1
|
Li M, Huang R, Wu W, Lu Y, Liu Q, Li W. Rowell's syndrome with Condyloma acuminatum: A case report. Clin Immunol 2024; 261:110163. [PMID: 38401659 DOI: 10.1016/j.clim.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Rowell's syndrome is an autoimmune disease characterized by lupus erythematosus, erythema multiforme skin lesions, and speckled antinuclear antibody. We report the case of a woman who presented with erythema multiforme with target-type skin lesions and vulvar vegetation who fulfilled the criteria for Rowell's syndrome and condyloma acuminatum. The simultaneous occurrence of both conditions has rarely been reported in the literature.
Collapse
Affiliation(s)
- Min Li
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China
| | - Ruiye Huang
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Weiwei Wu
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Yang Lu
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Qiao Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China.
| | - Wen Li
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China.
| |
Collapse
|
2
|
Wang M, Gu H, Zhai Y, Li X, Huang L, Li H, Xie Z, Wen C. Vaccination and the risk of systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Res Ther 2024; 26:60. [PMID: 38433222 PMCID: PMC10910799 DOI: 10.1186/s13075-024-03296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This meta-analysis aims to explore the potential link between vaccines and systemic lupus erythematosus (SLE). METHODS We systematically searched PubMed, Cochrane Library, and Embase for observational studies from inception to September 3, 2023, using medical subject headings (MeSH) and keywords. Study quality was assessed using the NOS scale. Statistical analyses were conducted using STATA software (version 14.0). Publication bias was evaluated using funnel plots and Egger's regression. RESULTS The meta-analysis incorporated 17 studies, encompassing 45,067,349 individuals with follow-up periods ranging from 0.5 to 2 years. The pooled analysis revealed no significant association between vaccinations and an increased risk of SLE [OR = 1.14, 95% CI (0.86-1.52), I2 = 78.1%, P = 0.348]. Subgroup analyses indicated that HBV vaccination was significantly associated with an elevated risk of SLE [OR =2.11, 95% CI (1.11-4.00), I2 = 63.3%, P = 0.02], HPV vaccination was slightly associated with an increased risk of SLE [OR = 1.43, 95% CI (0.88-2.31), I2 = 72.4%, P = 0.148], influenza vaccination showed no association with an increased risk of SLE [OR = 0.96, 95% CI (0.82-1.12), I2 = 0.0%, P = 0.559], and COVID-19 vaccine was marginally associated with a decreased risk of SLE [OR = 0.44, 95% CI (0.18-1.21), I2 = 91.3%, P = 0.118]. CONCLUSIONS This study suggests that vaccinations are not linked to an increased risk of SLE. Our meta-analysis results provide valuable insights, alleviating concerns about SLE risk post-vaccination and supporting further vaccine development efforts.
Collapse
Affiliation(s)
- Meijiao Wang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Huanpeng Gu
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Yingqi Zhai
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Xuanlin Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Lin Huang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Haichang Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Zhijun Xie
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| | - Chengping Wen
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| |
Collapse
|
3
|
Shabani M, Shobeiri P, Nouri S, Moradi Z, Amenu RA, Mehrabi Nejad MM, Rezaei N. Risk of flare or relapse in patients with immune-mediated diseases following SARS-CoV-2 vaccination: a systematic review and meta-analysis. Eur J Med Res 2024; 29:55. [PMID: 38229141 DOI: 10.1186/s40001-024-01639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Patients with autoimmune and immune-mediated diseases (AI-IMD) are at greater risk of COVID-19 infection; therefore, they should be prioritized in vaccination programs. However, there are concerns regarding the safety of COVID-19 vaccines in terms of disease relapse, flare, or exacerbation. In this study, we aimed to provide a more precise and reliable vision using systematic review and meta-analysis. METHODS PubMed-MEDLINE, Embase, and Web of Science were searched for original articles reporting the relapse/flare in adult patients with AI-IMD between June 1, 2020 and September 25, 2022. Subgroup analysis and sensitivity analysis were conducted to investigate the sources of heterogeneity. Statistical analysis was performed using R software. RESULTS A total of 134 observations of various AI-IMDs across 74 studies assessed the rate of relapse, flare, or exacerbation in AI-IMD patients. Accordingly, the crude overall prevalence of relapse, flare, or exacerbation was 6.28% (95% CI [4.78%; 7.95%], I2 = 97.6%), changing from 6.28% (I2 = 97.6%) to 6.24% (I2 = 65.1%) after removing the outliers. AI-IMD patients administering mRNA, vector-based, and inactive vaccines showed 8.13% ([5.6%; 11.03%], I2 = 98.1%), 0.32% ([0.0%; 4.03%], I2 = 93.5%), and 3.07% ([1.09%; 5.9%], I2 = 96.2%) relapse, flare, or exacerbation, respectively (p-value = 0.0086). In terms of disease category, nephrologic (26.66%) and hematologic (14.12%) disorders had the highest and dermatologic (4.81%) and neurologic (2.62%) disorders exhibited to have the lowest crude prevalence of relapse, flare, or exacerbation (p-value < 0.0001). CONCLUSION The risk of flare/relapse/exacerbation in AI-IMD patients is found to be minimal, especially with vector-based vaccines. Vaccination against COVID-19 is recommended in this population.
Collapse
Affiliation(s)
- Mahya Shabani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zahra Moradi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Robel Assefa Amenu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mohammad-Mehdi Mehrabi Nejad
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran.
