1
|
Toropchyn V, Sarna R, Gray CM, Kumar S. Early Endoscopic Discectomy in Preventing Degenerative Spinal Changes in Patients With Lumbar Disc Herniation. Cureus 2024; 16:e69725. [PMID: 39429277 PMCID: PMC11490265 DOI: 10.7759/cureus.69725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
In this study, we compare the outcomes of two patients with similar spinal pathologies who chose different treatment options. The first case involves a 38-year-old female with significant lumbar disc herniation and associated degenerative spinal changes, including type I Modic changes. She presented with sciatica and, after conservative treatments failed, underwent an endoscopic discectomy. This intervention led to a marked improvement in her pain and functional status, along with a partial resolution of the Modic changes and a decrease in multifidus atrophy and fatty infiltration, on her follow-up MRI. In the second case, we discuss a 33-year-old patient with a large disc herniation. Despite three years of conservative management, she developed Modic changes and sclerosis in the adjacent vertebral endplates and a worsening of multifidus atrophy and fatty infiltration. This report supports the consideration of early minimally invasive discectomy for young patients who do not benefit from conservative treatment, as a means to prevent the progression of degenerative spinal changes.
Collapse
Affiliation(s)
| | - Rohan Sarna
- Department of Anesthesiology, University of Florida, Gainesville, USA
| | - Caitlin M Gray
- Division of Pain Medicine, Department of Anesthesiology, University of Florida, Gainesville, USA
- Department of Anesthesiology, North Florida/South Georgia Veterans Affairs, Gainesville, USA
| | - Sanjeev Kumar
- Division of Pain Medicine, Department of Anesthesiology, University of Florida, Gainesville, USA
| |
Collapse
|
2
|
Li Y, Dai C, Wu B, Yang L, Yan X, Liu T, Chen J, Zheng Z, Peng B. Intervertebral disc injury triggers neurogenic inflammation of adjacent healthy discs. Spine J 2024; 24:1527-1537. [PMID: 38608821 DOI: 10.1016/j.spinee.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration is common and may play an important role in low back pain, but it is not well-understood. Previous studies have shown that the outer layer of the annulus fibrosus of a healthy disc is innervated by nociceptive nerve fibers. In the process of disc degeneration, it can grow into the inner annulus fibrosus or nucleus pulposus and release neuropeptides. Disc degeneration is associated with inflammation that produces inflammatory factors and potentiates nociceptor sensitization. Subsequently neurogenic inflammation is induced by neuropeptide release from activated primary afferent terminals. Because the innervation of a lumbar disc comes from multisegmental dorsal root ganglion neurons, does neurogenic inflammation in a degenerative disc initiate neurogenic inflammation in neighboring healthy discs by antidromic activity? PURPOSE This study was based on animal experiments in Sprague-Dawley rats to investigate the role of neurogenic inflammation in adjacent healthy disc degeneration induced by disc injury. STUDY DESIGN This was an experimental study. METHODS Seventy-five 12-week-old, male Sprague-Dawley rats were allocated to 3 groups (sham group, disc injury group and disc injury+TrkA antagonist group). The disc injury group was punctured in the tail disc between the eighth and ninth coccygeal vertebrae (Co8-9) to establish an animal model of tail intervertebral disc degeneration. The sham group underwent only skin puncture and the disc injury+TrkA antagonist group was intraperitoneally injected with GW441756 two days before disc puncture. The outcome measure included quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Disc injury induced an increase in aggrecan, NGF, TrkA, CGRP, SP, IL-1β, and IL-6 mRNA levels in the injured (Co8-9) and adjacent discs (Co7-8), which reached a peak on day 1, then gradually decreased, and returned to normal on day 14. After intraperitoneal injection of GW441756 prior to puncture, the mRNA levels of the above indicators were down-regulated in Co7-8 and Co8-9 intervertebral discs on the 1st and 7th days. The protein content of the above indicators in Co7-8 and Co8-9 intervertebral discs showed roughly the same trend as mRNA levels. CONCLUSIONS Degeneration of one disc can induce neurogenic inflammation of adjacent healthy discs in a rat model. CLINICAL SIGNIFICANCE This model supports a key role of neurogenic inflammation in disc degeneration, and may play a role in the experience of low back pain.
Collapse
Affiliation(s)
- Yongchao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, 69 Yongding Road, Beijing, P.R. China
| | - Chen Dai
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, 69 Yongding Road, Beijing, P.R. China
| | - Bing Wu
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, 69 Yongding Road, Beijing, P.R. China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People's Armed Police Forces, 220 Chenglin Road, Dongli District, Tianjin, P.R. China
| | - Xiujie Yan
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, 69 Yongding Road, Beijing, P.R. China
| | - Tanghua Liu
- Algology Institute of Sino-US Zhongguancun Precision Medicine Academy, 45 Beiwa Road, Haidian District, Beijing, P.R. China
| | - Jindong Chen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 21 South Silver Spring Road, Qingyuan, P.R. China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan No. 2 Road, Guangzhou, P.R. China; Pain Research Center, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou, P.R. China.
| | - Baogan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, 69 Yongding Road, Beijing, P.R. China.
| |
Collapse
|
3
|
Fang M, Liu W, Wang Z, Li J, Hu S, Li Z, Chen W, Zhang N. Causal associations between gut microbiota with intervertebral disk degeneration, low back pain, and sciatica: a Mendelian randomization study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1424-1439. [PMID: 38285276 DOI: 10.1007/s00586-024-08131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Although studies have suggested that gut microbiota may be associated with intervertebral disk disease, their causal relationship is unclear. This study aimed to investigate the causal relationship between the gut microbiota and its metabolic pathways with the risk of intervertebral disk degeneration (IVDD), low back pain (LBP), and sciatica. METHODS Genetic variation data for 211 gut microbiota taxa at the phylum to genus level were obtained from the MiBioGen consortium. Genetic variation data for 105 taxa at the species level and 205 metabolic pathways were obtained from the Dutch Microbiome Project. Genetic variation data for disease outcomes were obtained from the FinnGen consortium. The causal relationships between the gut microbiota and its metabolic pathways and the risk of IVDD, LBP, and sciatica were evaluated via Mendelian randomization (MR). The robustness of the results was assessed through sensitivity analysis. RESULTS Inverse variance weighting identified 46 taxa and 33 metabolic pathways that were causally related to IVDD, LBP, and sciatica. After correction by weighted median and MR-PRESSO, 15 taxa and nine pathways remained stable. After FDR correction, only the effect of the genus_Eubacterium coprostanoligenes group on IVDD remained stable. Sensitivity analyses showed no evidence of horizontal pleiotropy, heterogeneity, or reverse causation. CONCLUSION Some microbial taxa and their metabolic pathways are causally related to IVDD, LBP, and sciatica and may serve as potential intervention targets. This study provides new insights into the mechanisms of gut microbiota-mediated development of intervertebral disk disease.
Collapse
Affiliation(s)
- Miaojie Fang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Department of Orthopedics Surgery, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Liu
- Department of Orthopedics Surgery, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Zhan Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shaojun Hu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zilong Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Weishan Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| | - Ning Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Zhou J, Wang J, Li J, Zhu Z, He Z, Li J, Tang T, Chen H, Du Y, Li Z, Gao M, Zhou Z, Xi Y. Repetitive strikes loading organ culture model to investigate the biological and biomechanical responses of the intervertebral disc. JOR Spine 2024; 7:e1314. [PMID: 38249719 PMCID: PMC10797252 DOI: 10.1002/jsp2.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Background Disc degeneration is associated with repetitive violent injuries. This study aims to explore the impact of repetitive strikes loading on the biology and biomechanics of intervertebral discs (IVDs) using an organ culture model. Methods IVDs from the bovine tail were isolated and cultured in a bioreactor, with exposure to various loading conditions. The control group was subjected to physiological loading, while the model group was exposed to either one strike loading (compression at 38% of IVD height) or repetitive one strike loading (compression at 38% of IVD height). Disc height and dynamic compressive stiffness were measured after overnight swelling and loading. Furthermore, histological morphology, cell viability, and gene expression were analyzed on Day 32. Glycosaminoglycan (GAG) and nitric oxide (NO) release in conditioned medium were also analyzed. Results The repetitive one strike group exhibited early disc degeneration, characterized by decreased dynamic compression stiffness, the presence of annulus fibrosus clefts, and degradation of the extracellular matrix. Additionally, this group demonstrated significantly higher levels of cell death (p < 0.05) and glycosaminoglycan (GAG) release (p < 0.05) compared to the control group. Furthermore, upregulation of MMP1, MMP13, and ADAMTS5 was observed in both nucleus pulposus (NP) and annulus fibrosus (AF) tissues of the repetitive one strike group (p < 0.05). The one strike group exhibited annulus fibrosus clefts but showed no gene expression changes compared to the control group. Conclusions This study shows that repetitive violent injuries lead to the degeneration of a healthy bovine IVDs, thereby providing new insights into early-stage disc degeneration.
