1
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Cao Q, Peng D, Wang J, Reinach PS, Yan D. Unraveling the Intricate Network of lncRNAs in Corneal Epithelial Wound Healing: Insights Into the Regulatory Role of linc17500. Transl Vis Sci Technol 2024; 13:4. [PMID: 38315480 PMCID: PMC10851785 DOI: 10.1167/tvst.13.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Epigenetic mechanisms orchestrate a harmonious process of corneal epithelial wound healing (CEWH). However, the precise role of long non-coding RNAs (lncRNAs) as key epigenetic regulators in mediating CEWH remains elusive. Here, we aimed to elucidate the functional contribution of lncRNAs in regulating CEWH. Methods We used a microarray to characterize lncRNA expression profiling during mouse CEWH. Subsequently, the aberrant lncRNAs and their cis-associated genes were subjected to comprehensive Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot analyses were performed to determine the expression profiles of key markers during CEWH. The in vivo effects of linc17500 on this process were investigated through targeted small interfering RNA (siRNA) injection. Post-siRNA treatment, corneal re-epithelialization was assessed, alongside the expression of cytokeratins 12 and 14 (Krt12 and Krt14) and Ki67. Effects of linc17500 on mouse corneal epithelial cell (TKE2) proliferation, cell cycle, and migration were assessed by multicellular tumor spheroids (MTS), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and scratch-wound assay, respectively. Results Microarray analysis revealed dysregulation of numerous lncRNA candidates during CEWH. Bioinformatic analysis provided valuable annotations regarding the cis-associated genes of these lncRNAs. In vivo experiments demonstrated that knockdown of linc17500 resulted in delayed CEWH. Furthermore, the knockdown of linc17500 and its cis-associated gene, CDC28 protein kinase regulatory subunit 2 (Cks2), was found to impede TKE2 cell proliferation and migration. Notably, downregulation of linc17500 in TKE2 cells led to suppression of the activation status of Akt and Rb. Conclusions This study sheds light on the significant involvement of lncRNAs in mediating CEWH and highlights the regulatory role of linc17500 on TKE2 cell behavior. Translational Relevance These findings provide valuable insights for future therapeutic research aimed at addressing corneal wound complications.
Collapse
Affiliation(s)
- Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dewei Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiao Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Shah R, Spektor TM, Weisenberger DJ, Ding H, Patil R, Amador C, Song XY, Chun ST, Inzalaco J, Turjman S, Ghiam S, Jeong-Kim J, Tolstoff S, Yampolsky SV, Sawant OB, Rabinowitz YS, Maguen E, Hamrah P, Svendsen CN, Saghizadeh M, Ljubimova JY, Kramerov AA, Ljubimov AV. Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells. Diabetologia 2023; 66:1943-1958. [PMID: 37460827 PMCID: PMC10474199 DOI: 10.1007/s00125-023-05960-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cβ; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Tanya M Spektor
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kura Oncology, Inc., Boston, MA, USA
| | | | - Hui Ding
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Kunshan Xinyunda Biotech Co., Ltd., Kunshan, China
| | - Rameshwar Patil
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Basic Science, Division of Cancer Science, Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xue-Ying Song
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Jake Inzalaco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sue Turjman
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Mount Saint Mary's University, Los Angeles, CA, USA
| | - Sean Ghiam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Jiho Jeong-Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Sasha Tolstoff
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Sabina V Yampolsky
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Duke University, Durham, NC, USA
| | - Onkar B Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, USA
| | - Yaron S Rabinowitz
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ezra Maguen
- American Eye Institute, Los Angeles, CA, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Clive N Svendsen
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Julia Y Ljubimova
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
6
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
7
|
Riemekasten G, Distler JH. A broad look into the future of systemic sclerosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221109404. [PMID: 35966183 PMCID: PMC9373175 DOI: 10.1177/1759720x221109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease with the key features of inflammation, vasculopathy and fibrosis. This article focussed on emerging fields based on the authors' current work and expertise. The authors provide a hierarchical structure into the studies of the pathogenesis of SSc starting with the contribution of environmental factors. Regulatory autoantibodies (abs) are discussed, which are parts of the human physiology and are specifically dysregulated in SSc. Abs against the angiotensin II receptor subtype 1 (AT1R) and the endothelin receptor type A (ETAR) are discussed in more detail. Extracellular vesicles are another novel player to possess disease processes. Fibroblasts are a key effector cell in SSc. Therefore, the current review will provide an overview about their plasticity in the phenotype and function. Promising nuclear receptors as key regulators of transcriptional programmes will be introduced as well as epigenetic modifications, which are pivotal to maintain the profibrotic fibroblast phenotype independent of external stimuli. Fibroblasts from SSc patients exhibit a specific signalling and reactivate developmental pathways and stem cell maintenance such as by employing hedgehog and WNT, which promote fibroblast-to-myofibroblast transition and extracellular matrix generation. Pharmacological interventions, although for other indications, are already in clinical use to address pathologic signalling.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic for Rheumatology and Clinical
Immunology, University Clinic Schleswig-Holstein and University
of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3,
Universitätsklinikum Erlangen, Friedrich-Alexander-University
(FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Liu SY, Wu JJ, Chen ZH, Zou ML, Teng YY, Zhang KW, Li YY, Guo DY, Yuan FL. The m 6A RNA Modification Modulates Gene Expression and Fibrosis-Related Pathways in Hypertrophic Scar. Front Cell Dev Biol 2021; 9:748703. [PMID: 34869335 PMCID: PMC8634666 DOI: 10.3389/fcell.2021.748703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose: To systematically analyze the overall m6A modification pattern in hyperplastic scars (HS). Methods: The m6A modification patterns in HS and normal skin (NS) tissues were described by m6A sequencing and RNA sequencing, and subsequently bioinformatics analysis was performed. The m6A-related RNA was immunoprecipitated and verified by real-time quantitative PCR. Results: The appearance of 14,791 new m6A peaks in the HS sample was accompanied by the disappearance of 7,835 peaks. The unique m6A-related genes in HS were thus associated with fibrosis-related pathways. We identified the differentially expressed mRNA transcripts in HS samples with hyper-methylated or hypo-methylated m6A peaks. Conclusion: This study is the first to map the m6A transcriptome of human HS, which may help clarify the possible mechanism of m6A-mediated gene expression regulation.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Ming-Li Zou
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Dang-Yang Guo
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China.,The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Aghagoli G, Del Re A, Yano N, Zhang Z, Gheit AA, Phillips RK, Sellke FW, Fedulov AV. Methylome of skeletal muscle tissue in patients with hypertension and diabetes undergoing cardiopulmonary bypass. Epigenomics 2021; 13:1853-1866. [PMID: 34802257 PMCID: PMC8619827 DOI: 10.2217/epi-2021-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Epigenomic changes occurring during surgery have been neglected in research; diabetes and hypertension can affect the epigenome but little is known about the epigenetics of skeletal muscle (SKM). Methods: DNA methylation was profiled via Illumina MethylationEPIC arrays in SKM samples obtained at the beginning and end of heart surgery with cardiopulmonary bypass. Results: Methylation in patients with hypertension and diabetes was significantly different, more so for uncontrolled diabetes; hypertension alone produced minimal effect. The affected pathways involved IL-1, IL-12, IL-18, TNF-α, IFN-γ, VEGF, NF-κB and Wnt signaling, apoptosis and DNA damage response. Significant changes occurred during surgery and included loci in the Hippo-YAP/TAZ pathway. Conclusion: Cardiopulmonary bypass surgery affects the SKM methylome, and the combination of hypertension and diabetes induces changes in the SKM epigenome in contrast to hypertension alone.