| | - Nima Rezaei
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, 14194, Tehran, 1419733141, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
5
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Pan Z, Yang Q, Zhang X, Xu X, Sun Y, Zhou F, Wen L. TRIM5 Promotes Systemic Lupus Erythematosus Through CD4(+) T Cells and Macrophage. Int J Gen Med 2023; 16:3567-3580. [PMID: 37614552 PMCID: PMC10443694 DOI: 10.2147/ijgm.s416493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by the involvement of multiple organs and the production of antinuclear antibodies. This study aimed to investigate the molecular mechanism of SLE. Patients and Methods We retrieved genome-wide gene expression levels from five public datasets with relatively large sample sizes from the Gene Expression Omnibus (GEO), and we compared the expression profiles of peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls (HCs). The expression of seven target genes in PBMCs from 25 cases and 3 HCs was further validated by reverse-transcription quantitative PCR (RT‒qPCR). Flow cytometry was used for verifying the proportion of naive CD4(+) T cells and M2 macrophages in PBMCs from 5 cases and 4 HCs. Results We found 14 genes (TRIM5, FAM8A1, SHFL, LHFPL2, PARP14, IFIT5, PARP12, DDX60, IRF7, IF144, OAS1, OAS3, RHBDF2, and RSAD2) that were differentially expressed among all five datasets. The heterogeneity test under the fixed effect model showed no obvious heterogeneity of TRIM5, FAM8A1, and SHFL across different populations. TRIM5 was positively correlated with the remaining 13 genes. By separating patient samples into TRIM5-high and TRIM5-low groups, we found that up-regulated genes in the TRIM5-high group were mainly enriched in virus-related pathways. Immune cell proportion analysis and flow cytometry revealed that naive CD4(+) T cells were significantly decreased while M2 macrophages were increased in the SLE group. TRIM5 expression levels were negatively correlated with naive CD4(+) T cells but positively correlated with M2 macrophages. Conclusion Our data indicated that TRIM5 might be a key factor that modulates SLE etiology, possibly through naive CD4(+) T cells and M2 macrophages.
Collapse
Affiliation(s)
- Zhaobing Pan
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Qiaoshan Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Xiaojing Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Yao Sun
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People’s Republic of China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Zhou H, Ye Q. Clinical Features of COVID-19 Vaccine-Associated Autoimmune Hepatitis: A Systematic Review. Diseases 2023; 11:80. [PMID: 37366868 DOI: 10.3390/diseases11020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory liver disease wherein the body's immune system instigates an attack on the liver, causing inflammation and hepatic impairment. This disease usually manifests in genetically predisposed individuals and is triggered by stimuli or environments such as viral infections, environmental toxins, and drugs. The causal role of COVID-19 vaccination in AIH remains uncertain. This review of 39 cases of vaccine-related AIH indicates that female patients above the age of 50 years or those with potential AIH risk factors may be susceptible to vaccine-related AIH, and the clinical features of vaccine-associated AIH are similar to those of idiopathic AIH. These features commonly manifest in patients after the first dose of vaccination, with symptom onset typically delayed by 10-14 days. The incidence of underlying liver disease in patients with potential health conditions associated to liver disease is similar to that of patients without preexisting illnesses. Steroid administration is effective in treating vaccine-related AIH-susceptible patients, with most patients experiencing improvement in their clinical symptoms. However, care should be taken to prevent bacterial infections during drug administration. Furthermore, the possible pathogenic mechanisms of vaccine-associated AIH are discussed to offer potential ideas for vaccine development and enhancement. Although the incidence of vaccine-related AIH is rare, individuals should not be deterred from receiving the COVID-19 vaccine, as the benefits of vaccination significantly outweigh the risks.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310000, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310000, China
| |
Collapse
|
8
|
Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun 2023; 137:102962. [PMID: 36470769 PMCID: PMC10235211 DOI: 10.1016/j.jaut.2022.102962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Infections are known to trigger flares of autoimmune diseases in humans and serve as an inciting cause of autoimmunity in animals. Evidence suggests a causative role of infections in triggering antigen-specific autoimmunity, previous thought mainly through antigen mimicry. However, an infection can induce bystander autoreactive T and B cell polyclonal activation, believed to result in non-pathogenic and pathogenic autoimmune responses. Lastly, epitope spreading in autoimmunity is a mechanism of epitope changes of autoreactive cells induced by infection, promoting the targeting of additional self-epitopes. This review highlights recent research findings, emphasizes infection-mediated autoimmune responses, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Douglas Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Divison of Infectious Disease, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
9
|
Taghadosi M, Safarzadeh E, Asgarzadeh A, Roghani SA, Shamsi A, Jalili C, Assar S, Soufivand P, Pournazari M, Feizollahi P, Nicknam MH, Asghariazar V, Vaziri S, Shahriari H, Mohammadi A. Partners in crime: Autoantibodies complicit in COVID-19 pathogenesis. Rev Med Virol 2023; 33:e2412. [PMID: 36471421 PMCID: PMC9877745 DOI: 10.1002/rmv.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Autoantibodies (AABs) play a critical role in the pathogenesis of autoimmune diseases (AIDs) and serve as a diagnostic and prognostic tool in assessing these complex disorders. Viral infections have long been recognized as a principal environmental factor affecting the production of AABs and the development of autoimmunity. COVID-19 has primarily been considered a hyperinflammatory syndrome triggered by a cytokine storm. In the following, the role of maladaptive B cell response and AABs became more apparent in COVID-19 pathogenesis. The current review will primarily focus on the role of extrafollicular B cell response, Toll-like receptor-7 (TLR-7) activation, and neutrophil extracellular traps (NETs) formation in the development of AABs following SARS-CoV-2 infection. In the following, this review will clarify how these AABs dysregulate immune response to SARS-CoV-2 by disrupting cytokine function and triggering neutrophil hyper-reactivity. Finally, the pathologic effects of these AABs will be further described in COVID-19 associate clinical manifestations, including venous and arterial thrombosis, a multisystem inflammatory syndrome in children (MIS-C), acute respiratory distress syndrome (ARDS), and recently described post-acute sequelae of COVID-19 (PASC) or long-COVID.
Collapse
Affiliation(s)
- Mahdi Taghadosi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Siavash Vaziri
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
10
|
Chen B, Cao J, Liu W, Zhang Y, Liu Y, Wang M, Xiao F, Ma J, Wang J, Zhang X. Disturbed gut virome with potent interferonogenic property in systemic lupus erythematosus. Sci Bull (Beijing) 2023; 68:295-304. [PMID: 36697300 DOI: 10.1016/j.scib.2023.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Accumulating evidence suggests an essential role of disturbed gut microbiota in the etiopathogenesis of systemic lupus erythematosus (SLE), but it remains unclear as to gut virome. In this study, fecal virus-like particles (VLPs) isolated from 76 non-treated SLE patients and 75 healthy controls were subjected to gut virome profiling. The proportion of bacteriophages was significantly elevated in the SLE gut, and the altered viral taxa were correlated with clinical parameters. Gut virome and bacteriome were closely associated with each other in SLE patients. The combination of gut viral and bacterial markers displayed better performance in distinguishing SLE patients from healthy controls. Further, VLPs from non-treated SLE patients promoted interferon-α production in an epithelial cell line and human immune cells. Intriguingly, the interferon-stimulatory capacity diminished in VLPs from post-treated SLE patients. Our findings may shed novel insights into SLE pathogenesis. Further in-depth understanding of gut virome might help develop future biomarkers and therapeutics for SLE patients.