Collapse
Affiliation(s)
- Jiaxiang Zhou
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Junhong Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Yukun Du
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Sport Medicine, Inst Translat MedThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory of Anti‐aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences CenterShenzhen UniversityShenzhenChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yongming Xi
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
5
|
Lisiewski LE, Jacobsen HE, Viola DCM, Kenawy HM, Kiridly DN, Chahine NO. Intradiscal inflammatory stimulation induces spinal pain behavior and intervertebral disc degeneration in vivo. FASEB J 2024; 38:e23364. [PMID: 38091247 PMCID: PMC10795732 DOI: 10.1096/fj.202300227r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Degeneration of the intervertebral disc (IVD) results in a range of symptomatic (i.e., painful) and asymptomatic experiences. Components of the degenerative environment, including structural disruption and inflammatory cytokine production, often correlate with pain severity. However, the role of inflammation in the activation of pain and degenerative changes has been complex to delineate. The most common IVD injury model is puncture; however, it initiates structural damage that is not representative of the natural degenerative cascade. In this study, we utilized in vivo injection of lipopolysaccharide (LPS), a pro-inflammatory stimulus, into rat caudal IVDs using 33G needles to induce inflammatory activation without the physical tissue disruption caused by puncture using larger needles. LPS injection increased gene expression of pro-inflammatory cytokines (Tnfa, Il1b) and macrophage markers (Inos, Arg1), supported by immunostaining of macrophages (CD68, CCR7, Arg1) and systemic changes in blood cytokine and chemokine levels. Disruption of the IVD structural integrity after LPS injection was also evident through changes in histological grading, disc height, and ECM biochemistry. Ultimately, intradiscal inflammatory stimulation led to local mechanical hyperalgesia, demonstrating that pain can be initiated by inflammatory stimulation of the IVD. Gene expression of nociceptive markers (Ngf, Bdnf, Cgrp) and immunostaining for neuron ingrowth (PGP9.5) and sensitization (CGRP) in the IVD were also shown, suggesting a mechanism for the pain exhibited. To our knowledge, this rat IVD injury model is the first to demonstrate local pain behavior resulting from inflammatory stimulation of caudal IVDs. Future studies will examine the mechanistic contributions of inflammation in mediating pain.
Collapse
Affiliation(s)
- Lauren E. Lisiewski
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hayley E. Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Dan C. M. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Hagar M. Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Daniel N. Kiridly
- Department of Orthopedic Surgery, Northwell Health, Manhasset, NY, United States
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Zhang B, Zhou LP, Zhang XL, Li D, Wang JQ, Jia CY, Zhang HQ, Kang L, Zhang RJ, Shen CL. Which Indicator Among Lumbar Vertebral Hounsfield Unit, Vertebral Bone Quality, or Dual-Energy X-Ray Absorptiometry-Measured Bone Mineral Density Is More Efficacious in Predicting Thoracolumbar Fragility Fractures? Neurospine 2023; 20:1193-1204. [PMID: 38171288 PMCID: PMC10762399 DOI: 10.14245/ns.2346998.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Hounsfield units (HU), vertebral bone quality (VBQ), and bone mineral density (BMD) can all serve as predictive indicators for thoracolumbar fragility fractures. This study aims to explore which indicator provides better risk prediction for thoracolumbar fragility fractures. METHODS Patients who have received medical attention from The First Affiliated Hospital of Anhui Medical University for thoracolumbar fragility fractures were selected. A total of 78 patients with thoracolumbar fragility fractures were included in the study. To establish a control group, 78 patients with degenerative spinal diseases were matched to the fracture group on the basis of gender, age, and body mass index. The lumbar vertebral HU, the VBQ, and the BMD were obtained for all the 156 patients through computed tomography, magnetic resonance imaging, and dual-energy x-ray absorptiometry (DEXA). The correlations among these parameters were analyzed. The area under curve (AUC) analysis was employed to assess the predictive efficacy and thresholds of lumbar vertebral HU, VBQ, and BMD in relation to the risk of thoracolumbar fragility fractures. RESULTS Among the cohort of 156 patients, lumbar vertebral HU exhibited a positive correlation with BMD (p < 0.01). Conversely, VBQ showed a negative correlation with HU, BMD (p < 0.05). HU and BMD displayed a favorable predictive efficacy for thoracolumbar fragility fractures (p < 0.01), with HU (AUC = 0.863) showcasing the highest predictive efficacy, followed by the DEXA-measured BMD (AUC = 0.813). VBQ (AUC = 0.602) ranked lowest among the 3 indicators. The thresholds for predicting thoracolumbar fragility fractures were as follows: HU (88),VBQ (3.37), and BMD (0.81). CONCLUSION All 3 of these indicators, HU, VBQ, and BMD, can predict thoracolumbar fragility fractures. Notably, lumbar vertebral HU exhibits the highest predictive efficacy, followed by the BMD obtained through DEXA scanning, with VBQ demonstrating the lowest predictive efficacy.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu-Ping Zhou
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian-Liang Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dui Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Qi Wang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Xiao F, van Dieën JH, Han J, Maas H. Stab lesion of the L4/L5 intervertebral disc in the rat causes acute changes in disc bending mechanics. J Biomech 2023; 161:111830. [PMID: 37821333 DOI: 10.1016/j.jbiomech.2023.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Low-back pain often coincides with altered neuromuscular control, possibly due to changes in spine stability resulting from injury or degeneration, or due to effects of nociception. The relative importance of these mechanisms, and their possible interaction, are unknown. In spine bending, the bulk of the load is borne by the IVD, yet the acute effects of intervertebral disc (IVD) injury on bending mechanics have not been investigated. In the present study, we aimed to quantify the acute effects of a stab lesion of the disc on its mechanical properties, because such changes can be expected to elicit compensatory changes in neuromuscular control. L4/L5 spinal segments were collected from 27 Wistar rats within two hours after sacrifice and stored at -20℃. Following thawing, bending tests were performed to assess the intersegmental angle-moment characteristics. Specimens were loaded in right bending, left bending and flexion, before and after a stab lesion of the IVD fully penetrating the nucleus pulposus. In the angle-moment curves, we found reduced moments at equal bending angles after IVD lesion in left bending, right bending and flexion. Peak stiffness, peak moment, and hysteresis were significantly decreased (by 7.8-27.7 %) after IVD lesion in all directions. In conclusion, L4/L5 IVD lesion in the rat caused small to moderate acute changes in IVD mechanical properties. Our next steps will be to evaluate the longer term effects of IVD lesion on spine mechanics and the neural control of trunk muscles.