Collapse
Affiliation(s)
- Ghazal Aghagoli
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Andrew Del Re
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Naohiro Yano
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Zhiqi Zhang
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Ahmad Aboul Gheit
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Ronald K Phillips
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Frank W Sellke
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
10
|
Zehender A, Li YN, Lin NY, Stefanica A, Nüchel J, Chen CW, Hsu HH, Zhu H, Ding X, Huang J, Shen L, Györfi AH, Soare A, Rauber S, Bergmann C, Ramming A, Plomann M, Eckes B, Schett G, Distler JHW. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun 2021; 12:4404. [PMID: 34285225 PMCID: PMC8292318 DOI: 10.1038/s41467-021-24601-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in the context of chronic fibrotic diseases remains incompletely understood. Here, we provide evidence that transforming growth factor-β (TGFβ) activates autophagy by an epigenetic mechanism to amplify its profibrotic effects. TGFβ induces autophagy in fibrotic diseases by SMAD3-dependent downregulation of the H4K16 histone acetyltransferase MYST1, which regulates the expression of core components of the autophagy machinery such as ATG7 and BECLIN1. Activation of autophagy in fibroblasts promotes collagen release and is both, sufficient and required, to induce tissue fibrosis. Forced expression of MYST1 abrogates the stimulatory effects of TGFβ on autophagy and re-establishes the epigenetic control of autophagy in fibrotic conditions. Interference with the aberrant activation of autophagy inhibits TGFβ-induced fibroblast activation and ameliorates experimental dermal and pulmonary fibrosis. These findings link uncontrolled TGFβ signaling to aberrant autophagy and deregulated epigenetics in fibrotic diseases and may contribute to the development of therapeutic interventions in fibrotic diseases.
Collapse
Affiliation(s)
- Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Adrian Stefanica
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Julian Nüchel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Hsiao-Han Hsu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Ding
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Lichong Shen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Faculty of Medicine, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
11
|
Unfolded Protein Response and Crohn’s Diseases: A Molecular Mechanism of Wound Healing in the Gut. GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs, including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of Inflammatory Bowel Disease (IBD), including Crohn’s disease (CD). Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of the UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways, such as senescence and autophagy, are introduced. Recent advances in the understanding of the epigenetic regulation of the UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.
Collapse
|
12
|
Current Therapies in Nephrotic Syndrome: HDAC inhibitors, an Emerging Therapy for Kidney Diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
14
|
Yamamoto Y, Mukai A, Ikushima T, Urata Y, Kinoshita S, Hamuro J, Ueno M, Sotozono C. Pluripotent epigenetic regulator OBP-801 maintains filtering blebs in glaucoma filtration surgery model. Sci Rep 2020; 10:20936. [PMID: 33262357 PMCID: PMC7708845 DOI: 10.1038/s41598-020-77811-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Inhibition of fibrosis is indispensable for maintaining filtering blebs after glaucoma filtration surgery (GFS). The purpose of this study was to investigate the ability of a pluripotent epigenetic regulator OBP-801 (OBP) to ameliorate extracellular matrix formation in a rabbit model of GFS. Rabbits that underwent GFS were treated with OBP. The gene expression profiles and intraocular pressure (IOP) were monitored until 30 postoperative days. The bleb tissues were evaluated for tissue fibrosis at 30 postoperative days. In in vitro models, OBP interfered the functions of diverse genes during the wound-healing process. In in vivo GFS models, the expressions of TGF-β3, MMP-2, TIMP-2 and 3, LOX, COL1A and SERPINH1 were significantly inhibited at 30 postoperative days in the OBP group compared with those in the vehicle control group. OBP treatment involving subconjunctival injection or eye drops showed no adverse effects, and reduced levels of α-SMA and collagen deposition at the surgical wound site. OBP maintained the long-lived bleb without scar formation, and IOP was lower at 30 postoperative days compared with the vehicle control group. These findings suggest that OBP is an effective and useful candidate low-molecular-weight agent for improving wound healing and surgical outcomes in a rabbit model of GFS.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Mukai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toru Ikushima
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo, 106-0032, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
15
|
Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020; 9:cells9102321. [PMID: 33086678 PMCID: PMC7589994 DOI: 10.3390/cells9102321] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic liver diseases (CLD) represent a worldwide health problem. While CLDs may have diverse etiologies, a common pathogenic denominator is the presence of liver fibrosis. Cirrhosis, the end-stage of CLD, is characterized by extensive fibrosis and is markedly associated with the development of hepatocellular carcinoma. The most important event in hepatic fibrogenesis is the activation of hepatic stellate cells (HSC) following liver injury. Activated HSCs acquire a myofibroblast-like phenotype becoming proliferative, fibrogenic, and contractile cells. While transient activation of HSCs is part of the physiological mechanisms of tissue repair, protracted activation of a wound healing reaction leads to organ fibrosis. The phenotypic changes of activated HSCs involve epigenetic mechanisms mediated by non-coding RNAs (ncRNA) as well as by changes in DNA methylation and histone modifications. During CLD these epigenetic mechanisms become deregulated, with alterations in the expression and activity of epigenetic modulators. Here we provide an overview of the epigenetic alterations involved in fibrogenic HSCs transdifferentiation with particular focus on histones acetylation changes. We also discuss recent studies supporting the promising therapeutic potential of histone deacetylase inhibitors in liver fibrosis.