Collapse
Affiliation(s)
- Beidi Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Division of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Jiabao Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuqing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
11
|
Hardenbergh D, Molina E, Naik R, Geetha D, Chaturvedi S, Timlin H. Factors mediating cancer risk in systemic lupus erythematosus. Lupus 2022; 31:1285-1295. [PMID: 36059254 DOI: 10.1177/09612033221122163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) are at an elevated risk for certain cancers compared to the population at large. Cancers seen at higher rates in the SLE population include hematologic malignancies, such as non-Hodgkin lymphoma, and cancers of the lung and thyroid. SLE patients also have a decreased risk for certain malignancies, such as breast cancer, melanoma, and prostate cancer. We review the literature on risk factors for malignancy in patients with SLE and discuss the exogenous and innate factors that are thought to contribute to the unique pattern of cancer risk observed in this patient population. These risk factors are important for providers of SLE patients to understand in order to maintain high clinical suspicion and detect malignancy as soon as possible. Further research is needed to determine the most effective guidelines on counseling patients on cancer screening and prevention.
Collapse
Affiliation(s)
| | - Emily Molina
- 1501Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakhi Naik
- Division of Hematology, 1501Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Duvuru Geetha
- Division of Nephrology, 1501Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shruti Chaturvedi
- Division of Hematology, 1501Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Homa Timlin
- Division of Rheumatology, 1501Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Pinte L, Negoi F, Ionescu GD, Caraiola S, Balaban DV, Badea C, Mazilu D, Dumitrescu B, Mateescu B, Ionescu R, Parvu MI, Baicus C. COVID-19 Vaccine Does Not Increase the Risk of Disease Flare-Ups among Patients with Autoimmune and Immune-Mediated Diseases. J Pers Med 2021; 11:jpm11121283. [PMID: 34945754 PMCID: PMC8707188 DOI: 10.3390/jpm11121283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reports describing post-vaccine autoimmune phenomena, in previously healthy individuals, increased the concerns regarding the risk of disease flare-ups in patients with immune diseases. We aimed to assess the potential risk of disease flare-up, after receiving the COVID-19 (Coronavirus disease 2019) vaccine, during a follow-up period of 6 months. METHODS We performed a prospective cohort study, enrolling the patients with autoimmune- and immune-mediated diseases who voluntarily completed our questionnaire, both online and during hospital evaluations. Based on their decision to receive the vaccine, the patients were divided into two groups (vaccinated and non-vaccinated). Participants who chose not to receive the vaccine served as a control group in terms of flare-ups. RESULTS A total of 623 patients, 416 vaccinated and 207 non-vaccinated, were included in the study during hospital evaluations (222/623) and after online (401/623) enrolment. There was no difference concerning the risk of flare-up between vaccinated and non-vaccinated patients (1.16, versus 1.72 flare-ups/100 patients-months, p = 0.245). The flare-ups were associated with having more than one immune disease, and with a previous flare-up during the past year. CONCLUSIONS We did not find an increased risk of flare-up following COVID-19 vaccination in patients with autoimmune-/immune-mediated diseases, after a median follow-up of 5.9 months. According to our results, there should not be an obvious reason for vaccine hesitancy among this category of patients.
Collapse
Affiliation(s)
- Larisa Pinte
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
- Correspondence:
| | - Florentina Negoi
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Georgeta Daniela Ionescu
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Simona Caraiola
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Daniel Vasile Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Gastroenterology and Internal Medicine Departments, Dr. Carol Davila Central Military Emergency University Hospital, 01082 Bucharest, Romania
| | - Camelia Badea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Diana Mazilu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Rheumatology and Internal Medicine Departments, Sf. Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Bianca Dumitrescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Rheumatology Department, Ion Stoia Clinical Centre of Rheumatic Diseases, 030167 Bucharest, Romania
| | - Bogdan Mateescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Ruxandra Ionescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Rheumatology and Internal Medicine Departments, Sf. Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Magda Ileana Parvu
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| | - Cristian Baicus
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.C.); (D.V.B.); (C.B.); (D.M.); (B.D.); (B.M.); (R.I.); (C.B.)
- Internal Medicine, Rheumatology and Gastroenterology Departments, Colentina Clinical Hospital, 072202 Bucharest, Romania; (F.N.); (G.D.I.); (M.I.P.)
| |
Collapse
|
13
|
Olivieri B, Betterle C, Zanoni G. Vaccinations and Autoimmune Diseases. Vaccines (Basel) 2021; 9:vaccines9080815. [PMID: 34451940 PMCID: PMC8402446 DOI: 10.3390/vaccines9080815] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines represent one of the most effective measures of public health medicine, saving countless lives and preventing lifelong disabilities. Vaccines are extremely safe, however, no vaccine is completely free from risks and adverse events can occur following vaccination. An adverse event following immunization (AEFI) may be a true adverse reaction caused by the vaccine or an event that temporally occurred after immunization but is not caused by it. Among the adverse reactions to vaccines, one of the most feared is the triggering of autoimmune diseases, which are a heterogeneous group of disorders characterized by dysregulation of the immune system. Currently, no mechanisms have been demonstrated that could explain the correlation between vaccination and the development of autoimmune diseases. Furthermore, epidemiological studies do not support the hypothesis that vaccines cause systemic autoimmune diseases. The only confirmed associations, although very rare, are those between the flu vaccine and Guillain-Barré syndrome, especially with old vaccine preparations, and measles-mumps-rubella (MMR) vaccine and thrombocytopenia. Due to the SARS-CoV2 pandemic, new types of vaccines have been developed and are now available. Close vaccine safety-surveillance is currently underway for these new vaccines.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, School of Specialization in Allergy and Clinical Immunology, University of Verona, 37134 Verona, Italy;
| | - Corrado Betterle
- Department of Medicine (DIMED), Clinical Immunology and Allergy, University of Padua, 35128 Padua, Italy;
| | - Giovanna Zanoni
- Immunology Unit, University Hospital, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
14
|
A practical approach for vaccinations including COVID-19 in autoimmune/autoinflammatory rheumatic diseases: a non-systematic review. Clin Rheumatol 2021. [PMID: 33751280 DOI: 10.1007/s10067‐021‐05700‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has occupied the world agenda since December 2019. With no effective treatment yet, vaccination seems to be the most effective method of prevention. Recently developed vaccines have been approved for emergency use only and are currently applied to large populations. Considering both the underlying pathogenic mechanisms of autoimmune/autoinflammatory rheumatological diseases (AIIRDs) and the immunosuppressive drugs used in treatment, vaccination for COVID-19 deserves special attention in such patients. In this article, we aimed to give simple messages to the clinicians for COVID-19 vaccination in patients with AIIRDs based upon the current evidence regarding the use of other vaccines in this patient group. For this purpose, we conducted a "Pubmed search" using the following keywords: Influenza, Hepatitis B, Pneumococcal, and Shingles vaccines and the frequently used conventional and biologic disease-modifying antirheumatic drugs (DMARDs). Likewise, an additional search was performed for the COVID-19 immunization in patients with AIIRDs and considering such drugs. In summary, patients with AIIRDs should also be vaccinated against COVID-19, preferably when disease activity is under control and when there is no concurrent infection. Low-degree immunosuppression does not appear to decrease antibody responses to vaccines. Ideally, vaccinations should be done before the initiation of any biological DMARDs. Patients receiving rituximab should be vaccinated at least 4 weeks before or 6 months after treatment. Since tofacitinib may also reduce antibody responses, especially in combination with methotrexate, it may be appropriate to discontinue this drug before vaccination and to restart after 14 days of immunization. Key points • COVID-19 vaccinations should preferably be made during remission in patients with autoimmune/autoinflammatory rheumatological diseases. • Low-degree immunosuppression may not interfere with antibody response to vaccines. • Ideally, vaccinations should be made before the initiation of any biological DMARDs. • Timing of vaccination is especially important in the case of rituximab.