Collapse
Affiliation(s)
- Fangxin Xiao
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Chen F, Huang Y, Guo A, Ye P, He J, Chen S. Associations between vertebral bone marrow fat and sagittal spine alignment as assessed by chemical shift-encoding-based water-fat MRI. J Orthop Surg Res 2023; 18:460. [PMID: 37370128 DOI: 10.1186/s13018-023-03944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The relationship between sagittal spine alignment and vertebral bone marrow fat is unknown. We aimed to assess the relationship between vertebral bone marrow fat and sagittal spine alignment using chemical shift-encoding-based water-fat magnetic resonance imaging (MRI). METHODS A total of 181 asymptomatic volunteers were recruited for whole spine X-ray and lumbar MRI. Spine typing was performed according to the Roussouly classification and measurement of vertebral fat fraction based on the chemical shift-encoding-based water-fat MRI. One-way analysis of variance (ANOVA) was used to analyze the differences in vertebral fat fraction between spine types. The post hoc least significant difference (LSD) test was utilized for subgroup comparison after ANOVA. RESULTS Overall, the vertebral fat fraction increased from L1 to L5 and was the same for each spine type. The vertebral fat fraction was the highest in type 1 and lowest in type 4 at all levels. ANOVA revealed statistically significant differences in fat fraction among different spine types at L4 and L5 (P < .05). The post hoc LSD test showed that the fat fraction of L4 was significantly different (P < .05) between type 1 and type 4 as well as between type 2 and type 4. The fat fraction of L5 was significantly different between type 1 and type 3, between type 1 and type 4, and between type 2 and type 4 (P < .05). CONCLUSION Our study found that vertebral bone marrow fat is associated with sagittal spine alignment, which may serve as a new additional explanation for the association of sagittal alignment with spinal degeneration.
Collapse
Affiliation(s)
- Fangsi Chen
- Department of Radiology, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Yingying Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Anna Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Peipei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Jiawei He
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Shaoqing Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
9
|
Lorio MP, Beall DP, Calodney AK, Lewandrowski KU, Block JE, Mekhail N. Defining the Patient with Lumbar Discogenic Pain: Real-World Implications for Diagnosis and Effective Clinical Management. J Pers Med 2023; 13:jpm13050821. [PMID: 37240991 DOI: 10.3390/jpm13050821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
There is an enormous body of literature that has identified the intervertebral disc as a potent pain generator. However, with regard to lumbar degenerative disc disease, the specific diagnostic criteria lack clarity and fail to capture the primary components which include axial midline low back pain with or without non-radicular/non-sciatic referred leg pain in a sclerotomal distribution. In fact, there is no specific ICD-10-CM diagnostic code to classify and define discogenic pain as a unique source of pain distinct from other recognized sources of chronic low back pain including facetogenic, neurocompressive including herniation and/or stenosis, sacroiliac, vertebrogenic, and psychogenic. All of these other sources have well-defined ICD-10-CM codes. Corresponding codes for discogenic pain remain absent from the diagnostic coding vernacular. The International Society for the Advancement of Spine Surgery (ISASS) has proposed a modernization of ICD-10-CM codes to specifically define pain associated with lumbar and lumbosacral degenerative disc disease. The proposed codes would also allow the pain to be characterized by location: lumbar region only, leg only, or both. Successful implementation of these codes would benefit both physicians and payers in distinguishing, tracking, and improving algorithms and treatments for discogenic pain associated with intervertebral disc degeneration.
Collapse
Affiliation(s)
- Morgan P Lorio
- Advanced Orthopedics, 499 E. Central Pkwy., Ste. 130, Altamonte Springs, FL 32701, USA
| | - Douglas P Beall
- Clinical Radiology of Oklahoma, 1800 S. Renaissance Blvd., Ste. 110, Edmond, OK 73013, USA
| | | | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, 4787 E. Camp Lowell Drive, Tucson, AZ 85712, USA
| | - Jon E Block
- Independent Consultant, 2210 Jackson Street, Ste. 401, San Francisco, CA 94115, USA
| | - Nagy Mekhail
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Swamy G, Salo P, Duncan N, Jirik F, Matyas J. IL-1Ra deficiency accelerates intervertebral disc degeneration in C57BL6J mice. JOR Spine 2022; 5:e1201. [PMID: 35783913 PMCID: PMC9238285 DOI: 10.1002/jsp2.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
The expression of Interleukin-1ß (IL-1ß) and its antagonist and Interleukin-1 receptor antagonist (IL-1Ra) are correlated with greater human intervertebral disc (IVD) degeneration, suggesting that elevated IL-1β activity promotes disc degeneration. Many in vitro studies support such a mechanistic relationship, whereas few in vivo investigations have been reported. The present study tests the effect of increased IL-1β activity on intervertebral disc in mice with an IL-1Ra gene deletion. IL-1Ra-/- mice and wild-type (WT) C57Bl6J mice were examined at 3 and 12 months of age. Caudal IVD segments were evaluated for disc degeneration by histopathology, functional testing, and inflammatory gene expression relevant to IL-1β pathways. To test differences in injury response, pinprick annular puncture was performed on IL-1Ra-/- and WT mice and evaluated similarly. IL-1Ra-/- IVDs had significantly worse histopathology at 3 months compared to WT controls, but not at 12 months. IL-1Ra-/- IVDs exhibited significantly more viscous mechanical properties than WT IVDs. qPCR revealed downregulation of inflammatory genes at 3 and 12 months in IL-1Ra-/- IVDs, with concomitant downregulation of anabolic and catabolic genes. Annular puncture yielded no appreciable differences between 2-week and 6-week post-injured WT and IL1-Ra-/- IVDs in histopathology or biomechanics, but inflammatory gene expression was sharply downregulated in IL-1Ra-/- mice at 2 weeks, returning by 6 weeks post injury. In the present study, IL-1Ra deletion resulted in increased IVD histopathology, inferior biomechanics, and transiently decreased pro-inflammatory cytokine gene expression. The histopathology of IL-1Ra-/- IVDs on a C57BL/6J background is less severe than a previous report of IL1Ra-/- on a BALB/c background, yet both strains exhibit IVD degeneration, reinforcing a mechanistic role of IL-1β signaling in IVD pathobiology. Despite a pro-inflammatory environment, the annular puncture was no worse in IL-1Ra-/- mice, suggesting that response to injury involves pathways other than inflammation. Overall, this study supports the hypothesis that IL-1β-driven inflammation is important in IVD degeneration.
Collapse
Affiliation(s)
- Ganesh Swamy
- Cumming School of MedicineMcCaig Institute of Bone and Joint Health University of CalgaryCalgaryAlbertaCanada
| | - Paul Salo
- Department of SurgeryCumming School of MedicineCalgaryAlbertaCanada
| | - Neil Duncan
- Department of Civil EngineeringSchulich School of EngineeringCalgaryAlbertaCanada
| | - Frank Jirik
- Department of MedicineHealth Research Innovation CentreCalgaryAlbertaCanada
| | - John Matyas
- Department of Comparative Biology & Experimental MedicineFaculty of Veterinary Medicine University of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
12
|
Herger N, Bermudez-Lekerika P, Farshad M, Albers CE, Distler O, Gantenbein B, Dudli S. Should Degenerated Intervertebral Discs of Patients with Modic Type 1 Changes Be Treated with Mesenchymal Stem Cells? Int J Mol Sci 2022; 23:ijms23052721. [PMID: 35269863 PMCID: PMC8910866 DOI: 10.3390/ijms23052721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes—pathologic inflammatory, fibrotic changes in the vertebral bone marrow—are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, CH-8008 Zurich, Switzerland;
| | - Christoph E. Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Oliver Distler
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
- Correspondence: ; Tel.: +41-4451-07511
| |
Collapse
|
13
|
Kilitci A, Asan Z, Yuceer A, Aykanat O, Durna F. Comparison of the histopathological differences between the spinal material and posterior longitudinal ligament in patients with lumbar disc herniation: A focus on the etiopathogenesis. Ann Saudi Med 2021; 41:115-120. [PMID: 33818148 PMCID: PMC8020649 DOI: 10.5144/0256-4947.2021.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) occurs owing to the inability of the posterior longitudinal ligament (PLL) to preserve the disc material within the intervertebral space. There is apparently no study that has investigated the histopathological changes occurring in both PLL and disc material in patients with LDH. OBJECTIVE Investigate and compare the histopathological changes occurring in PLL and disc material of the patients who underwent a surgical operation for LDH. DESIGN Descriptive, cross-sectional. SETTING Pathology and neurosurgery departments of a tertiary health care institution PATIENTS AND METHODS: The study included patients who underwent surgical operation for LDH from January 2018 to May 2019 and whose PLL and disc material were removed together, and had disc degeneration findings that were radiologically and histologically concordant. MAIN OUTCOME MEASURES PLL degeneration scores according to the histopathological findings, changes in disc materials according to the MRI findings, disc degeneration scores according to the histo-pathological findings. SAMPLE SIZE 50. RESULTS MRI and histological examinations showed fully degenerated black discs (Grade 2) in 12 patients, partially degenerated discs (Grade 1) in 29 patients and fresh/acute discs (Grade 0) in 9 patients. The PLL showed grade 0 degeneration in 2 patients, grade 1 degeneration in 23 patients, and grade 2 degeneration in 25 patients. PLL degeneration grades were higher than the disc degeneration grades (P=.002). CONCLUSION Longitudinal ligament degeneration can play a significant role in the pathogenesis of LDH. To the best of our knowledge, this study represents the first to focus on the histopathological changes occurring in both the PLL and disc material in patients with LDH. LIMITATIONS Small sample, retrospective CONFLICT OF INTEREST: None.