Collapse
Affiliation(s)
- Alex Claveria-Cabello
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Jesus M. Urman
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Matias A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| | - Maite G. Fernandez-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| |
Collapse
|
16
|
Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars. Biomedicines 2020; 8:biomedicines8070181. [PMID: 32605309 PMCID: PMC7400180 DOI: 10.3390/biomedicines8070181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
As a part of an abnormal healing process of dermal injuries and irritation, keloid scars arise on the skin as benign fibroproliferative tumors. Although the etiology of keloid scarring remains unsettled, considerable recent evidence suggested that keloidogenesis may be driven by epigenetic changes, particularly, DNA methylation. Therefore, genome-wide scanning of methylated cytosine-phosphoguanine (CpG) sites in extracted DNA from 12 keloid scar fibroblasts (KF) and 12 control skin fibroblasts (CF) (six normal skin fibroblasts and six normotrophic fibroblasts) was conducted using the Illumina Human Methylation 450K BeadChip in two replicates for each sample. Comparing KF and CF used a Linear Models for Microarray Data (Limma) model revealed 100,000 differentially methylated (DM) CpG sites, 20,695 of which were found to be hypomethylated and 79,305 were hypermethylated. The top DM CpG sites were associated with TNKS2, FAM45B, LOC723972, GAS7, RHBDD2 and CAMKK1. Subsequently, the most functionally enriched genes with the top 100 DM CpG sites were significantly (p ≤ 0.05) associated with SH2 domain binding, regulation of transcription, DNA-templated, nucleus, positive regulation of protein targeting to mitochondrion, nucleoplasm, Swr1 complex, histone exchange, and cellular response to organic substance. In addition, NLK, CAMKK1, LPAR2, CASP1, and NHS showed to be the most common regulators in the signaling network analysis. Taken together, these findings shed light on the methylation status of keloids that could be implicated in the underlying mechanism of keloid scars formation and remission.
Collapse
|
17
|
Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease. Arterioscler Thromb Vasc Biol 2019; 38:1986-1996. [PMID: 30354260 DOI: 10.1161/atvbaha.118.311276] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose their properties and transform into fibroblast-like cells. This transition process contributes to cardiac fibrosis, a common feature of patients with chronic heart failure. To date, no specific therapies to halt or reverse cardiac fibrosis are available, so knowledge of the underlying mechanisms of cardiac fibrosis is urgently needed. In addition, EndMT contributes to other cardiovascular pathologies such as atherosclerosis and pulmonary hypertension, but also to cancer and organ fibrosis. Remarkably, the molecular mechanisms driving EndMT are largely unknown. Epigenetics play an important role in regulating gene transcription and translation and have been implicated in the EndMT process. Therefore, epigenetics might be the missing link in unraveling the underlying mechanisms of EndMT. Here, we review the involvement of epigenetic regulators during EndMT in the context of cardiac fibrosis. The role of DNA methylation, histone modifications (acetylation and methylation), and noncoding RNAs (microRNAs, long noncoding RNAs, and circular RNAs) in the facilitation and inhibition of EndMT are discussed, and potential therapeutic epigenetic targets will be highlighted.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.).,Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Xingbo Xu
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Elisabeth M Zeisberg
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| |
Collapse
|
18
|
Palmieri B, Vadalà M, Laurino C. Review of the molecular mechanisms in wound healing: new therapeutic targets? J Wound Care 2019; 26:765-775. [PMID: 29244975 DOI: 10.12968/jowc.2017.26.12.765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The restoration of the skin barrier in acute and chronic wounds is controlled by several molecular mechanisms that synergistically regulate cell kinetics, enzymatic functions, and neurovascular activation. These pathways include genetic and epigenetic activation, which modulate physiological wound healing. Our review describes the genetic background of skin repair, namely transcription-independent diffusible damage signals, individual variability, epigenetic mechanism, controlled qualitative traits, post-translational mechanisms, antioxidants, nutrients, DNA modifications, bacteria activation, mitochondrial activity, and oxidative stress. The DNA background modulating skin restoration could be used to plan new diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Palmieri
- Associated Professor, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - M Vadalà
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - C Laurino
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| |
Collapse
|
19
|
Stechmiller JK, Lyon D, Schultz G, Gibson DJ, Weaver MT, Wilkie D, Ferrell AV, Whitney J, Kim J, Millan SB. Biobehavioral Mechanisms Associated With Nonhealing Wounds and Psychoneurologic Symptoms (Pain, Cognitive Dysfunction, Fatigue, Depression, and Anxiety) in Older Individuals With Chronic Venous Leg Ulcers. Biol Res Nurs 2019; 21:407-419. [PMID: 31142148 DOI: 10.1177/1099800419853881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence and incidence of chronic venous leg ulcers (CVLUs) are increasing worldwide, as are the associated financial costs. Although it has long been known that their underlying etiology is venous insufficiency, the molecular aspects of healing versus nonhealing, as well as the psychoneurologic symptoms (PNS; pain, cognitive dysfunction, fatigue, depression, and anxiety) associated with CVLUs remain understudied. In this biobehaviorally focused review, we aim to elucidate the complex mechanisms that link the biological and molecular aspects of CLVUs with their PNS. Innovations in "omics" research have increased our understanding of important wound microenvironmental factors (e.g., inflammation, microbial pathogenic biofilm, epigenetic processes) that may adversely alter the wound bed's molecular milieu so that microbes evade immune detection. Although these molecular factors are not singularly responsible for wound healing, they are major components of wound development, nonhealing, and PNS that, until now, have not been amenable to systematic study, especially over time. Further, this review explores our current understanding of the molecular mechanisms by which the immune activation that contributes to the development and persistence of CVLUs also leads to the development, persistence, and severity of wound-related PNS. We also make recommendations for future research that will expand the field of biobehavioral wound science. Biobehavioral research that focuses on the interrelated mechanisms of PNS will lead to symptom-management interventions that improve quality of life for the population burdened by CVLUs.
Collapse
Affiliation(s)
- Joyce K Stechmiller
- 1 Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Debra Lyon
- 2 College of Nursing, University of Florida, Gainesville, FL, USA
| | - Gregory Schultz
- 3 Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, Gainesville, FL, USA
| | - Daniel J Gibson
- 3 Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, Gainesville, FL, USA
| | - Michael T Weaver
- 2 College of Nursing, University of Florida, Gainesville, FL, USA
| | - Diana Wilkie
- 4 Center for Palliative Care Research and Education, University of Florida, Gainesville, FL, USA
| | | | - Joanne Whitney
- 5 School of Nursing, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Junglyun Kim
- 2 College of Nursing, University of Florida, Gainesville, FL, USA
| | - Susan B Millan
- 6 UF Health Wound Care and Hyperbaric Center, Gainesville, FL, USA
| |
Collapse
|
20
|
Barcena-Varela M, Colyn L, Fernandez-Barrena MG. Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. Int J Mol Sci 2019; 20:E2507. [PMID: 31117267 PMCID: PMC6566358 DOI: 10.3390/ijms20102507] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an essential component of chronic liver disease (CLD) and hepatocarcinogenesis. The fibrotic stroma is a consequence of sustained liver damage combined with exacerbated extracellular matrix (ECM) accumulation. In this context, activation of hepatic stellate cells (HSCs) plays a key role in both initiation and perpetuation of fibrogenesis. These cells suffer profound remodeling of gene expression in this process. This review is focused on the epigenetic alterations participating in the transdifferentiation of HSCs from the quiescent to activated state. Recent advances in the field of DNA methylation and post-translational modifications (PTM) of histones (acetylation and methylation) patterns are discussed here, together with altered expression and activity of epigenetic remodelers. We also consider recent advances in translational approaches, including the use of epigenetic marks as biomarkers and the promising antifibrotic properties of epigenetic drugs that are currently being used in patients.