Collapse
|
15
|
Soy M, Keser G, Atagunduz P, Mutlu MY, Gunduz A, Koybaşi G, Bes C. A practical approach for vaccinations including COVID-19 in autoimmune/autoinflammatory rheumatic diseases: a non-systematic review. Clin Rheumatol 2021; 40:3533-3545. [PMID: 33751280 PMCID: PMC7982510 DOI: 10.1007/s10067-021-05700-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has occupied the world agenda since December 2019. With no effective treatment yet, vaccination seems to be the most effective method of prevention. Recently developed vaccines have been approved for emergency use only and are currently applied to large populations. Considering both the underlying pathogenic mechanisms of autoimmune/autoinflammatory rheumatological diseases (AIIRDs) and the immunosuppressive drugs used in treatment, vaccination for COVID-19 deserves special attention in such patients. In this article, we aimed to give simple messages to the clinicians for COVID-19 vaccination in patients with AIIRDs based upon the current evidence regarding the use of other vaccines in this patient group. For this purpose, we conducted a “Pubmed search” using the following keywords: Influenza, Hepatitis B, Pneumococcal, and Shingles vaccines and the frequently used conventional and biologic disease-modifying antirheumatic drugs (DMARDs). Likewise, an additional search was performed for the COVID-19 immunization in patients with AIIRDs and considering such drugs. In summary, patients with AIIRDs should also be vaccinated against COVID-19, preferably when disease activity is under control and when there is no concurrent infection. Low-degree immunosuppression does not appear to decrease antibody responses to vaccines. Ideally, vaccinations should be done before the initiation of any biological DMARDs. Patients receiving rituximab should be vaccinated at least 4 weeks before or 6 months after treatment. Since tofacitinib may also reduce antibody responses, especially in combination with methotrexate, it may be appropriate to discontinue this drug before vaccination and to restart after 14 days of immunization.
Key points • COVID-19 vaccinations should preferably be made during remission in patients with autoimmune/autoinflammatory rheumatological diseases. • Low-degree immunosuppression may not interfere with antibody response to vaccines. • Ideally, vaccinations should be made before the initiation of any biological DMARDs. • Timing of vaccination is especially important in the case of rituximab. |
Collapse
Affiliation(s)
- Mehmet Soy
- Altınbas University (previously Kemerbas University) Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Bahcelievler MedicalPark Hospital, Istanbul, Turkey. .,, Altunizade Mah. Atif Bey sk. Gokdeniz Sitesi, E-3; Usküdar, Istanbul, Turkey.
| | - Gökhan Keser
- Ege University Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Bornova, Izmir, Turkey
| | - Pamir Atagunduz
- Marmara University Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey
| | - Melek Yalçin Mutlu
- University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.,Department of Rheumatology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Alper Gunduz
- Şişli Hamidiye Etfal Training and Research Hospital, Department of Infectious Diseases, İstanbul, Turkey
| | - Gizem Koybaşi
- Yedikule Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Cemal Bes
- University of Health Sciences, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey.,Department of Rheumatology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
16
|
Singh D, Oudit O, Hajtovic S, Sarbaugh D, Salis R, Adebowale T, James J, Spatz LA. Antibodies to an Epstein Barr Virus protein that cross-react with dsDNA have pathogenic potential. Mol Immunol 2021; 132:41-52. [PMID: 33545624 DOI: 10.1016/j.molimm.2021.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 01/02/2023]
Abstract
Pathogens such as the Epstein Barr virus (EBV) have long been implicated in the etiology of systemic lupus erythematosus (SLE). The Epstein Barr virus nuclear antigen I (EBNA-1) has been shown to play a role in the development of anti-nuclear antibodies characteristic of SLE. One mechanism by which EBV may play a role in SLE is molecular mimicry. We previously generated two monoclonal antibodies (mAbs) to EBNA-1 and demonstrated that they cross-react with double-stranded DNA (dsDNA). In the present study, we demonstrate that these mAbs have pathogenic potential. We show that they can bind to isolated rat glomeruli and that binding can be greatly diminished by pretreatment of glomeruli with DNase I, suggesting that these mAbs bind dsDNA in the kidney. We also demonstrate that these antibodies can deposit in the kidney when injected into mice and can induce proteinuria and elicit histopathological alterations consistent with glomerulonephritis. Finally, we show that these antibodies can cross-react with laminin and collagen IV in the extracellular matrix suggesting that direct binding to the glomerular basement membrane or mesangial matrix may also contribute to the antibody deposition in the kidney. In summary, our results indicate that EBNA-1 can elicit antibodies that cross-react with dsDNA, that can deposit in the kidney, and induce kidney damage. These results are significant because they support the role of a viral protein in SLE and lupus nephritis.