Collapse
Affiliation(s)
- Asuman Kilitci
- From the Department of Pathology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Ziya Asan
- From the Department of Neurosurgery, Ahi Evran University, Kirsehir 40100, Turkey
| | - Abdulbaki Yuceer
- From the Department of Neurosurgery, Ahi Evran University, Kirsehir 40100, Turkey
| | - Omer Aykanat
- From the Department of Neurosurgery, Ahi Evran University, Kirsehir 40100, Turkey
| | - Fatih Durna
- From the Department of Neurosurgery, Ahi Evran University, Kirsehir 40100, Turkey
| |
Collapse
|
14
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Three-dimensional ultrashort echo time (3D UTE) magnetic resonance imaging (MRI) of the normal and degenerative disco-vertebral complex at 4.7 T: a feasibility study with longitudinal evaluation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1144-1154. [PMID: 33609189 DOI: 10.1007/s00586-021-06755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess feasibility of a three-dimensional ultrashort echo time (3D-UTE)-sequence to evaluate normal and pathological disco-vertebral complex (DVC), with assessment of its different portions in a rat model of degenerative disk disease (DDD) with histological correlation. To assess whether this sequence, in comparison with long echo time T2-weighted sequence, is able to monitor DDD with differentiation of early from chronic DVC changes in pathological mechanical conditions. METHODS Five rats were induced with DDD model by percutaneous disk trituration of the tail with an 18-G needle under US-guidance and imaged at 4.7 T. MRI protocol included fat-saturated-T2 (RARE) and 3D-UTE-sequences performed at baseline (day 0. n = 5 animals /10 DVC) and each week (W) from W1 to W10 postoperatively. Visual analysis and signal intensity measurements of SNR and CNR of all DVC portions were performed on RARE and UTE images. Following killing (baseline, n = 1/2 DVC; W2, n = 2/4 DVC; W10, n = 2/4 DVC), histological analysis was performed and compared with MRI. RESULTS In normal DVC, unlike conventional RARE-sequences, 3D-UTE allowed complete identification of DVC zonal anatomy including on visual analysis and CNR measurements. In pathological conditions, SNR and CNR measurements of the annulus fibrosus and nucleus pulposus on 3D-UTE distinguished early discitis at W1 from chronic discopathy (P < 0.001 for SNR and P < 0.001 for CNR). Neither the normal complete anatomy of the DVC nor its pathological patterns could be assessed on conventional sequences. CONCLUSIONS Unlike conventional sequences, 3D-UTE enables visualization of the complete normal DVC anatomy and enables monitoring of DDD differentiating between early DVC changes from chronic ones. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
16
|
Zhang C, Gullbrand SE, Schaer TP, Lau YK, Jiang Z, Dodge GR, Elliott DM, Mauck RL, Malhotra NR, Smith LJ. Inflammatory cytokine and catabolic enzyme expression in a goat model of intervertebral disc degeneration. J Orthop Res 2020; 38:2521-2531. [PMID: 32091156 PMCID: PMC7483272 DOI: 10.1002/jor.24639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is implicated as a leading cause of low back pain. Persistent, local inflammation within the disc nucleus pulposus (NP) and annulus fibrosus (AF) is an important mediator of disc degeneration and negatively impacts the performance of therapeutic stem cells. There is a lack of validated large animal models of disc degeneration that recapitulate clinically relevant local inflammation. We recently described a goat model of disc degeneration in which increasing doses of chondroitinase ABC (ChABC) were used to reproducibly induce a spectrum of degenerative changes. The objective of this study was to extend the clinical relevance of this model by establishing whether these degenerative changes are associated with the local expression of inflammatory cytokines and catabolic enzymes. Degeneration was induced in goat lumbar discs using ChABC at different doses. After 12 weeks, degeneration severity was determined histologically and using quantitative magnetic resonance imaging (MRI). Expression levels of inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], and IL-6) and catabolic enzymes (matrix metalloproteinases-1 [MMPs-1] and 13, and a disintegrin and metalloproteinase with thrombospondin type-1 motifs-4 [ADAMTS-4]) were assessed as the percentage of immunopositive cells in the NP and AF. With the exception of MMP-1, cytokine, and enzyme expression levels were significantly elevated in ChABC-treated discs in the NP and AF. Expression levels of TNF-α, IL1-β, and ADAMTS-4 were positively correlated with histological grade, while all cytokines and ADAMTS-4 were negatively correlated with MRI T2 and T1ρ scores. These results demonstrate that degenerate goat discs exhibit elevated expression of clinically relevant inflammatory mediators, and further validate this animal model as a platform for evaluating new therapeutic approaches for disc degeneration.
Collapse
Affiliation(s)
- Chenghao Zhang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Rd, Kennett Square, PA, USA
| | - Yian Khai Lau
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Zhirui Jiang
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Robert L. Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| | - Neil R. Malhotra
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
| | - Lachlan J. Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA, Philadelphia, PA, USA
| |
Collapse
|
17
|
Basivertebral Nerve Ablation for the Treatment of Vertebrogenic Pain. Pain Ther 2020; 10:39-53. [PMID: 33128702 PMCID: PMC8119576 DOI: 10.1007/s40122-020-00211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain affects a significant portion of patients worldwide and is a major contributor to patient disability; however, it is a difficult problem to diagnose and treat. The prevailing model of chronic low back pain has presumed to follow a discogenic model, but recent studies have shown a vertebrogenic model that involves the basivertebral nerve (BVN). Radiofrequency ablation of the BVN has emerged as a possible nonsurgical therapy for vertebrogenic low back pain. The objective of this manuscript is to provide a comprehensive review of vertebrogenic pain diagnosis and our current understanding of BVN ablation as treatment.
Collapse
|
18
|
Swanson BT, Creighton D. The degenerative lumbar disc: not a disease, but still an important consideration for OMPT practice: a review of the history and science of discogenic instability. J Man Manip Ther 2020; 28:191-200. [PMID: 32364465 PMCID: PMC8550621 DOI: 10.1080/10669817.2020.1758520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A recent AAOMPT position paper was published that opposed the use of the term 'degenerative disc disease' (DDD), in large part because it appears to be a common age-related finding. While common, there are significant physiologic and biomechanical changes that occur as a result of discogenic degeneration, which are relevant to consider during the practice of manual therapy. METHODS A narrative review provides an overview of these considerations, including a historical perspective of discogenic instability, the role of the disc as a pain generator, the basic science of a combined biomechanical and physiologic cycle of degeneration and subsequent discogenic instability, the influence of rotation on the degenerative segment, the implications of these factors for manual therapy practice, and a perspective on an evidence-based treatment approach to patients with concurrent low back pain and discogenic degeneration. CONCLUSIONS As we consider the role of imaging findings such as DDD, we pose the following question: Do our manual interventions reflect the scientifically proven biomechanical aspects of DDD, or have we chosen to ignore the helpful science as we discard the harmful diagnostic label?
