone forming in place of the growth plate can occur. The current treatment involves removal of the bony bar and replacing it with a filler substance, such as a free fat graft. Unfortunately, reformation of the bony bar frequently occurs, preventing the native growth plate from regenerating. The goal of this pilot study was to determine whether biodegradable scaffolds can enhance native growth plate regeneration following a simulated injury that resulted in bony bar formation in the proximal tibial growth plate of New Zealand white rabbits. After removing the bony bar, animals received one of the following treatments: porous poly(lactic-co-glycolic acid) (PLGA) scaffold; PLGA scaffold loaded with insulin-like growth factor I (IGF-I); PLGA scaffold loaded with IGF-I and seeded with autogenous bone marrow cells (BMCs) harvested at the time of implantation; or fat graft (as used clinically). The PLGA scaffold group showed an increased chondrocyte population and a reduced loss of the remaining native growth plate compared to the fat graft group (the control group). An additional increase in chondrocyte density was seen in scaffolds loaded with IGF-I, and even more so when BMCs were seeded on the scaffold. While there was no significant reduction in the angular deformation of the limbs, the PLGA scaffolds increased the amount of cartilage and reduced the amount of bony bar reformation.
Collapse
Affiliation(s)
- Amanda Clark
- Department of Biomedical Engineering, University of Kentucky , Lexington, Kentucky
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky
| | - Todd A Milbrandt
- Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
34
|
Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation. Case Rep Orthop 2015; 2015:617365. [PMID: 25628907 PMCID: PMC4299361 DOI: 10.1155/2015/617365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023] Open
Abstract
Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone.
Collapse
|
35
|
Forney MC, Gupta A, Minas T, Winalski CS. Magnetic resonance imaging of cartilage repair procedures. Magn Reson Imaging Clin N Am 2014; 22:671-701. [PMID: 25442028 DOI: 10.1016/j.mric.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage injuries in the knee are common and can be a persistent source of pain or dysfunction. Many new surgical strategies have been developed to treat these lesions. It is important for the radiologist to have an understanding of these procedures and their appearance on magnetic resonance (MR) imaging. This article provides the radiologist with an overview of the surgical strategies for repairing cartilage lesions in the knee followed by a discussion of their postoperative appearance on MR imaging in normal and abnormal cases. Guidelines for adequate reporting of the MR imaging findings after cartilage repair in the knee are also included.
Collapse
Affiliation(s)
- Michael C Forney
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Amit Gupta
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tom Minas
- Department of Orthopedic Surgery, Cartilage Repair Center, Brigham and Women's Hospital, 850 Boylston Street, Suite 112, Chestnut Hill, MA 02467, USA
| | - Carl S Winalski
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
36
|
|
37
|
Kondo M, Yamaoka K, Tanaka Y. Acquiring chondrocyte phenotype from human mesenchymal stem cells under inflammatory conditions. Int J Mol Sci 2014; 15:21270-85. [PMID: 25407530 PMCID: PMC4264224 DOI: 10.3390/ijms151121270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/15/2023] Open
Abstract
An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs) are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH) terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Masahiro Kondo
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Kunihiro Yamaoka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
38
|
ZHOU PANGHU, MA BEILEI, SHI LEI, XIE TING, QIU BO. Inhibition of interleukin-1β-stimulated matrix metalloproteinases via the controlled release of interleukin-1Ra from chitosan microspheres in chondrocytes. Mol Med Rep 2014; 11:555-60. [DOI: 10.3892/mmr.2014.2743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/21/2014] [Indexed: 11/05/2022] Open
|
39
|
Use of Tissue Engineering Strategies to Repair Joint Tissues in Osteoarthritis: Viral Gene Transfer Approaches. Curr Rheumatol Rep 2014; 16:449. [DOI: 10.1007/s11926-014-0449-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 2014; 21:811-9. [PMID: 24989812 DOI: 10.1038/gt.2014.58] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/06/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022]