Collapse
Affiliation(s)
- Divya Singh
- The Molecular, Cellular, and Biomedical Sciences Department, The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Omar Oudit
- The Department of Chemistry & Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Sabastian Hajtovic
- The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Dylan Sarbaugh
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Rafatu Salis
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Temitayo Adebowale
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Justin James
- The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Linda A Spatz
- The Molecular, Cellular, and Biomedical Sciences Department, The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
17
|
Risk of ankylosing spondylitis following human papillomavirus infection: A nationwide, population-based, cohort study. J Autoimmun 2020; 113:102482. [PMID: 32417193 DOI: 10.1016/j.jaut.2020.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the incidence rate and risk of ankylosing spondylitis (AS) in patients with previous human papillomavirus (HPV) infection compared with those without HPV infection. METHODS All patients with HPV infection (n = 66,314) in the NHIRD (2003-2013) were individually matched with up to four control subjects without HPV infection by age and sex (n = 265,256). All of the patients were tracked until an AS event was noted. Chi-square test was used to analyze the distribution of sociodemographic characteristics in the HPV cohort and non-HPV cohort. Cox proportional hazards regression was used to calculate the HRs for the development of AS, adjusting for age, sex, urbanization, length of hospital stay, medications, and comorbidities adjustment. The Kaplan-Meier method was used to plot the cumulative incidence curves. RESULTS The HPV cohort had a 1.329 (95% C.I. = 1.138-1.552) times higher risk of AS than that of the non-HPV cohort after adjusting for sex, age, urbanization, length of hospital stay, comorbidities, and medications. Additionally, we applied propensity score weighting to reconfirm the accuracy of our analysis, and the results showed a 1.348 (95% C.I. = 1.153-1.575) times greater risk of AS in the HPV cohort compared with the non-HPV cohort. The cumulative incidence curves plotted by the Kaplan-Meier method revealed that after 120 follow-up months, the HPV cohort displayed a higher cumulative incidence of AS than that of the non-HPV cohort. (Log-rank test p < 0.0001). CONCLUSIONS Patients with HPV infection had a higher risk of developing AS compared with non-HPV patients.
Collapse
|
18
|
Bellavite P. Causality assessment of adverse events following immunization: the problem of multifactorial pathology. F1000Res 2020; 9:170. [PMID: 32269767 PMCID: PMC7111503 DOI: 10.12688/f1000research.22600.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 07/22/2023] Open
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to national vaccine injury compensation programs. If manufacturing defects or vaccine storage and delivering errors are excluded, the majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that can explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents some concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
19
|
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to vaccine injury compensation programs. The majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that might explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents several concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. Given these inadequacies in the evaluation of multifactorial diseases, the WHO guidelines need to be reevaluated and revised. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
20
|
Katz I, De Luca F, Dzudzor B, Sarpong BK, Osei-Appiah B, Azoulay D, Katz D, Dey D, Gilburd B, Amital H, Vento S, Shoenfeld Y, Shovman O. Seroprevalences of autoantibodies and anti-infectious antibodies among Ghana's healthy population. Sci Rep 2020; 10:2814. [PMID: 32071361 PMCID: PMC7028981 DOI: 10.1038/s41598-020-59693-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Autoantibodies, which are antibodies that target self-epitopes, have considerable diagnostic, prognostic and predictive value in specific autoimmune diseases. Various infectious agents have been linked via numerous mechanisms to the formation of different autoantibodies. Therefore, estimating the prevalence of autoantibodies and anti-infectious antibodies in different populations is of high importance. Different genetic and environmental pressures, such as these found in Ghana's different geographical provinces, may affect the prevalence of autoantibodies. In this study, we assessed the seroprevalence of a diverse panel of autoantibodies and anti-infectious antibodies among the healthy Ghanaian population and investigated possible environmental and genetic predispositions for autoantibodies and autoimmunity. The sera of 406 healthy individuals were obtained from Greater Accra, Upper West, Eastern and Volta regions. Multiplexed assay and chemiluminescent immunoassay techniques were utilized to assess the presence of a panel of autoantibodies and anti-infectious antibodies. We found a high prevalence of anti-HSV-1 IgG (91-100%), anti-EBNA IgG (81-93%) and anti-EBV-VCA IgG (97-100%) antibodies. The prevalence of ANA (at least one of: anti-dsDNA; anti-chromatin; anti-ribosomal-P; anti-Ro/SSA; anti-La/SSB; anti-centromere B; anti-Sm; anti-Sm/RNP; anti-Scl-70; anti-Jo1; anti-DFS70) was estimated at 14%. An inverse association between anti-HSV-2 antibodies and ANA (p = 0.044; adjusted OR = 0.398; CI [0.162-0.975]) was found, after adjusting for differences in gender, age, and familial history of autoimmune diseases. A trend towards reduced seroprevalence of anti-dsDNA antibodies among subjects who were positive for anti-HSV-2 antibodies was also noted (p = 0.1). In conclusion, the inverse association between anti-HSV-2 antibodies and ANA positivity suggests a possible protective role of HSV-2 infection against autoimmunity.