Collapse
Affiliation(s)
| | - Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, 31180 Pamplona, Spain.
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, 31180 Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, 31180 Pamplona, Spain.
| |
Collapse
|
21
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers Med Sci 2019; 34:1465-1472. [DOI: 10.1007/s10103-019-02745-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 01/13/2023]
|
23
|
Abstract
INTRODUCTION Keloids and hypertrophic scars are fibroproliferative disorders of the skin that result from abnormal healing of injured or irritated skin. Multiple studies suggest that genetic, systemic and local factors may contribute to the development and/or growth of keloids and hypertrophic scars. A key local factor may be mechanical stimuli. Here, we provide an up-to-date review of the studies on the roles that genetic variation, epigenetic modifications and mechanotransduction play in keloidogenesis. METHODS An English literature review was performed by searching the PubMed, Embase and Web of Science databases with the following keywords: genome-wide association study; epigenetics; non-coding RNA; microRNA; long non-coding RNA (lncRNA); DNA methylation; mechanobiology; and keloid. The searches targeted the time period between the date of database inception and July 2018. RESULTS Genetic studies identified several single-nucleotide polymorphisms and gene linkages that may contribute to keloid pathogenesis. Epigenetic modifications caused by non-coding RNAs (e.g. microRNAs and lncRNAs) and DNA methylation may also play important roles by inducing the persistent activation of keloidal fibroblasts. Mechanical forces and the ensuing cellular mechanotransduction may also influence the degree of scar formation, scar contracture and the formation/progression of keloids and hypertrophic scars. CONCLUSIONS Recent research indicates that the formation/growth of keloids and hypertrophic scars associate clearly with genetic, epigenetic, systemic and local risk factors, particularly skin tension around scars. Further research into scar-related genetics, epigenetics and mechanobiology may reveal molecular, cellular or tissue-level targets that could lead to the development of more effective prophylactic and therapeutic strategies for wounds/scars in the future.
Collapse
Affiliation(s)
- Chia-Hsuan Tsai
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Keelung & Chang Gung University College of Medicine, Taoyuan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
24
|
Vella S, Conaldi PG, Cova E, Meloni F, Liotta R, Cuzzocrea S, Martino L, Bertani A, Luca A, Vitulo P. Lung resident mesenchymal cells isolated from patients with the Bronchiolitis Obliterans Syndrome display a deregulated epigenetic profile. Sci Rep 2018; 8:11167. [PMID: 30042393 PMCID: PMC6057887 DOI: 10.1038/s41598-018-29504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Bronchiolitis Obliterans Syndrome is the major determinant of the graft function loss after lung transplantation, but its pathogenesis is still incompletely understood and currently available therapeutic strategies are poorly effective. A deeper understanding of its pathogenic mechanisms is crucial for the development of new strategies to prevent and treat this devastating complication. In this study, we focused on the mesenchymal stromal cells, recently recognized as BOS key effectors, and our primary aim was to identify their epigenetic determinants, such as histone modifications and non-coding RNA regulation, which could contribute to their differentiation in myofibroblasts. Interestingly, we identified a deregulated expression of histone deacetylases and methyltransferases, and a microRNA-epigenetic regulatory network, which could represent novel targets for anti-fibrotic therapy. We validated our results in vitro, in a cell model of fibrogenesis, confirming the epigenetic involvement in this process and paving the way for a new application for epigenetic drugs.
Collapse
Affiliation(s)
- Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
- Anemocyte S.r.l, Gerenzano, Italy.
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Emanuela Cova
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Federica Meloni
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Rosa Liotta
- Department of Diagnostic and Therapeutic Services, Pathology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lavinia Martino
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Alessandro Bertani
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Angelo Luca
- Department of Diagnostic and Therapeutic Services, Radiology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Patrizio Vitulo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
25
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
26
|
Zhang Y, Pötter S, Chen CW, Liang R, Gelse K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW, Dees C. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2018; 77:744-751. [DOI: 10.1136/annrheumdis-2017-212265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
ObjectivesThe enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated.MethodsThe expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice.ResultsThe expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis.ConclusionPARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.
Collapse
|
27
|
Fu S, Sun L, Zhang X, Shi H, Xu K, Xiao Y, Ye W. 5-Aza-2'-deoxycytidine induces human Tenon's capsule fibroblasts differentiation and fibrosis by up-regulating TGF-β type I receptor. Exp Eye Res 2017; 165:47-58. [PMID: 28893564 DOI: 10.1016/j.exer.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The principle reason of high failure rate of glaucoma filtration surgery is the loss of filtration function caused by postoperative scar formation. We investigated the effects of 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA methyltransferases inhibitor, on human Tenon's capsule fibroblasts (HTFs) differentiation and fibrosis and its mechanism of action, especially in relation to transforming growth factor (TGF)-β1 signaling. TGF-β1 was used to induce differentiation of cultured HTFs. 5-Aza-dc suppressed DNA methyltransferases (DNMTs) activity 6 h after treatment with a course corresponding to that of TGF-β1-induced reduction of DNMT activity without affecting cell viability as measured by Cell Counting Kit-8 assay. 5-Aza-dc also reduced DNMT1 and DNMT3a protein expression from 24 to 48 h. HTFs migration evaluated by scratch-wound assay were significantly increased 24 h after 5-Aza-dc treatment, a time course similar to that of TGF-β1. Treatment with 5-Aza-dc significantly increased the mRNA and protein levels of α-smooth muscle actin (α-SMA), collagen-1A1 (Col1A1), fibronectin (FN) and TGF-β type I receptor (TGFβRI). Furthermore, the effects of 5-Aza-dc on DNMT activity suppression, cell migration, and fibrosis were all reversed by a TGFβRI inhibitor- SB-431542. Meanwhile, knockdown of DNMT1 upregulated TGFβRI expression and had the same fibrosis-inducing effect in HTFs, which was also inhibited by SB-431542. Thus, the results indicate that DNA hypomethylation induces HTFs differentiation and fibrosis through up-regulation of TGFβRI. DNA methylation status plays an important role in subconjunctival wound healing.