Collapse
Affiliation(s)
- Brian T. Swanson
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT, USA
| | | |
Collapse
|
19
|
Glaeser JD, Tawackoli W, Ju DG, Yang JH, Kanim LEA, Salehi K, Yu V, Saidara E, Vit J, Khnkoyan Z, NaPier Z, Stone LS, Bae HW, Sheyn D. Optimization of a rat lumbar IVD degeneration model for low back pain. JOR Spine 2020; 3:e1092. [PMID: 32613167 PMCID: PMC7323460 DOI: 10.1002/jsp2.1092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Intervertebral disc (IVD) degeneration is often associated with low back pain and radiating leg pain. The purpose of this study is to develop a reproducible and standardized preclinical model of painful lumbar IVD degeneration by evaluation of structural and behavioral changes in response to IVD injury with increasing needle sizes. This model can be used to develop new therapies for IVD degeneration. METHODS Forty-five female Sprague Dawley rats underwent anterior lumbar disc needle puncture at levels L4-5 and L5-6 under fluoroscopic guidance. Animals were randomly assigned to four different experimental groups: needle sizes of 18 Gauge (G), 21G, 23G, and sham control. To monitor the progression of IVD degeneration and pain, the following methods were employed: μMRI, qRT-PCR, histology, and biobehavioral analysis. RESULTS T1- and T2-weighted μMRI analysis showed a correlation between the degree of IVD degeneration and needle diameter, with the most severe degeneration in the 18G group. mRNA expression of markers for IVD degeneration markers were dysregulated in the 18G and 21G groups, while pro-nociceptive markers were increased in the 18G group only. Hematoxylin and Eosin (H&E) and Alcian Blue/Picrosirius Red staining confirmed the most pronounced IVD degeneration in the 18G group. Randall-Selitto and von Frey tests showed increased hindpaw sensitivity in the 18G group. CONCLUSION Our findings demonstrate that anterior disc injury with an 18G needle creates severe IVD degeneration and mechanical hypersensitivity, while the 21G needle results in moderate degeneration with no increased pain sensitivity. Therefore, needle sizes should be selected depending on the desired phenotype for the pre-clinical model.
Collapse
Affiliation(s)
- Juliane D. Glaeser
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Derek G. Ju
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jae H. Yang
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Orthopedic SurgeryKorea University Guro HospitalSeoulSouth Korea
| | - Linda EA Kanim
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Victoria Yu
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Evan Saidara
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jean‐Phillipe Vit
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zhanna Khnkoyan
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zachary NaPier
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Laura S. Stone
- McGill University, Faculty of DentistryAlan Edwards Centre for Research on PainMontrealCanada
| | - Hyun W. Bae
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Fischgrund JS, Rhyne A, Macadaeg K, Moore G, Kamrava E, Yeung C, Truumees E, Schaufele M, Yuan P, DePalma M, Anderson DG, Buxton D, Reynolds J, Sikorsky M. Long-term outcomes following intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 5-year treatment arm results from a prospective randomized double-blind sham-controlled multi-center study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:1925-1934. [DOI: 10.1007/s00586-020-06448-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/21/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Abstract
Background
Damaged or degenerated vertebral endplates are a significant cause of vertebrogenic chronic low back pain (CLBP). Modic changes are one objective MRI biomarker for these patients. Prior data from the treatment arm of a sham-controlled, RCT showed maintenance of clinical improvements at 2 years following ablation of the basivertebral nerve (BVN). This study reports 5-year clinical outcomes.
Methods
In total, 117 US patients were treated successfully with BVN ablation. Patient-reported outcomes of ODI, VAS, postablation treatments, and patient satisfaction were collected at a minimum of 5-years following BVN ablation. Primary outcome was mean change in ODI. Comparisons between the postablation and baseline values were made using an analysis of covariance with alpha 0.05.
Results
Of the 117 US treated patients 100 (85%) were available for review with a mean follow-up of 6.4 years (5.4–7.8 years). Mean ODI score improved from 42.81 to 16.86 at 5-year follow-up, a reduction of 25.95 points (p < 0.001). Mean reduction in VAS pain score was 4.38 points (baseline of 6.74, p < 0.001). In total, 66% of patients reported a > 50% reduction in pain, 47% reported a > 75% reduction in pain, and 34% of patients reported complete pain resolution. Composite responder rate using thresholds of ≥ 15-point ODI and ≥ 2-point VAS for function and pain at 5 years was 75%.
Conclusion
CLBP patients treated with BVN ablation exhibit sustained clinical improvements in function and pain with high responder rates at a mean of 6.4 years following treatment. BVN ablation is a durable, minimally invasive treatment for vertebrogenic CLBP.
Collapse
|
21
|
Zheng H, Wang T, Li X, He W, Gong Z, Lou Z, Wang B, Li X. LncRNA MALAT1 exhibits positive effects on nucleus pulposus cell biology in vivo and in vitro by sponging miR-503. BMC Mol Cell Biol 2020; 21:23. [PMID: 32228440 PMCID: PMC7106590 DOI: 10.1186/s12860-020-00265-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is characterized by the loss of nucleus pulposus cells (NPCs) and phenotypic abnormalities. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are involved in the pathogenesis of IDD. In this study, we aimed to investigate the functional effects of lncRNA MALAT1 on NPCs in IDD and the possible mechanism governing these effects. Results We validated the decreased expression of MALAT1 in the IDD tissues, which was associated with decreased Collagen II and Aggrecan expression. In vitro, overexpressed MALAT1 could attenuate the effect of IL-1β on NPC proliferation, apoptosis, and Aggrecan degradation. In vivo, MALAT1 overexpression attenuated the severity of disc degeneration in IDD model rats. Our molecular study further demonstrated that MALAT1 could sponge miR-503, modulate the expression of miR-503, and activate downstream MAPK signaling pathways. The effects of MALAT1 on NPCs were partially reversed/aggregated by miR-503 mimics/inhibitor treatment. Conclusion Our data suggested that the MALAT1-miR-503-MAPK pathway plays a critical role in NPCs, which may be a potential strategy for alleviating IDD.
Collapse
Affiliation(s)
- Hongyu Zheng
- Department of Emergency Medical, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tingting Wang
- Department of Geriatrics, Yan' An Hospital of Kunming City, Kunming, China
| | - Xiangmin Li
- Department of Panicaceae, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei He
- Department of Orthopedics, Qianjiang Central Hospital, Qianjiang, China
| | - Zhiqiang Gong
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan, China
| | - Zhenkai Lou
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan, China
| | - Xingguo Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan, China.
| |
Collapse
|
22
|
3rd International workshop on spinal loading and deformation. J Biomech 2020; 102:109627. [DOI: 10.1016/j.jbiomech.2020.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/23/2022]
|
23
|
Järvinen J, Niinimäki J, Karppinen J, Takalo R, Haapea M, Tervonen O. Does bone scintigraphy show Modic changes associated with increased bone turnover? Eur J Radiol Open 2020; 7:100222. [PMID: 32071952 PMCID: PMC7013126 DOI: 10.1016/j.ejro.2020.100222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Our purpose was to evaluate whether Modic changes (MC) revealed in lumbar MRI are associated with increased tracer uptake shown in bone scintigraphy. To our knowledge, this has not previously been studied. Methods We included patients with MC shown in lumbar MRI and bone scintigraphy performed within six months before or after MRI. Exclusion criteria included metastasis and other specific lesions in the area of interest such as discitis, tumors or fractures. We compared the level and type of MC to the degree of tracer uptake shown in bone scintigraphy. Tracer uptake was assessed both visually and quantitatively. We calculated the lesion-to-normal-bone ratios between the MC area with increased tracer uptake and the vertebra with normal tracer uptake. We used linear mixed models in statistical analyses. Results Our study sample consisted of 93 patients (aged 37-86) with 299 MC (28 Type 1 (M1), 50 mixed Type 1/2 (M1/2), 3 mixed Type 1/3 (M1/3), 211 Type 2 (M2), 6 mixed Type 2/3 (M2/3), and 1 Type 3 (M3)). Of all the MC, 26 (93 %) M1, 34 (64 %) in the combined M1/2 and M1/3 group, and 11 (5 %) in the combined M2, M2/3 and M3 group showed increased tracer uptake. The mean lesion-to-normal-bone ratio was higher for lesions with a Type 1 component (M1, M1/2 and M1/3) than for other types, at 1.55 (SD 0.16) for M1; 1.44 (SD 0.21) for combined M1/2 and M1/3; and 1.28 (SD 0.11) for combined M2, M2/3 and M3; p = 0.001). Conclusion In most cases, MC with a Type 1 component showed increased tracer uptake in bone scintigraphy. This indicates that bone turnover is accelerated in the M1 area.