Collapse
Affiliation(s)
- Itai Katz
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - F De Luca
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Allergology and Immunology, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana School of Medicine and Dentistry, College of Health Sciences, Korle-Bu, Accra, Ghana
| | - Baffour Kyei Sarpong
- Department of Medical Biochemistry, University of Ghana School of Medicine and Dentistry, College of Health Sciences, Korle-Bu, Accra, Ghana
| | - Beatrice Osei-Appiah
- Department of Medical Biochemistry, University of Ghana School of Medicine and Dentistry, College of Health Sciences, Korle-Bu, Accra, Ghana
| | - Danielle Azoulay
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,School of Medical Sciences, University of Sydney, New South Wales, Australia
| | - Daphna Katz
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Assuta Ashdod Medical Center, Ashdod, Israel
| | - Dzifa Dey
- Department of Medicine and Therapeutics, University of Ghana School of Medicine and Dentistry, College of Health Sciences, Korle-Bu, Accra, Ghana
| | - Boris Gilburd
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of internal medicine 'B', Sheba Medical Center, Tel Hashomer, Israel
| | - Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh, Cambodia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,Past Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ora Shovman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of internal medicine 'B', Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
21
|
Sharif K, Watad A, Bridgewood C, Kanduc D, Amital H, Shoenfeld Y. Insights into the autoimmune aspect of premature ovarian insufficiency. Best Pract Res Clin Endocrinol Metab 2019; 33:101323. [PMID: 31606343 DOI: 10.1016/j.beem.2019.101323] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Premature ovarian insufficiency (POI) refers to a continuum of decreasing ovarian function in women before the age of 40. To date, the cause of POI in the majority of cases remain unresolved. Many cases has been linked to genetic, toxic, infections, enzymatic and iatrogenic causes. A key function of the immune system is to identify and differentiate "self" and "non self" i.e. tolerance. Loss of self-tolerance results in an immune response against self-tissues and thus autoimmunity. Various investigations have highlighted the role of autoimmunity and its pertinence to POI. Several potential immune antigenic targets in the ovary have been reported to be involved in autoantibody induced autoimmune attack. The presence of lymphocytic oöphorits in ovarian samples of patients with POI provides histopathological evidence of autoimmune ovarian involvement. Finally, POI is strongly associated with other autoimmune conditions including for instance Addison disease, autoimmune polyglandular syndrome (APS) -1, APS-4, hypothyroidism, and diabetes mellitus among other autoimmune diseases. Taken together, these lines of evidence provide strong basis that support the role of autoimmunity as a potential cause of disease etiopathogenesis. Continuing research is increasingly providing more insight into the complex disease process. The aim of this review is to summarize the current literature related to the autoimmune nature of POI.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Abdulla Watad
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Howard Amital
- Department of Medicine 'B', Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
22
|
Segerberg F, Lundtoft C, Reid S, Hjorton K, Leonard D, Nordmark G, Carlsten M, Hagberg N. Autoantibodies to Killer Cell Immunoglobulin-Like Receptors in Patients With Systemic Lupus Erythematosus Induce Natural Killer Cell Hyporesponsiveness. Front Immunol 2019; 10:2164. [PMID: 31572377 PMCID: PMC6749077 DOI: 10.3389/fimmu.2019.02164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs). CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic functional maturation process where a constitutive binding of inhibitory receptors to cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients with SLE, 119 patients with primary Sjögren's syndrome (pSS), 48 patients with systemic sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE, 10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs was associated with an increased disease activity (p < 0.0001), elevated serum levels of IFN-α (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007), and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE patients, and that a defective NK cell function may be a risk factor for the development of lupus nephritis.
Collapse
Affiliation(s)
- Filip Segerberg
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sarah Reid
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karin Hjorton
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mattias Carlsten
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Hagberg
- Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Molecular mimicry, genetic homology, and gene sharing proteomic "molecular fingerprints" using an EBV (Epstein-Barr virus)-derived microarray as a potential diagnostic method in autoimmune disease. Immunol Res 2019; 66:686-695. [PMID: 30552620 DOI: 10.1007/s12026-018-9045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
EBV (Epstein-Barr Virus) and other human DNA viruses are associated with autoimmune syndromes in epidemiologic studies. In this work, immunoglobulin G response to EBV-encoded proteins which share regions with human immune response proteins from the human host including ZEBRA (BZLF-1 encoded protein), BALF-2 recombinase expressed primarily during the viral lytic replication cycle, and EBNA-1 (Epstein-Barr Virus Nuclear Antigen) expressed during the viral latency cycle respectively were characterized using a laser-printed micro-array ( PEPperprint.com ). IgG response to conserved "A/T hooks" in EBV-encoded proteins such as EBNA-1 and the BALF-2 recombinase related to host DNA-binding proteins including RAG-1 recombinase and histones, and EBV-encoded virokines such as the IL-10 homologue BCRF-1 suggest further directions for clinical research. The author suggests that proteomic "molecular fingerprints" of the immune response to viral proteins shared with human immune response genes are potentially useful in early diagnosis and monitoring of autoantibody production and response to therapy in EBV-related autoimmune syndromes.
Collapse
|
24
|
Furer V, Rondaan C, Heijstek MW, Agmon-Levin N, van Assen S, Bijl M, Breedveld FC, D'Amelio R, Dougados M, Kapetanovic MC, van Laar JM, de Thurah A, Landewé RBM, Molto A, Müller-Ladner U, Schreiber K, Smolar L, Walker J, Warnatz K, Wulffraat NM, Elkayam O. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2019; 79:39-52. [DOI: 10.1136/annrheumdis-2019-215882] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
To update the European League Against Rheumatism (EULAR) recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD) published in 2011. Four systematic literature reviews were performed regarding the incidence/prevalence of vaccine-preventable infections among patients with AIIRD; efficacy, immunogenicity and safety of vaccines; effect of anti-rheumatic drugs on the response to vaccines; effect of vaccination of household of AIIRDs patients. Subsequently, recommendations were formulated based on the evidence and expert opinion. The updated recommendations comprise six overarching principles and nine recommendations. The former address the need for an annual vaccination status assessment, shared decision-making and timing of vaccination, favouring vaccination during quiescent disease, preferably prior to the initiation of immunosuppression. Non-live vaccines can be safely provided to AIIRD patients regardless of underlying therapy, whereas live-attenuated vaccines may be considered with caution. Influenza and pneumococcal vaccination should be strongly considered for the majority of patients with AIIRD. Tetanus toxoid and human papilloma virus vaccination should be provided to AIIRD patients as recommended for the general population. Hepatitis A, hepatitis B and herpes zoster vaccination should be administered to AIIRD patients at risk. Immunocompetent household members of patients with AIIRD should receive vaccines according to national guidelines, except for the oral poliomyelitis vaccine. Live-attenuated vaccines should be avoided during the first 6 months of life in newborns of mothers treated with biologics during the second half of pregnancy. These 2019 EULAR recommendations provide an up-to-date guidance on the management of vaccinations in patients with AIIRD.