Collapse
Affiliation(s)
- Shuhao Fu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Sun
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimin Shi
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kang Xu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wen Ye
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Holdsworth G, Bon H, Bergin M, Qureshi O, Paveley R, Atkinson J, Huang L, Tewari R, Twomey B, Johnson T. Quantitative and organisational changes in mature extracellular matrix revealed through high-content imaging of total protein fluorescently stained in situ. Sci Rep 2017; 7:9963. [PMID: 28855577 PMCID: PMC5577101 DOI: 10.1038/s41598-017-10298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is a common driver of end-stage organ failure in most organs. It is characterised by excessive accumulation of extracellular matrix (ECM) proteins. Therapeutic options are limited and novel treatments are urgently required, however current cell-based high-throughput screening (HTS) models to identify molecules affecting ECM accumulation are limited in their relevance or throughput. We report a novel sensitive approach which combines in situ fluorescent staining of accumulated decellularised ECM proteins with automated high-content microscopy. Using this method to measure ECM accumulation in a kidney cell model, we demonstrated good agreement with established radiolabelled amino acid incorporation assays: TGFβ1 delivered a potent pro-fibrotic stimulus, which was reduced by TGFβ antibody or the anti-fibrotic nintedanib. Importantly, our method also provides information about matrix organisation: the extent of ECM accumulation was unaffected by the BMP antagonist Gremlin-1 but a pronounced effect on matrix fibrillar organisation was revealed. This rapid, straightforward endpoint provides quantitative data on ECM accumulation and offers a convenient cross-species readout that does not require antibodies. Our method facilitates discovery of novel pro- and anti-fibrotic agents in 384-well plate format and may be widely applied to in vitro cell-based models in which matrix protein deposition reflects the underlying biology or pathology.
Collapse
|
29
|
Alteration of miRNA expression in a sulfur mustard resistant cell line. Toxicol Lett 2017; 293:38-44. [PMID: 28823541 DOI: 10.1016/j.toxlet.2017.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are responsible for post-transcriptional control of protein expression. Numerous miRNAs have been identified to be responsible for the resistance of tumor cells to cytostatic drugs. Possibly, the same miRNAs also play a role in the sulfur mustard (SM)-resistance of the keratinocyte cell line HaCaT/SM as alkylating cytostatics exhibit similar cytotoxic effects as SM. METHODS Basal expression levels of 1920 miRNAs in total were analyzed in HaCaT/SM compared to the origin human keratinocyte cell line HaCaT. The effect for selected miRNAs on cell survival was analyzed using antagomirs for ectopic miRNA level decrease or miRNA mimics for increase. Cell survival was calculated as SM dose-dependent-curves. RESULTS Out of 1920 miRNAs analyzed, 49 were significantly up- and 29 were significantly downregulated in HaCaT/SM when compared to HaCaT controls. Out of these, 36 could be grouped in miRNA families. Most of the 15 miRNA family members showed either a common increase or decrease. Only the members of miR-10, miR-154, miR-430 and miR-548 family showed an inconsistent picture. The ectopic increase of miR-181 in HaCaT/SM had a positive effect on cell survival in the presence of SM. CONCLUSION In summary, the extensive differences in miRNA expression pattern between these cell lines indicate that specific miRNAs may play a role in the resistance mechanism against sulfur mustard. The miR-125b-2 and miR-181b alone are not responsible for the resistance development against SM, but an ectopic increase of miR-181 even enhances the SM resistance of HaCaT/SM. Improving the resistance in normal keratinocytes by treatment with either both miRNAs together or a different combination might be used as an initial step in development of an innovative new drug or prophylactic agent against SM.
Collapse
|
30
|
Hewitson TD, Holt SG, Smith ER. Progression of Tubulointerstitial Fibrosis and the Chronic Kidney Disease Phenotype - Role of Risk Factors and Epigenetics. Front Pharmacol 2017; 8:520. [PMID: 28848437 PMCID: PMC5550676 DOI: 10.3389/fphar.2017.00520] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Although the kidney has capacity to repair after mild injury, ongoing or severe damage results in scarring (fibrosis) and an associated progressive loss of kidney function. However, despite its universal significance, evidence highlights a population based heterogeneity in the trajectory of chronic kidney disease (CKD) in these patients. To explain the heterogeneity of the CKD phenotype requires an understanding of the relevant risk factors for fibrosis. These factors include both the extrinsic nature of injury, and intrinsic factors such as age, gender, genetics, and perpetual activation of fibroblasts through priming. In many cases an additional level of regulation is provided by epigenetic mechanisms which integrate the various pro-fibrotic and anti-fibrotic triggers in fibrogenesis. In this review we therefore examine the various molecular and structural changes of fibrosis, and how they are influenced by extrinsic and intrinsic factors. Our aim is to provide a unifying hypothesis to help explain the transition from acute to CKD.
Collapse
Affiliation(s)
- Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, MelbourneVIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, MelbourneVIC, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, MelbourneVIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, MelbourneVIC, Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, MelbourneVIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
31
|
Bergmann C, Distler JHW. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 2017; 9:463-477. [DOI: 10.2217/epi-2016-0150] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prolonged activation of fibroblasts is a central hallmark of fibrosing disorders such as systemic sclerosis (SSc). Fibroblasts are the key effector cells. They differentiate into an activated myofibroblast phenotype. In contrast to normal wound healing with transient activation, myofibroblasts persist in fibrosing disorders. Current hypothesis suggests that profibrotic cytokines might trigger epigenetic changes which contribute to the persistently activated fibroblast phenotype. In the last years, several epigenetic alterations have been described in SSc and have been linked to different pathogenic aspects of the disease, in particular to aberrant fibroblast activation and tissue fibrosis, but also to vascular manifestations and inflammation. The focus of this review is the current knowledge on epigenetic changes in fibroblast activation in SSc.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Li CX, Talele NP, Boo S, Koehler A, Knee-Walden E, Balestrini JL, Speight P, Kapus A, Hinz B. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. NATURE MATERIALS 2017; 16:379-389. [PMID: 27798620 DOI: 10.1038/nmat4780] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/22/2016] [Indexed: 05/20/2023]
Abstract
Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.
Collapse
Affiliation(s)
- Chen Xi Li
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Nilesh P Talele
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Anne Koehler
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ericka Knee-Walden
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | - Pam Speight
- Keenan Research Centre in the Li Ka Shing Knowledge Institute in the St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Andras Kapus
- Keenan Research Centre in the Li Ka Shing Knowledge Institute in the St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
33
|
Kalson NS, Borthwick LA, Mann DA, Deehan DJ, Lewis P, Mann C, Mont MA, Morgan-Jones R, Oussedik S, Williams FMK, Toms A, Argenson JN, Bellemans J, Bhave A, Furnes O, Gollwitzer H, Haddad FS, Hofmann S, Krenn V. International consensus on the definition and classification of fibrosis of the knee joint. Bone Joint J 2017; 98-B:1479-1488. [PMID: 27803223 DOI: 10.1302/0301-620x.98b10.37957] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
AIMS The aim of this consensus was to develop a definition of post-operative fibrosis of the knee. PATIENTS AND METHODS An international panel of experts took part in a formal consensus process composed of a discussion phase and three Delphi rounds. RESULTS Post-operative fibrosis of the knee was defined as a limited range of movement (ROM) in flexion and/or extension, that is not attributable to an osseous or prosthetic block to movement from malaligned, malpositioned or incorrectly sized components, metal hardware, ligament reconstruction, infection (septic arthritis), pain, chronic regional pain syndrome (CRPS) or other specific causes, but due to soft-tissue fibrosis that was not present pre-operatively. Limitation of movement was graded as mild, moderate or severe according to the range of flexion (90° to 100°, 70° to 89°, < 70°) or extension deficit (5° to 10°, 11° to 20°, > 20°). Recommended investigations to support the diagnosis and a strategy for its management were also agreed. CONCLUSION The development of standardised, accepted criteria for the diagnosis, classification and grading of the severity of post-operative fibrosis of the knee will facilitate the identification of patients for inclusion in clinical trials, the development of clinical guidelines, and eventually help to inform the management of this difficult condition. Cite this article: Bone Joint J 2016;98-B:1479-88.