Collapse
Key Words
- 99mTc, 99mTechnetium
- 99mTc-HDP, 99m Technetium-labeled hydroxymethylene diphosphonate
- Bone scintigraphy
- Bone turnover
- ICC, intraclass correlation coefficients
- LBP, low back pain
- M1, Type 1 Modic change
- M1/2, Type 1/2 mixed Modic change
- M1/3, Type 1/3 mixed Modic change
- M2, Type 2 Modic change
- M2/3, Type 2/3 mixed Modic change
- M3, Type 3 Modic change
- MC, Modic changes
- MRI, magnetic resonance imaging
- Magnetic resonance imaging
- Modic changes
- SPECT, single photon emission computed tomography
- κ, Cohen’s kappa
Collapse
Affiliation(s)
- Jyri Järvinen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Jaakko Niinimäki
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Finnish Institute of Occupational Health, Oulu, Finland
| | - Reijo Takalo
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Marianne Haapea
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Osmo Tervonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Lorio M, Clerk-Lamalice O, Beall DP, Julien T. International Society for the Advancement of Spine Surgery Guideline-Intraosseous Ablation of the Basivertebral Nerve for the Relief of Chronic Low Back Pain. Int J Spine Surg 2020; 14:18-25. [PMID: 32128298 PMCID: PMC7043835 DOI: 10.14444/7002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This International Society for the Advancement of Spine Surgery guideline is generated to respond to growing requests for background, supporting literature and evidence, and proper coding for intraosseous ablation of the basivertebral nerve for chronic low back pain.
Collapse
Affiliation(s)
- Morgan Lorio
- Advanced Orthopedics, Altamonte Springs, Florida
| | | | | | | |
Collapse
|
25
|
Liu JW, Piersma S, Tang SY. The age-dependent effect of high-dose X-ray radiation on NFκB signaling, structure, and mechanical behavior of the intervertebral disc. Connect Tissue Res 2020; 61:399-408. [PMID: 31875721 PMCID: PMC7190425 DOI: 10.1080/03008207.2019.1703963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Ionizing radiation damages tissue and provokes inflammatory responses in multiple organ systems. We investigated the effects of high-dose X-ray radiation on the molecular inflammation and mechanical function of the intervertebral disc (IVD).Methods: Functional spine units (FSUs) containing the vertebrae-IVDs-vertebrae structure extracted from 1-month, 6-month, and 16-month-old NFκB-luciferase reporter mice and from 6-month-old myeloid differentiation factor 88 (MyD88)-null mice. After a preconditioning period in culture, the FSUs were subjected a single dose of ionizing X-ray radiation at 20 Gys, and then NFκB expression was monitored. The IVDs were then subjected to mechanical testing using dynamic compression, glycosaminoglycan (GAG) quantification, and histological analyses.Results: In the 1-month-old FSUs, the NFκB-driven luciferase activity was significantly elevated for 1 day following the exposure to radiation. The 6-month-old FSUs showed increased NFκB activity for 3 days, while the 16-month-old FSUs sustained elevated levels of NFκB activity throughout the 10-day culture period. All irradiated groups showed significant loss of disc height, GAG content, mechanical function and changes in structure. Ablation of MyD88 blunted the radiation-mediated NFκB signaling, and preserved GAG content, and the IVDs' structure and mechanical performance.Conclusions: These results suggest that high-dose radiation affects the IVDs' NFκB-dependent inflammatory processes that subsequently lead to functional deterioration. Blocking the transactivation potential of NFκB via MyD88 ablation preserved the structure and mechanical function of the FSUs. The long-term effects of radiation on IVD homeostasis should be considered in individuals susceptible to occupational and medical exposure.
Collapse
Affiliation(s)
- Jennifer W. Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Sytse Piersma
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Simon Y. Tang
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Materials Science and Mechanical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| |
Collapse
|
26
|
Chan AK, Tang X, Mummaneni NV, Coughlin D, Liebenberg E, Ouyang A, Dudli S, Lauricella M, Zhang N, Waldorff EI, Ryaby JT, Lotz JC. Pulsed electromagnetic fields reduce acute inflammation in the injured rat-tail intervertebral disc. JOR Spine 2019; 2:e1069. [PMID: 31891118 PMCID: PMC6920683 DOI: 10.1002/jsp2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023] Open
Abstract
Pro-inflammatory cytokines are recognized contributors to intervertebral disc (IVD) degeneration and discogenic pain. We have recently reported the anti-inflammatory effect of pulsed electromagnetic fields (PEMF) on IVD cells in vitro. Whether these potentially therapeutic effects are sufficiently potent to influence disc health in vivo has not been demonstrated. We report here the effect of PEMF on acute inflammation arising from a rat-tail IVD injury model. Disc degeneration was induced by percutaneously stabbing the Co6-7, Co7-8, and Co8-9 levels using a 20-gauge needle. Seventy-two (72) rats were divided into three groups: sham control, needle stab, needle stab+PEMF. Treated rats were exposed to PEMF immediately following surgery and for either 4 or 7 days (4 hr/d). Stab and PEMF effects were evaluated by measuring inflammatory cytokine gene expression (RT-PCR) and protein levels (ELISA assay), anabolic and catabolic gene expression (RT-PCR), and histologic changes. We observed in untreated animals that at day 7 after injury, inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor α, and IL-1β) were significantly increased at both gene and protein levels (P < .05). Similarly, catabolic factors (MMP [metalloproteinases]-2, MMP-13 and the transcriptional factor NF-kβ gene expression) were significantly increased (P < .05). At day 7, PEMF treatment significantly inhibited inflammatory cytokine gene and protein expression induced by needle stab injury (P < .05). At day 4, PEMF downregulated FGF-1 and upregulated MMP-2 compared to the stab-only group. These data demonstrate that previously reported anti-inflammatory effects of PEMF on disc cells carry over to the in vivo situation, suggesting potential therapeutic benefits. Though we observed an inhibitory effect of PEMF on acute inflammatory cytokine expression, a consistent effect was not observed for acute changes in disc histology and anabolic and catabolic factor expression. Therefore, these findings should be further investigated in studies of longer duration following needle-stab injury.