Abstract
Direct therapeutic gene transfer is a promising tool to treat articular cartilage defects. Here, we tested the ability of an recombinant adeno-associated virus (rAAV) insulin-like growth factor I (IGF-I) vector to improve the early repair of cartilage lesions in vivo. The vector was administered for 3 weeks in osteochondral defects created in the knee joints of rabbits compared with control (lacZ) treatment and in cells that participate in the repair processes (mesenchymal stem cells, chondrocytes). Efficient IGF-I expression was observed in the treated lesions and in isolated cells in vitro. rAAV-mediated IGF-I overexpression was capable of stimulating the biologic activities (proliferation, matrix synthesis) both in vitro and in vivo. IGF-I treatment in vivo was well tolerated, revealing significant improvements of the repair capabilities of the entire osteochondral unit. IGF-I overexpression delayed terminal differentiation and hypertrophy in the newly formed cartilage, possibly due to contrasting effects upon the osteogenic expression of RUNX2 and β-catenin and to stimulating effects of this factor on the parathyroid hormone/parathyroid hormone-related protein pathway in this area. Production of IGF-I improved the reconstitution of the subchondral bone layer in the defects, showing increased RUNX2 expression levels in this zone. These findings show the potential of directly applying therapeutic rAAVs to treat cartilage lesions.
Collapse
|
41
|
Clark A, Milbrandt TA, Hilt JZ, Puleo DA. Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds. Biomed Mater 2014; 9:025015. [PMID: 24565886 DOI: 10.1088/1748-6041/9/2/025015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The use of growth factors in tissue engineering offers an added benefit to cartilage regeneration. Growth factors, such as insulin-like growth factor I (IGF-I), increase cell proliferation and can therefore decrease the time it takes for cartilage tissue to regrow. In this study, IGF-I was released from poly(lactic-co-glycolic acid) (PLGA) scaffolds that were designed to have a decreased burst release often associated with tissue engineering scaffolds. The scaffolds were fabricated from IGF-I-loaded PLGA microspheres prepared by a double emulsion (W1/O/W2) technique. The microspheres were then compressed, sintered at 49 °C and salt leached. The bioactivity of soluble IGF-I was verified after being heat treated at 37, 43, 45, 49 and 60 °C. Additionally, the bioactivity of IGF-I was confirmed after being released from the sintered scaffolds. The triphasic release lasted 120 days resulting in 20%, 55% and 25% of the IGF-I being released during days 1-3, 4-58 and 59-120, respectively. Seeding bone marrow cells directly onto the IGF-I-loaded scaffolds showed an increase in cell proliferation, based on DNA content, leading to increased glycosaminoglycan production. The present results demonstrated that IGF-I remains active after being incorporated into heat-treated scaffolds, further enhancing tissue regeneration possibilities.
Collapse
Affiliation(s)
- Amanda Clark
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
42
|
Grande DA, Schwartz JA, Brandel E, Chahine NO, Sgaglione N. Articular Cartilage Repair: Where We Have Been, Where We Are Now, and Where We Are Headed. Cartilage 2013; 4:281-5. [PMID: 26069673 PMCID: PMC4297160 DOI: 10.1177/1947603513494402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review traces the genealogy of the field of articular cartilage repair from its earliest attempts to its present day vast proliferation of research advances. Prior to the 1980s there was only sporadic efforts to regenerate articular cartilage as it was considered to be incapable of regeneration based on historical dogma. The first flurry of reports documented the use of various cell types ultimately leading to the first successful demonstration of autologous chondrocyte transplantation which was later translated to clinical use and has resulted in the revised axiom that cartilage regeneration is possible. The current field of cartilage repair is multifaceted and some of the 1980s' vintage concepts have been revisited with state of the art technology now available. The future of the field is now poised to undertake the repair of whole cartilage surfaces beyond focal defects and an appreciation for integrated whole joint health to restore cartilage homeostasis.