Collapse
Affiliation(s)
| | - L A Borthwick
- Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D A Mann
- Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - D J Deehan
- Freeman Hospital, Newcastle Hospitals NHS Trust, High Heaton, Newcastle upon Tyne, NE7 7DN, UK
| | - P Lewis
- South Australian Health and Medical Institute, Adelaide, South Australia, Australia
| | - C Mann
- Norfolk and Norwich University NHS Trust, Norwich, UK
| | - M A Mont
- Cleveland Clinic , Cleveland, Ohio, USA
| | | | - S Oussedik
- Institute of Sport, Exercise and Health, University College London Hospitals, 235 Euston Road, London NW1 2BU, UK
| | - F M K Williams
- King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - A Toms
- Royal Devon and Exeter Hospital, Exeter, UK
| | - J N Argenson
- Sainte-Marguerite Hospital, Aix-Marseille University, Marseille, France
| | | | - A Bhave
- Sinai Hospital, Baltimore, Maryland, USA
| | - O Furnes
- University of Bergen, Bergen, Norway
| | - H Gollwitzer
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität, Ismaninger Str. 22, 81675 Munich, Germany
| | - F S Haddad
- University College London Hospitals, 235 Euston Road, London NW1 2BU, UK
| | - S Hofmann
- LKH Stolzalpe Hospital & Teaching Hospital University Clinic Graz, Austria
| | - V Krenn
- MVZ-Zentrum für Histologie, Zytologie und Molekulare Diagnostik, Trier, Germany
| |
Collapse
|
34
|
Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, Page A, Moran Salvador E, Sharkey V, Tsukamoto H, Chu DCK, Singh US, Ponzoni M, Perri P, Di Paolo D, Mendivil EJ, Mann J, Mann DA. A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Mol Ther 2017; 25:218-231. [PMID: 28129116 PMCID: PMC5363305 DOI: 10.1016/j.ymthe.2016.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
The progression of fibrosis in chronic liver disease is dependent upon hepatic stellate cells (HSCs) transdifferentiating to a myofibroblast-like phenotype. This pivotal process is controlled by enzymes that regulate histone methylation and chromatin structure, which may be targets for developing anti-fibrotics. There is limited pre-clinical experimental support for the potential to therapeutically manipulate epigenetic regulators in fibrosis. In order to learn if epigenetic treatment can halt the progression of pre-established liver fibrosis, we treated mice with the histone methyltransferase inhibitor 3-deazaneplanocin A (DZNep) in a naked form or by selectively targeting HSC-derived myofibroblasts via an antibody-liposome-DZNep targeting vehicle. We discovered that DZNep treatment inhibited multiple histone methylation modifications, indicative of a broader specificity than previously reported. This broad epigenetic repression was associated with the suppression of fibrosis progression as assessed both histologically and biochemically. The anti-fibrotic effect of DZNep was reproduced when the drug was selectively targeted to HSC-derived myofibroblasts. Therefore, the in vivo modulation of HSC histone methylation is sufficient to halt progression of fibrosis in the context of continuous liver damage. This discovery and our novel HSC-targeting vehicle, which avoids the unwanted effects of epigenetic drugs on parenchymal liver cells, represents an important proof-of-concept for epigenetic treatment of liver fibrosis.
Collapse
Affiliation(s)
- Müjdat Zeybel
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Saimir Luli
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Sabater
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Timothy Hardy
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Oakley
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Eva Moran Salvador
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Victoria Sharkey
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90033, USA
| | - David C K Chu
- The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Uma Sharan Singh
- The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Mirco Ponzoni
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Patrizia Perri
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Daniela Di Paolo
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Edgar J Mendivil
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, 44100 Guadalajara, Mexico
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
35
|
Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells. J Glaucoma 2016; 25:e834-e842. [DOI: 10.1097/ijg.0000000000000453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Khan S, Ahirwar K, Jena G. Anti-fibrotic effects of valproic acid: role of HDAC inhibition and associated mechanisms. Epigenomics 2016; 8:1087-101. [PMID: 27411759 DOI: 10.2217/epi-2016-0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue injuries and pathological insults produce oxidative stress, genetic and epigenetic alterations, which lead to an imbalance between pro- and anti-fibrotic molecules, and subsequent accumulation of extracellular matrix, thereby fibrosis. Various molecular pathways play a critical role in fibroblasts activation, which promotes the extracellular matrix production and accumulation. Recent reports highlighted that histone deacetylases (HDACs) are upregulated in various fibrotic disorders and play a central role in fibrosis, while HDAC inhibitors exert antifibrotic effects. Valproic acid is a first-line anti-epileptic drug and a proven HDAC inhibitor. This review provides the current research and novel insights on antifibrotic effects of valproic acid in various fibrotic conditions with an emphasis on the possible strategies for treatment of fibrosis.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kailash Ahirwar
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
37
|
Abstract
Fluorescent microscope imaging technologies are increasing in their applications and are being used on a wide scale. However methods used to quantify the level of fluorescence intensity are often not utilized-perhaps given the result may be immediately seen, quantification of the data may not seem necessary. However there are a number of reasons given to quantify fluorescent images including the importance of removing potential bias in the data upon observation as well as quantification of large numbers of images gives statistical power to detect subtle changes in experiments. In addition discreet localization of a protein could be detected without selection bias that may not be detectable by eye. Such data will be deemed useful when detecting the levels of HDAC enzymes within cells in order to develop more effective HDAC inhibitor compounds for use against multiple diseased states. Hence, we discuss a methodology devised to analyze fluorescent images using Image J to detect the mean fluorescence intensity of the 11 metal-dependent HDAC enzymes using murine kidney tissue sections as an example.
Collapse
|
38
|
Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing. Int J Mol Sci 2015; 17:ijms17010016. [PMID: 26712738 PMCID: PMC4730263 DOI: 10.3390/ijms17010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.