Collapse
|
25
|
Donmez HG, Tanacan A, Unal C, Fadiloglu E, Onder SC, Portakal O, Beksac MS. Human papillomavirus infection and autoimmune disorders: a tertiary center experience. Pathog Dis 2019; 77:5481523. [DOI: 10.1093/femspd/ftz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
This study aimed to investigate the relationship between HPV and autoimmune disorders. We retrospectively evaluated 62 women who had HPV-DNA positivity in terms of autoimmune disorders (autoimmune antibody positivity, chronic inflammatory diseases and autoimmune diseases). The patients were divided into two groups according to autoimmune disorder positivity (autoimmune positive (n = 30), autoimmune negative (n = 32)) and compared with each other in terms of single and multiple HPV-DNA types, high and low-risk HPV-DNA types, and Pap smear findings. We determined that 48.4% of the HPV-DNA positive patients had autoimmune disorders. We found that 15 of 62 (24.2%) women had more than one type of HPV and HPV type 16 was the dominant type in this study (58.2%). A total of 27.4% of HPV-DNA positive patients had abnormal cytological findings. There was no statistically significant difference between autoimmune groups in terms of the presence of high-risk HPV types, multiple HPV types and abnormal cytological findings (P = 0.531, P = 0.558 and P = 0.234, respectively). The prevalence of autoimmune disorders was high among HPV-DNA positive women. On the other hand, the rate of high-risk HPV type positivity, multiple HPV infections and cytopathological findings were similar between the autoimmune positive and negative groups.
Collapse
Affiliation(s)
- Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Canan Unal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Erdem Fadiloglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Sevgen Celik Onder
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Oytun Portakal
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - M Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
26
|
Skare TL, Neppel A, Machoski MCC, Maestri CA, Messias-Reason I, Nisihara R. Antinuclear antibodies in patients with cervical lesions and invasive cervical cancer. Immunol Lett 2019; 208:8-10. [PMID: 30849399 DOI: 10.1016/j.imlet.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antinuclear antibodies (ANA) have been found in several types of cancer although the meaning of its presence is not completely known. AIM To study the prevalence of ANA in patients with cervical intraepithelial lesion and invasive cervical cancer. METHODS A total of 205 women who underwent screening for cervical cancer or treatment at the Erasto Gaertner Cancer Hospital in Curitiba - Brazil, were enrolled in the study. Based on their latest cervical colposcopy-guided biopsy results, they were divided into four groups: CIN-I: 19.4%; CIN-II: 24.0%; CIN-III: 24.0%; and invasive cancer: 32.4%. As control were studied 68 healthy controls. ANA was searched by immunofluorescence in Hep-2 cells evaluating the pattern and titer. RESULTS Controls had 4/68 (5.8%) of ANA positivity and patients with CIN and invasive cancer had 15.1% (p = 0.001). Patients with CIN-I and CIN-II had the same prevalence of ANA as controls (p = 1.0 and p = 0.11 respectively), but not those with CIN-III (p = 0.03) and invasive cancer (p = 0.05). The most common ANA immunofluorescence pattern was fine speckled pattern (38.7%) and fine dense speckled pattern (38.7%); the mean titer was 1:160. CONCLUSION ANA is more common in invasive cervical lesions than in controls or non invasive lesions. To understand the meaning of this finding more studies are needed.
Collapse
Affiliation(s)
- Thelma L Skare
- Evangelical Mackenzie University, Medicine Department, Curitiba, Brazil
| | - Aline Neppel
- Evangelical Mackenzie University, Medicine Department, Curitiba, Brazil
| | | | - Carlos A Maestri
- Immunopathology Laboratory, Clinical Hospital, Federal University of Paraná, Curitiba,Brazil; Liga Paranaense de Combate ao Câncer, Erasto Gaertner Hospital, Curitiba, Brazil; Positivo University, Medicine Department, Curitiba, Brazil
| | - Iara Messias-Reason
- Immunopathology Laboratory, Clinical Hospital, Federal University of Paraná, Curitiba,Brazil
| | - Renato Nisihara
- Evangelical Mackenzie University, Medicine Department, Curitiba, Brazil; Immunopathology Laboratory, Clinical Hospital, Federal University of Paraná, Curitiba,Brazil; Positivo University, Medicine Department, Curitiba, Brazil.
| |
Collapse
|
27
|
Bednarczyk RA. Addressing HPV vaccine myths: practical information for healthcare providers. Hum Vaccin Immunother 2019; 15:1628-1638. [PMID: 30676241 DOI: 10.1080/21645515.2019.1565267] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) vaccine uptake consistently lags behind that of other adolescent vaccines. In 2017, uptake of a single HPV vaccine dose and HPV vaccine series completion was 66% and 49%, respectively, compared to uptake of tetanus, diphtheria, and acellular pertussis vaccine (89%) and quadrivalent meningococcal conjugate vaccine (85%). Reasons for not vaccinating adolescents again HPV are varied, and in many cases, are rooted in commonly spread myths and misperceptions about the vaccine. In this review, we address five key myths - HPV vaccination is not effective at preventing cancer; Pap smears are sufficient to prevent cervical cancer; HPV vaccination is not safe; HPV vaccination is not needed since most infections are naturally cleared by the immune system; 11-12 years of age is too young to vaccinate. For each myth, we summarize the scientific evidence refuting the myth and provide speaking prompts for healthcare professionals to communicate about HPV vaccination.
Collapse
Affiliation(s)
- Robert A Bednarczyk
- a Hubert Department of Global Health, Rollins School of Public Health, Emory University , Atlanta GA , USA.,b Department of Epidemiology, Rollins School of Public Health, Emory University , Atlanta GA , USA.,c Cancer Prevention and Control Program, Winship Cancer Institute, Emory University , Atlanta GA , USA.,d Emory Vaccine Center, Emory University , Atlanta GA , USA
| |
Collapse
|
28
|
García-Carrasco M, Mendoza-Pinto C, Rojas-Villarraga A, Molano-González N, Vallejo-Ruiz V, Munguía-Realpozo P, Colombo AL, Cervera R. Prevalence of cervical HPV infection in women with systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev 2019; 18:184-191. [DOI: 10.1016/j.autrev.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
|
29
|
Bragazzi NL, Bridgewood C, Sharif K, Kamal M, Amital H, Watad A, Shoenfeld Y. HPV vaccines and lupus: current approaches towards preventing adverse immune cross-reactivity. Expert Rev Vaccines 2018; 18:31-42. [PMID: 30526148 DOI: 10.1080/14760584.2019.1557519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION If not properly treated, human papillomavirus (HPV) infection may evolve from a common sexually transmitted disease to genital warts and cervical cancer. Various prophylactic HPV vaccines (HPVv), approved to reduce the incidence of the infection, have been found to be effective and safe; however, accounts of post-vaccination autoimmune phenomena, including systemic lupus erythematosus (SLE), have been reported in genetically susceptible individuals. AREAS COVERED Infectious agents play a role in breaking the immunologic tolerance to self-antigens, resulting in autoimmune events. There is molecular evidence supporting the involvement of HPV in SLE, with a high prevalence of L1 HPV peptide homology to proteins being associated with SLE. Therefore, approaches in vaccine preparations aiming to prevent adverse immune cross-reactivity are sought. Performing a broad search of the literature, we review the association between SLE, HPV, and HPVv, with a focus on the mechanisms of molecular mimicry and cross-reactivity, and the approaches currently being elaborated towards preventing such phenomena. EXPERT COMMENTARY The advantages of using low-similarity peptide antigens may be two-fold, abolishing the risk of cross-reactivity and eliminating the vaccine adjuvantation procedure. Vaccines based on pathogen unique sequences would provide effective vaccine preparation while curbing the risk for the human host.