Collapse
Affiliation(s)
- Daniel A. Grande
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - John A. Schwartz
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Eric Brandel
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Nadeen O. Chahine
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Nicholas Sgaglione
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| |
Collapse
|
43
|
Malda J, McIlwraith CW. Current Trends in Cartilage Science: An Impression from the ICRS World Conference 2012. Cartilage 2013; 4:273-80. [PMID: 26069672 PMCID: PMC4297156 DOI: 10.1177/1947603513479606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands
- Department of Equine Sciences, Utrecht University, The Netherlands
- Scientific Programme Chairs, ICRS Congress 2012, Montreal
| | - C. Wayne McIlwraith
- Gail Holmes Equine Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Scientific Programme Chairs, ICRS Congress 2012, Montreal
| |
Collapse
|
44
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
45
|
Lee HH, O'Malley MJ, Friel NA, Payne KA, Qiao C, Xiao X, Chu CR. Persistence, localization, and external control of transgene expression after single injection of adeno-associated virus into injured joints. Hum Gene Ther 2013; 24:457-66. [PMID: 23496155 PMCID: PMC3631018 DOI: 10.1089/hum.2012.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 03/07/2013] [Indexed: 01/11/2023] Open
Abstract
A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)-luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications.
Collapse
Affiliation(s)
- Hannah H. Lee
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15313
| | - Michael J. O'Malley
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
| | - Nicole A. Friel
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
| | - Karin A. Payne
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Orthopedic Surgery, University of Colorado Denver, Aurora, CO 80045
| | - Chunping Qiao
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Constance R. Chu
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15313
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305
| |
Collapse
|
46
|
|
47
|
van Eekeren ICM, Reilingh ML, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med 2013; 42:857-70. [PMID: 22963224 DOI: 10.1007/bf03262299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of arthroscopic debridement and bone marrow stimulation. This article delineates levels of activity, determines times for return to activity and reviews the factors that affect rehabilitation after arthroscopic debridement and bone marrow stimulation of a talar OD. Articles for review were obtained from a search of the MEDLINE database up to January 2012 using the search headings 'osteochondral defects', 'bone marrow stimulation', 'sports/activity', 'rehabilitation', various other related factors and 'talus'. English-, Dutch- and German-language studies were evaluated.The review revealed that there is no consensus in the existing literature about rehabilitation times or return-to-sports activity times, after treatment with bone marrow stimulation of ODs in the talus. Furthermore, scant research has been conducted on these issues. The literature also showed that potential factors that aid rehabilitation could include youth, lower body mass index, smaller OD size, mobilization and treatment with growth factors, platelet-rich plasma, biphosphonates, hyaluronic acid and pulse electromagnetic fields. However, most studies have been conducted in vitro or on animals. We propose a scheme, whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to non-contact sports (running without swerving) and return to contact sports (running with swerving and collision). We also recommend that research, conducted on actual sportsmen, of recovery times after treatment of talar ODs is warranted.
Collapse
Affiliation(s)
- Inge C M van Eekeren
- Orthopedic Research Centre Amsterdam, Department of Orthopedic Surgery, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Cucchiarini M, Orth P, Madry H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl) 2012; 91:625-36. [PMID: 23149825 DOI: 10.1007/s00109-012-0978-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/15/2012] [Accepted: 11/04/2012] [Indexed: 12/23/2022]
Abstract
Direct gene transfer strategies are of promising value to treat articular cartilage defects. Here, we tested the ability of a recombinant adeno-associated virus (rAAV) SOX9 vector to enhance the repair of cartilage lesions in vivo. The candidate construct was provided to osteochondral defects in rabbit knee joints vis-à-vis control (lacZ) vector treatment and to cells relevant of the repair tissue (mesenchymal stem cells, chondrocytes). Efficient, long-term transgene expression was noted within the lesions (up to 16 weeks) and in cells in vitro (21 days). Administration of the SOX9 vector was capable of stimulating the biological activities in vitro and over time in vivo. SOX9 treatment in vivo was well tolerated, leading to improved cartilage repair processes with enhanced production of major matrix components. Remarkably, application of rAAV SOX9 delayed premature terminal differentiation and hypertrophy in the newly formed cartilage, possible due to contrasting effects of SOX9 on RUNX2 and β-catenin osteogenic expression in this area. Most strikingly, SOX9 treatment improved the reconstitution of the subchondral bone in the defects, possibly due to an increase in RUNX2 expression in this location. These findings show the potential of direct rAAV gene delivery as an efficient tool to treat cartilage lesions.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421, Homburg/Saar, Germany.