Collapse
|
39
|
Zhang S, Duan E. Epigenetic regulations on skin wound healing: implications from current researches. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:227. [PMID: 26539444 DOI: 10.3978/j.issn.2305-5839.2015.07.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shoubing Zhang
- 1 Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China ; 2 State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Enkui Duan
- 1 Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China ; 2 State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
He S, Barron E, Ishikawa K, Nazari Khanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD, Hinton DR. Inhibition of DNA Methylation and Methyl-CpG-Binding Protein 2 Suppresses RPE Transdifferentiation: Relevance to Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2015; 56:5579-89. [PMID: 26305530 DOI: 10.1167/iovs.14-16258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate expression of methyl-CpG-binding protein 2 (MeCP2) in epiretinal membranes from patients with proliferative vitreoretinopathy (PVR) and to investigate effects of inhibition of MeCP2 and DNA methylation on transforming growth factor (TGF)-β-induced retinal pigment epithelial (RPE) cell transdifferentiation. METHODS Expression of MeCP2 and its colocalization with cytokeratin and α-smooth muscle actin (α-SMA) in surgically excised PVR membranes was studied using immunohistochemistry. The effects of 5-AZA-2'-deoxycytidine (5-AZA-dC) on human RPE cell migration and viability were evaluated using a modified Boyden chamber assay and the colorimetric 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. Expression of RASAL1 mRNA and its promoter region methylation were evaluated by real-time PCR and methylation-specific PCR. Effects of 5-AZA-dC on expression of α-SMA, fibronectin (FN), and TGF-β receptor 2 (TGF-β R2) and Smad2/3 phosphorylation were analyzed by Western blotting. Effect of short interfering RNA (siRNA) knock-down of MeCP2 on expression of α-SMA and FN induced by TGFβ was determined. RESULTS MeCP2 was abundantly expressed in cells within PVR membranes where it was double labeled with cells positive for cytokeratin and α-SMA. 5-AZA-dC inhibited expression of MeCP2 and suppressed RASAL1 gene methylation while increasing expression of the RASAL1 gene. Treatment with 5-AZA-dC significantly suppressed the expression of α-SMA, FN, TGF-β R2 and phosphorylation of Smad2/3 and inhibited RPE cell migration. TGF-β induced expression of α-SMA, and FN was suppressed by knock-down of MeCP2. CONCLUSIONS MeCP2 and DNA methylation regulate RPE transdifferentiation and may be involved in the pathogenesis of PVR.
Collapse
Affiliation(s)
- Shikun He
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| | - Ernesto Barron
- Doheny Eye Institute, Los Angeles, California, United States
| | | | - Hossein Nazari Khanamiri
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Chris Spee
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Peng Zhou
- Doheny Eye Institute, Los Angeles, California, United States
| | - Satoru Kase
- Doheny Eye Institute, Los Angeles, California, United States
| | - Zhuoshi Wang
- Doheny Eye Institute, Los Angeles, California, United States
| | - Laurie Diane Dustin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - David R Hinton
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| |
Collapse
|
41
|
Schmidt A, Steinritz D, Thiermann H, Meineke V, Abend M. Alteration of miRNA expression in early endothelial cells after exposure with sub-lethal sulfur mustard concentrations. Toxicol Lett 2015; 244:88-94. [PMID: 26456178 DOI: 10.1016/j.toxlet.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIM Sulfur mustard (SM) is known to induce chronic wound healing disorders as well as disturbed endothelial regeneration. It is known that wound healing as well as endothelial regeneration are controlled by micro-RNA (miRNA). As nothing is known today about the effect of SM onto miRNA expression we wanted to investigate whether there is an effect of sub-lethal concentrations of SM onto the miRNA expression of endothelial cells. METHODS Early endothelial cells (EEC) were incubated with different sub-lethal concentrations of sulfur mustard (SM) in-vitro. Cells were subsequently analyzed with respect to survival and colony-forming capacity. In addition, the nuclear structure was investigated with respect to apoptosis, micronuclei or abnormal forming using the MAA assay. Six hundred sixty-seven different miRNA species from both, treated and untreated EEC were quantified. RESULTS The sub-lethal concentrations IC1, IC5 or IC10 were used. While performing the MAA assay the cells showed a time dependent change in nucleus structure from normal to abnormal, without significant changes in apoptosis being observed. In the colony-forming assay a weak cell proliferation capacity was revealed. Under all conditions they lost their capacity to form colonies. Out of 667 investigated miRNAs in total 66 showed a significant change in expression upon incubation with SM. 19 miRNAs were up-regulated and 47 down-regulated. The strongest correlation between SM concentration and up-regulation was found for mmu-miR-92a-3p* (hsa-miR-92a). Seven miRNAs showed a change in expression similar to endothelial cells from younger or older mice. CONCLUSION The presented work demonstrates that sulfur mustard (SM) has an effect on miRNA expression in general. The observed changes in expression in early endothelial cells correlates to the known effects of SM. Further studies have to investigate if these findings are in direct dependence and if these relationships can be used to alleviate the sulfur mustard induced clinical damage.
Collapse
Affiliation(s)
- Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Viktor Meineke
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| |
Collapse
|
42
|
|
43
|
Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Wei J, Ghosh AK, Chu H, Fang F, Hinchcliff ME, Wang J, Marangoni RG, Varga J. The Histone Deacetylase Sirtuin 1 Is Reduced in Systemic Sclerosis and Abrogates Fibrotic Responses by Targeting Transforming Growth Factor β Signaling. Arthritis Rheumatol 2015; 67:1323-34. [PMID: 25707573 DOI: 10.1002/art.39061] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Persistent fibroblast activation underlies skin fibrosis in systemic sclerosis (SSc), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. In view of the potent influence of acetylation status governing tissue fibrosis, we undertook this study to investigate the expression of the antiaging deacetylase enzyme sirtuin 1 (SIRT1) in SSc and its effects on fibrotic responses in vitro and in vivo. METHODS Tissue expression of SIRTs was interrogated from publicly available genome-wide expression data sets and by immunohistochemistry. The effects of SIRT1 on modulating fibrotic responses, as well as the underlying mechanisms, were examined in human and mouse fibroblasts in culture and in an experimental fibrosis model in the mouse. RESULTS Analysis of transcriptome data revealed a selective reduction of SIRT1 messenger RNA (mRNA) levels in SSc skin biopsy samples as well as a negative correlation of SIRT1 mRNA with the skin score. Cellular SIRT1 levels were suppressed in normal fibroblasts exposed to hypoxia or platelet-derived growth factor and were constitutively down-regulated in SSc fibroblasts. Activation of SIRT1 attenuated fibrotic responses in skin fibroblasts and skin organ cultures, while genetic or pharmacologic inhibition of SIRT1 had profibrotic effects. The antifibrotic effects of SIRT1 were due in part to decreased expression and function of the acetyltransferase p300. In mice, experimentally induced skin fibrosis was accompanied by reduced SIRT1 expression in lesional tissue fibroblasts, and both fibrosis and loss of SIRT1 in these mice were mitigated by treatment with a SIRT1 activator. CONCLUSION SIRT1 has antifibrotic effects, and its reduced tissue expression in patients with SSc might have a direct causal role in progression of fibrosis. Pharmacologic modulation of SIRT1 in these patients therefore might represent a potential treatment strategy.