Collapse
Affiliation(s)
- Andrew K. Chan
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCalifornia
| | - Xinyan Tang
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Nikhil V. Mummaneni
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Dezba Coughlin
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Ellen Liebenberg
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Annie Ouyang
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Stefan Dudli
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Michael Lauricella
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | | | | | | | - Jeffrey C. Lotz
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
27
|
Pulsed Electromagnetic Fields Reduce Interleukin-6 Expression in Intervertebral Disc Cells Via Nuclear Factor-κβ and Mitogen-Activated Protein Kinase p38 Pathways. Spine (Phila Pa 1976) 2019; 44:E1290-E1297. [PMID: 31689248 DOI: 10.1097/brs.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This is an in vitro study of bovine disc cells exposed to pulsed electromagnetic fields. OBJECTIVE The purpose of the present study was to investigate whether pulsed electromagnetic fields (PEMF) effects on the expression of interleukin-6 (IL-6) expression is mediated by two known inflammation regulators, nuclear factor-κB (NF-κβ) and phosphorylated mitogen-activated protein kinase p38 (p38-MAPK) signaling pathways SUMMARY OF BACKGROUND DATA.: Inflammatory cytokines play a dominant role in the pathogenesis of disc degeneration. Increasing evidence showed that PEMF, a noninvasive biophysical stimulation, can have physiologically beneficial effects on inflammation and tissue repair. Our previous research shows that PEMF treatment can reduce IL-6 expression by intervertebral disc cells. However, the underlying mechanisms of PEMF action are yet to be uncovered. METHODS Intervertebral disc nuclear pulposus cells were challenged with interleukin-1α (IL-1α) (for mimicking inflammatory microenvironment) and treated with PEMF simultaneously up to 4 hours. Cells were then collected for NF-κβ and phosphorylated p38-MAPK protein detection with Western blot. Additionally, the RelA (p65) subunit of NF-κβ was examined with immunostaining for assessment of NF-κβ activation. RESULTS As expected, Western blot results showed that both NF-κβ and phosphorylated p38 expression were significantly increased by IL-1α treatment. This induction was significantly inhibited to control condition levels by PEMF treatment. Immunostaining demonstrated similar trends, that PEMF treatment reduced the NF-κβ activation induced by IL-1α exposure. CONCLUSION Our data indicate that the previously-reported inhibitory effect of PEMF treatment on disc inflammation is mediated by NF-κβ and phosphorylated p38-MAPK signaling pathways. These results further establish PEMFs anti-inflammatory activity, and may inform potential future clinical uses for management of inflammation associated with disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Lai A, Ho L, Evashwick-Rogler TW, Watanabe H, Salandra J, Winkelstein BA, Laudier D, Hecht AC, Pasinetti GM, Iatridis JC. Dietary polyphenols as a safe and novel intervention for modulating pain associated with intervertebral disc degeneration in an in-vivo rat model. PLoS One 2019; 14:e0223435. [PMID: 31577822 PMCID: PMC6774529 DOI: 10.1371/journal.pone.0223435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/21/2019] [Indexed: 01/08/2023] Open
Abstract
Developing effective therapies for back pain associated with intervertebral disc (IVD) degeneration is a research priority since it is a major socioeconomic burden and current conservative and surgical treatments have limited success. Polyphenols are naturally occurring compounds in plant-derived foods and beverages, and evidence suggests dietary supplementation with select polyphenol preparations can modulate diverse neurological and painful disorders. This study tested whether supplementation with a select standardized Bioactive-Dietary-Polyphenol-Preparation (BDPP) may alleviate pain symptoms associated with IVD degeneration. Painful IVD degeneration was surgically induced in skeletally-mature rats by intradiscal saline injection into three consecutive lumbar IVDs. Injured rats were given normal or BDPP-supplemented drinking water. In-vivo hindpaw mechanical allodynia and IVD height were assessed weekly for 6 weeks following injury. Spinal column, dorsal-root-ganglion (DRG) and serum were collected at 1 and 6 weeks post-operative (post-op) for analyses of IVD-related mechanical and biological pathogenic processes. Dietary BDPP significantly alleviated the typical behavioral sensitivity associated with surgical procedures and IVD degeneration, but did not modulate IVD degeneration nor changes of pro-inflammatory cytokine levels in IVD. Gene expression analyses suggested BDPP might have an immunomodulatory effect in attenuating the expression of pro-inflammatory cytokines in DRGs. This study supports the idea that dietary supplementation with BDPP has potential to alleviate IVD degeneration-related pain, and further investigations are warranted to identify the mechanisms of action of dietary BDPP.
Collapse
Affiliation(s)
- Alon Lai
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - Thomas W. Evashwick-Rogler
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Jonathan Salandra
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Damien Laudier
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
29
|
Mosley GE, Hoy RC, Nasser P, Kaseta T, Lai A, Evashwick-Rogler TW, Lee M, Iatridis JC. Sex Differences in Rat Intervertebral Disc Structure and Function Following Annular Puncture Injury. Spine (Phila Pa 1976) 2019; 44:1257-1269. [PMID: 30973506 PMCID: PMC6722021 DOI: 10.1097/brs.0000000000003055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A rat puncture injury intervertebral disc (IVD) degeneration model with structural, biomechanical, and histological analyses. OBJECTIVE To determine if males and females have distinct responses in the IVD after injury. SUMMARY OF BACKGROUND DATA Low back pain (LBP) and spinal impairments are more common in women than men. However, sex differences in IVD response to injury have been underexplored, particularly in animal models where sex differences can be measured without gender confounds. METHODS Forty-eight male and female Sprague Dawley rats underwent sham, single annular puncture with tumor necrosis factor α (TNFα) injection (1×), or triple annular puncture with TNFα injection (3×) surgery. Six weeks after surgery, lumbar IVDs were assessed by radiologic IVD height, spinal motion segment biomechanical testing, histological degeneration grading, second harmonic generation (SHG) imaging, and immunofluorescence for fibronectin and α-smooth muscle actin. RESULTS Annular puncture injuries significantly increased degenerative grade and IVD height loss for males and females, but females had increased degeneration grade particularly in the annulus fibrosus (AF). Despite IVD height loss, biomechanical properties were largely unaffected by injury at 6 weeks. However, biomechanical measures sensitive to outer AF differed by sex after 3× injury-male IVDs had greater torsional stiffness, torque range, and viscoelastic creep responses. SHG intensity of outer AF was reduced after injury only in female IVDs, suggesting sex differences in collagen remodeling. Both males and females exhibited decreased cellularity and increased fibronectin expression at injury sites. CONCLUSION IVD injury results in distinct degeneration and functional healing responses between males and females. The subtle sex differences identified in this animal model suggest differences in response to IVD injury that might explain some of the variance observed in human LBP, and demonstrate the need to better understand differences in male and female IVD degeneration patterns and pain pathogenesis. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Grace E. Mosley
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert C. Hoy
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Philip Nasser
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Timothy Kaseta
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alon Lai
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Michael Lee
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James C. Iatridis
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
30
|
Fischgrund JS, Rhyne A, Franke J, Sasso R, Kitchel S, Bae H, Yeung C, Truumees E, Schaufele M, Yuan P, Vajkoczy P, Depalma M, Anderson DG, Thibodeau L, Meyer B. Intraosseous Basivertebral Nerve Ablation for the Treatment of Chronic Low Back Pain: 2-Year Results From a Prospective Randomized Double-Blind Sham-Controlled Multicenter Study. Int J Spine Surg 2019; 13:110-119. [PMID: 31131209 DOI: 10.14444/6015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The purpose of the present study is to report the 2-year clinical outcomes for chronic low back pain (CLBP) patients treated with radiofrequency (RF) ablation of the basivertebral nerve (BVN) in a randomized controlled trial that previously reported 1-year follow up. Methods A total of 147 patients were treated with RF ablation of the BVN in a randomized controlled trial designed to demonstrate safety and efficacy as part of a Food and Drug Administration-Investigational Device Exemption trial. Evaluations, including patient self-assessments, physical and neurological examinations, and safety assessments, were performed at 2 and 6 weeks, and 3, 6, 12, 18, and 24 months postoperatively. Participants randomized to the sham control arm were allowed to cross to RF ablation at 12 months. Due to a high rate of crossover, RF ablation treated participants acted as their own control in a comparison to baseline for the 24-month outcomes. Results Clinical improvements in the Oswestry Disability Index (ODI), Visual Analog Scale (VAS), and the Medical Outcomes Trust Short-Form Health Survey Physical Component Summary were statistically significant compared to baseline at all follow-up time points through 2 years. The mean percent improvements in ODI and VAS compared to baseline at 2 years were 53.7 and 52.9%, respectively. Responder rates for ODI and VAS were also maintained through 2 years with patients showing clinically meaningful improvements in both: ODI ≥ 10-point improvement in 76.4% of patients and ODI ≥ 20-point improvement in 57.5%; VAS ≥ 1.5 cm improvement in 70.2% of patients. Conclusions Patients treated with RF ablation of the BVN for CLBP exhibited sustained clinical benefits in ODI and VAS and maintained high responder rates at 2 years following treatment. Basivertebral nerve ablation appears to be a durable, minimally invasive treatment for the relief of CLBP.