| | | | | |
Collapse
|
49
|
Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2012; 3:22. [PMID: 22742415 PMCID: PMC3583131 DOI: 10.1186/scrt113] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Introduction Transplantation of genetically modified human bone marrow-derived mesenchymal stem cells (hMSCs) with an accurate potential for chondrogenic differentiation may be a powerful means to enhance the healing of articular cartilage lesions in patients. Here, we evaluated the benefits of delivering SOX9 (a key regulator of chondrocyte differentiation and cartilage formation) via safe, maintained, replication-defective recombinant adeno-associated virus (rAAV) vector on the capability of hMSCs to commit to an adequate chondrocyte phenotype compared with other mesenchymal lineages. Methods The rAAV-FLAG-hSOX9 vector was provided to both undifferentiated and lineage-induced MSCs freshly isolated from patients to determine the effects of the candidate construct on the viability, biosynthetic activities, and ability of the cells to enter chondrogenic, osteogenic, and adipogenic differentiation programs compared with control treatments (rAAV-lacZ or absence of vector administration). Results Marked, prolonged expression of the transcription factor was noted in undifferentiated and chondrogenically differentiated cells transduced with rAAV-FLAG-hSOX9, leading to increased synthesis of major extracellular matrix components compared with control treatments, but without effect on proliferative activities. Chondrogenic differentiation (SOX9, type II collagen, proteoglycan expression) was successfully achieved in all types of cells but strongly enhanced when the SOX9 vector was provided. Remarkably, rAAV-FLAG-hSOX9 delivery reduced the levels of markers of hypertrophy, terminal and osteogenic/adipogenic differentiation in hMSCs (type I and type X collagen, alkaline phosphatise (ALP), matrix metalloproteinase 13 (MMP13), and osteopontin (OP) with diminished expression of the osteoblast-related transcription factor runt-related transcription factor 2 (RUNX2); lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma 2 (PPARG2)), as well as their ability to undergo proper osteo-/adipogenic differentiation. These effects were accompanied with decreased levels of β-catenin (a mediator of the Wnt signaling pathway for osteoblast lineage differentiation) and enhanced parathyroid hormone-related protein (PTHrP) expression (an inhibitor of hypertrophic maturation, calcification, and bone formation) via SOX9 treatment. Conclusions This study shows the potential benefits of rAAV-mediated SOX9 gene transfer to propagate hMSCs with an advantageous chondrocyte differentiation potential for future, indirect therapeutic approaches that aim at restoring articular cartilage defects in the human population.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical CenterHomburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
50
|
McIlwraith CW, Frisbie DD, Kawcak CE. The horse as a model of naturally occurring osteoarthritis. Bone Joint Res 2012; 1:297-309. [PMID: 23610661 PMCID: PMC3626203 DOI: 10.1302/2046-3758.111.2000132] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/24/2012] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an important cause of
pain, disability and economic loss in humans, and is similarly important in
the horse. Recent knowledge on post-traumatic OA has suggested opportunities
for early intervention, but it is difficult to identify the appropriate
time of these interventions. The horse provides two useful mechanisms
to answer these questions: 1) extensive experience with clinical
OA in horses; and 2) use of a consistently predictable model of
OA that can help study early pathobiological events, define targets
for therapeutic intervention and then test these putative therapies.
This paper summarises the syndromes of clinical OA in horses including
pathogenesis, diagnosis and treatment, and details controlled studies
of various treatment options using an equine model of clinical OA.
Collapse
Affiliation(s)
- C W McIlwraith
- Orthopaedic Research Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|