Collapse
Affiliation(s)
- Jun Wei
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jiang Y, Wang S, Zhao Y, Lin C, Zhong F, Jin L, He F, Wang H. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator‐activated receptor γ. FASEB J 2015; 29:1830-1841. [DOI: 10.1096/fj.14-251751] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of ChemistryFudan UniversityShanghaiChina
| | - Sheng Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yuanyuan Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Chengzhao Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Fan Zhong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Fuchu He
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of ChemistryFudan UniversityShanghaiChina
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation MedicineBeijingChina
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life SciencesShanghaiChina
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
46
|
Lirk P, Fiegl H, Weber NC, Hollmann MW. Epigenetics in the perioperative period. Br J Pharmacol 2015; 172:2748-55. [PMID: 25073649 DOI: 10.1111/bph.12865] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 01/29/2023] Open
Abstract
The perioperative period is characterized by profound changes in the body's homoeostatic processes. This review seeks to address whether epigenetic mechanisms may influence an individual's reaction to surgery and anaesthesia. Evidence from animal and human studies suggests that epigenetic mechanisms can explain many facets of susceptibility to acute and chronic pain, making them potential therapeutic targets. Modern pain management is still based upon opiates, and both the developmental expression of opioid receptors and opioid-induced hyperalgesia have been linked to epigenetic mechanisms. In general, opiates seem to increase global DNA methylation levels. This is in contrast to local anaesthetics, which have been ascribed a global demethylating effect. Even though no direct investigations have been carried out, the potential influence of epigenetics on the inflammatory response that follows surgery seems a promising area for research. There is a considerable body of evidence that supports the involvement of epigenetics in the complex process of wound healing. Epigenetics is an important emerging research topic in perioperative medicine, with a huge potential to positively influence patient outcome.
Collapse
Affiliation(s)
- P Lirk
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - N C Weber
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M W Hollmann
- Department of Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, Sossalla S, Kalluri R, Zeisberg M, Hasenfuss G, Zeisberg EM. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 2015; 105:279-91. [PMID: 25616414 DOI: 10.1093/cvr/cvv015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Methylation of CpG island promoters is a prototypical epigenetic mechanism to stably control gene expression. The aim of this study was to elucidate the contribution of aberrant promoter DNA methylation in pathological endothelial to mesenchymal transition (EndMT) and subsequent cardiac fibrosis. METHODS AND RESULTS In human coronary endothelial cells, TGFβ1 causes aberrant methylation of RASAL1 promoter, increased Ras-GTP activity, and EndMT. In end-stage failing vs. non-failing human myocardium, increased fibrosis was associated with significantly increased RASAL1 promoter methylation, decreased RASAL1 expression, increased Ras-GTP activity, and increased expression of markers of EndMT. In mice with pressure overload due to ascending aortic constriction, BMP7 significantly reduced RASAL1 promoter methylation, increased RASAL1 expression, and decreased EndMT markers as well as decreased cardiac fibrosis. The ten eleven translocation (TET) family enzyme TET3, which demethylates through hydroxymethylation, was significantly decreased in fibrotic mouse hearts, restored with BMP7, and BMP7 effects were absent in coronary endothelial cells with siRNA knockdown of TET3. CONCLUSION Our study provides proof-in-principle evidence that transcriptional suppression of RASAL1 through aberrant promoter methylation contributes to EndMT and ultimately to progression of cardiac fibrosis. Such aberrant methylation can be reversed through Tet3-mediated hydroxymethylation, which can be specifically induced by BMP7. This may reflect a new treatment strategy to stop cardiac fibrosis.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Xiaoying Tan
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Xiaopeng Liu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University of Regensburg, Regensburg, Germany
| | - Samuel Sossalla
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology and the Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Plikus MV, Guerrero-Juarez CF, Treffeisen E, Gay DL. Epigenetic control of skin and hair regeneration after wounding. Exp Dermatol 2014; 24:167-70. [PMID: 25039994 DOI: 10.1111/exd.12488] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2014] [Indexed: 01/31/2023]
Abstract
Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodelling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
49
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
50
|
Charbonney E, Speight P, Kapus A. How do your contacts (or their absence) shape your fate? Tissue Barriers 2014; 1:e23699. [PMID: 24665378 PMCID: PMC3875604 DOI: 10.4161/tisb.23699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Tissue accumulation of contractile myofibroblasts is a key feature of a multitude of fibrotic diseases. Myofibroblast generation either from epithelial or mesenchymal precursors involves the activation of a myogenic program, hallmarked by the expression of α-smooth muscle actin (SMA). Recent research suggests that this robust phenotypic reprogramming requires two critical inputs: the fibrogenic cytokine transforming growth factor-β1 (TGFβ) and an injury (or absence) of intercellular junctions. This two-hit paradigm of epithelial-myofibroblast transition (EMyT) postulates that the injured (contact-deprived) epithelium is locally and selectively sensitive (topically susceptible) to the transforming effect of TGFβ, while the intact areas are quite resistant to the phenotype-changing effect of this cytokine. Searching for molecular mechanisms underlying the synergy between contact injury and TGFβ, we found that an interplay among three multifunctional transcriptional (co)activators, the junction component β-catenin, the TGFβ receptor target Smad3, and the actin cytoskeleton-regulated myocardin-related transcription factor (MRTF) controls the magnitude and timing of SMA expression.1 Moreover, this regulation is realized not only at the transcriptional level. Notably, these factors form a pretranscriptional circuit, in which they impact each other’s activity and stability. Based on this recent paper we ponder about the mechanisms of cellular plasticity in the context of EMyT. We propose that topical susceptibility to TGFβ, triggered by cell contact-modulated pretranscriptional and transcriptional control is realized through the crosstalk of a few master regulators, whose coordinated action tailors SMA expression and contributes to the major decision of whether injury leads to healing or fibrosis.
Collapse
Affiliation(s)
- Emmanuel Charbonney
- Keenan Research Centre; Li Ka Shing Knowledge Institute; St. Michael's Hospital and Department of Surgery; University of Toronto; Toronto, ON Canada
| | - Pam Speight
- Keenan Research Centre; Li Ka Shing Knowledge Institute; St. Michael's Hospital and Department of Surgery; University of Toronto; Toronto, ON Canada
| | - András Kapus
- Keenan Research Centre; Li Ka Shing Knowledge Institute; St. Michael's Hospital and Department of Surgery; University of Toronto; Toronto, ON Canada
| |
Collapse
|