Collapse
Affiliation(s)
- Nicola L Bragazzi
- a Postgraduate School of Public Health, Department of Health Sciences (DISSAL) , University of Genoa , Genoa , Italy
| | - Charlie Bridgewood
- b Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine , University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital , Leeds , UK
| | - Kassem Sharif
- c Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Mohamad Kamal
- c Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Howard Amital
- c Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Abdulla Watad
- b Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine , University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital , Leeds , UK.,c Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Yehuda Shoenfeld
- c Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|
30
|
Xu W, Luo Z, Alekseyenko AV, Martin L, Wan Z, Ling B, Qin Z, Heath SL, Maas K, Cong X, Jiang W. Distinct systemic microbiome and microbial translocation are associated with plasma level of anti-CD4 autoantibody in HIV infection. Sci Rep 2018; 8:12863. [PMID: 30150778 PMCID: PMC6110826 DOI: 10.1038/s41598-018-31116-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Microbial signals have been linked to autoantibody induction. Recently, we found that purified anti-CD4 autoantibodies from the plasma of chronic HIV-1-infected patients under viral-suppressed antiretroviral therapy (ART) play a pathologic role in poor CD4+ T cell recovery. The purpose of the study was to investigate the association of systemic microbiome and anti-CD4 autoantibody production in HIV. Plasma microbiome from 12 healthy controls and 22 HIV-infected subjects under viral-suppressed ART were analyzed by MiSeq sequencing. Plasma level of autoantibodies and microbial translocation (LPS, total bacterial 16S rDNA, soluble CD14, and LPS binding protein) were analyzed by ELISA, limulus amebocyte assay, and qPCR. We found that plasma level of anti-CD4 IgGs but not anti-CD8 IgGs was increased in HIV+ subjects compared to healthy controls. HIV+ subjects with plasma anti-CD4 IgG > 50 ng/mL (high) had reduced microbial diversity compared to HIV+ subjects with anti-CD4 IgG ≤ 50 ng/mL (low). Moreover, plasma anti-CD4 IgG level was associated with elevated microbial translocation and reduced microbial diversity in HIV+ subjects. The Alphaproteobacteria class was significantly enriched in HIV+ subjects with low anti-CD4 IgG compared to patients with high anti-CD4 IgG even after controlling for false discovery rate (FDR). The microbial components were different from the phylum to genus level in HIV+ subjects with high anti-CD4 IgGs compared to the other two groups, but these differences were not significant after controlling for FDR. These results suggest that systemic microbial translocation and microbiome may associate with anti-CD4 autoantibody production in ART-treated HIV disease.
Collapse
Affiliation(s)
- Wanli Xu
- University of Connecticut School of Nursing, Storrs, Connecticut, 06269, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander V Alekseyenko
- Program for Human Microbiome Research, Biomedical Informatics Center, Department of Public Health Sciences, Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lisa Martin
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zhuang Wan
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Binhua Ling
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane National Primate Research Center, New Orleans, LA, 70433, USA
| | - Zhiqiang Qin
- Departments of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaomei Cong
- University of Connecticut School of Nursing, Storrs, Connecticut, 06269, USA.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
31
|
Segal Y, Shoenfeld Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol 2018; 15:586-594. [PMID: 29503439 PMCID: PMC6078966 DOI: 10.1038/cmi.2017.151] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 12/20/2022] Open
Abstract
Since the early 1800s vaccines have saved numerous lives by preventing lethal infections. However, during the past two decades, there has been growing awareness of possible adverse events associated with vaccinations, cultivating heated debates and leading to significant fluctuations in vaccination rates. It is therefore pertinent for the scientific community to seriously address public concern of adverse effects of vaccines to regain public trust in these important medical interventions. Such adverse reactions to vaccines may be viewed as a result of the interaction between susceptibility of the vaccinated subject and various vaccine components. Among the implicated mechanisms for these reactions is molecular mimicry. Molecular mimicry refers to a significant similarity between certain pathogenic elements contained in the vaccine and specific human proteins. This similarity may lead to immune crossreactivity, wherein the reaction of the immune system towards the pathogenic antigens may harm the similar human proteins, essentially causing autoimmune disease. In this review, we address the concept of molecular mimicry and its application in explaining post vaccination autoimmune phenomena. We further review the principal examples of the influenza, hepatitis B, and human papilloma virus vaccines, all suspected to induce autoimmunity via molecular mimicry. Finally, we refer to possible implications on the potential future development of better, safer vaccines.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, 52621, Israel
| | - Yehuda Shoenfeld
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, 52621, Israel.
- Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel.
| |
Collapse
|
32
|
The value of Autoimmune Syndrome Induced by Adjuvant (ASIA) - Shedding light on orphan diseases in autoimmunity. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Dahan S, Segal Y, Watad A, Azrielant S, Shemer A, Maymon D, Stroev YI, Sobolevskaya PA, Korneva EA, Blank M, Gilburd B, Shovman O, Amital H, Ehrenfeld M, Tanay A, Kivity S, Pras E, Chapman J, Damoiseaux J, Cervera R, Putterman C, Shapiro I, Mouthon L, Perricone R, Bizzaro N, Koren O, Riemekasten G, Chereshnev VA, Mazurov VI, Goloviznin M, Gurevich V, Churilov LP, Shoenfeld Y. Novelties in the field of autoimmunity – 1st Saint Petersburg congress of autoimmunity, the bridge between east and west. Autoimmun Rev 2017; 16:1175-1184. [DOI: 10.1016/j.autrev.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
|