Collapse
Affiliation(s)
- Jeffrey S Fischgrund
- Department of Orthopedic Surgery, Oakland University, William Beaumont School of Medicine, Royal Oak, Michigan
| | - Alfred Rhyne
- OrthoCarolina Spine Center, Charlotte, North Carolina
| | - Jörg Franke
- Department of Orthopedics-Spine and Pediatric Orthopedics, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Rick Sasso
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Hyun Bae
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, California
| | | | - Eeric Truumees
- Seton Brain & Spine Institute, Department of Surgery, Dell Medical School, Seton Spine & Scoliosis Center, Austin, Texas
| | | | - Philip Yuan
- Department of Surgery, Long Beach Memorial Medical Center, Long Beach, California
| | - Peter Vajkoczy
- Department of Neurosugery, Charité Universitätsmedizin, Berlin Campus, Virchow Medical Center, Berlin, Germany
| | | | - David G Anderson
- Department of Orthopaedic and Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Bernhard Meyer
- Direktor der Neurochirurgische Klinik und Poliklinik, Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
31
|
Biomechanical test protocols to detect minor injury effects in intervertebral discs. J Mech Behav Biomed Mater 2019; 95:13-20. [PMID: 30947120 DOI: 10.1016/j.jmbbm.2019.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/26/2019] [Accepted: 03/22/2019] [Indexed: 01/21/2023]
Abstract
Intervertebral discs (IVDs) maintain flexibility of the spine and bear mechanical load. Annulus fibrosus (AF) defects are associated with IVD degeneration and herniation which disrupt biomechanical function and can cause pain. AF puncture injuries can induce IVD degeneration but are needed to inject therapies. Identifying small AF defects with biomechanical testing can be difficult because IVDs have a complex, composite structure and nonlinear biomechanical properties that are dependent on AF fiber tension. It remains unclear how choice of biomechanical testing protocols affect the sensitivity of biomechanical properties to AF injuries. This study determined whether axial preload or magnitude of cyclic axial or torsional testing affected the ability to detect minor AF defects in rat caudal motion segments using ex vivo biomechanical testing. Intact and injured motion segments were subjected to a repeated measures study design with multiple biomechanical testing protocols that varied axial tension-compression force amplitude (±1.6 N, ±8.0 N, ±16.0 N), axial preload (-1.6 N, -8.0 N, -16.0 N, corresponding to -0.1 MPa, -0.5 MPa, and -1.0 MPa, respectively), and torsional rotation angle (±10°, ±15°, and ±20°). Biomechanical properties obtained from the lowest force testing conditions for axial tension-compression (±1.6 N), axial preload (-1.6 N), and angular rotation (±10°) exhibited the largest differences in biomechanical properties between intact and injured conditions. Biomechanical properties determined under low axial force or torsion amplitudes involve less AF fiber tension and were most sensitive to injury. Low force testing protocols are recommended for detecting minor structural AF defects and may enable more precise assessments of IVD injuries, healing or repair.
Collapse
|
32
|
Krug R, Joseph GB, Han M, Fields A, Cheung J, Mundada M, Bailey J, Rochette A, Ballatori A, McCulloch CE, McCormick Z, O'Neill C, Link TM, Lotz J. Associations between vertebral body fat fraction and intervertebral disc biochemical composition as assessed by quantitative MRI. J Magn Reson Imaging 2019; 50:1219-1226. [PMID: 30701594 DOI: 10.1002/jmri.26675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is an interplay between the intervertebral disc (IVD) and the adjacent bone marrow that may play a role in the development of IVD degeneration and might influence chronic lower back pain (CLBP). PURPOSE To apply novel quantitative MRI techniques to assess the relationship between vertebral bone marrow fat (BMF) and biochemical changes in the adjacent IVD. STUDY TYPE Prospective. SUBJECTS Forty-six subjects (26 female and 20 male) with a mean age of 47.3 ± 12.0 years. FIELD STRENGTH/SEQUENCE 3 T MRI; a combined T1ρ and T2 mapping pulse sequence and a 3D spoiled gradient recalled sequence with six echoes and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) reconstruction algorithm. ASSESSMENT Using quantitative MRI, the vertebral BMF fraction was measured as well as the biochemical composition (proteoglycan and collagen content) of the IVD. Furthermore, clinical Pfirrmann grading, Oswestry disability index (ODI), and visual analog scale (VAS) was assessed. STATISTICAL TESTS Mixed random effects models accounting for multiple measurements per subject were used to assess the relationships between disc measurements and BMF. RESULTS The relationships between BMF (mean) and T1ρ /T2 (mean and SD) were significant, with P < 0.05. Significant associations (P < 0.001) were found between clinical scores (Pfirrmann, ODI, and VAS) with T1ρ /T2 (mean and SD). BMF mean was significantly related to ODI (P = 0.037) and VAS (P = 0.043), but not with Pfirrmann (P = 0.451). In contrast, BMF SD was significantly related to Pfirrmann (P = 0.000) but not to ODI (P = 0.064) and VAS (P = 0.13). DATA CONCLUSION Our study demonstrates significant associations between BMF and biochemical changes in the adjacent IVD, both assessed by quantitative MRI; this may suggest that the conversion of hematopoietic bone marrow to fatty bone marrow impairs the supply of available nutrients to cells in the IVD and may thereby accelerate disc degeneration. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:1219-1226.
Collapse
Affiliation(s)
- Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Gabrielle B Joseph
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Misung Han
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Aaron Fields
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Justin Cheung
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Maya Mundada
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeannie Bailey
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Alice Rochette
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Alexander Ballatori
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Zachary McCormick
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Conor O'Neill
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Lotz
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Rustenburg CM, Emanuel KS, Peeters M, Lems WF, Vergroesen PA, Smit TH. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine 2018; 1:e1033. [PMID: 31463450 PMCID: PMC6686805 DOI: 10.1002/jsp2.1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.
Collapse
Affiliation(s)
- Christine M.E. Rustenburg
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Kaj S. Emanuel
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirte Peeters
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Willem F. Lems
- Department of RheumatologyAmsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Theodoor H. Smit
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
34
|
Shi C, Das V, Li X, Kc R, Qiu S, O-Sullivan I, Ripper RL, Kroin JS, Mwale F, Wallace AA, Zhu B, Zhao L, van Wijnen AJ, Ji M, Lu J, Votta-Velis G, Yuan W, Im HJ. Development of an in vivo mouse model of discogenic low back pain. J Cell Physiol 2018; 233:6589-6602. [PMID: 29150945 DOI: 10.1002/jcp.26280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022]
Abstract
Discogenic low back pain (DLBP) is extremely common and costly. Effective treatments are lacking due to DLBP's unknown pathogenesis. Currently, there are no in vivo mouse models of DLBP, which restricts research in this field. The aim of this study was to establish a reliable DLBP model in mouse that captures the pathological changes in the disc and allows longitudinal pain testing. The model was generated by puncturing the mouse lumbar discs (L4/5, L5/6, and L6/S1) and removing the nucleus pulposus using a microscalpel under the microscope. Histology, molecular pathways, and pain-related behaviors were examined. Over 12 weeks post-surgery, animals displayed the mechanical, heat, and cold hyperalgesia along with decreased burrowing and rearing. Histology showed progressive disc degeneration with loss of disc height, nucleus pulposus reduction, proteoglycan depletion, and annular fibrotic disorganization. Immunohistochemistry revealed a substantial increase in inflammatory mediators at 2 and 4 weeks. Nerve growth factor was upregulated from 2 weeks to the end of the experiment. Nerve fiber ingrowth was induced in the injured discs after 4 weeks. Disc-puncture also produced an upregulation of neuropeptides in dorsal root ganglia neurons and an activation of glial cells in the spinal cord dorsal horn. These findings indicate that the cellular and structural changes in discs, as well as peripheral and central nervous system plasticity, paralleled persistent, and robust behavioral pain responses. Therefore, this mouse DLBP model could be used to investigate mechanisms underlying discogenic pain, thereby facilitating effective drug screening and development of treatments for DLBP.
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Vaskar Das
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Sujun Qiu
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
- Department of Orthopedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - InSug O-Sullivan
- Department of Internal Medicine, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Richard L Ripper
- Department of Anesthesiology, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois
| | - Fackson Mwale
- Department of Surgery, McGill University and Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Atiyayein A Wallace
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Bingqian Zhu
- Department of Biobehavioral Health Science, The University of Illinois at Chicago (UIC), Chicago, Illinois
| | - Lan Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | | | - Mingliang Ji
- Department of Orthopaedic Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Southeast University Zhongda Hospital, Nanjing, China
| | - Gina Votta-Velis
- Department of Anesthesiology, The University of Illinois at Chicago (UIC), Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois
| | - Wen Yuan
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois
- Department of Bioengineering, The University of Illinois at Chicago (UIC), Chicago, Illinois
| |
Collapse
|
35
|
Disc cell therapy with bone-marrow-derived autologous mesenchymal stromal cells in a large porcine disc degeneration model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2639-2649. [PMID: 30141058 DOI: 10.1007/s00586-018-5728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/09/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Disc regeneration through matrix-assisted autologous mesenchymal stromal cell therapy seems promising against disc degeneration with convincing results in small animal models. Whether these positive results can be transferred to larger animal models or humans is unclear. METHODS Fibrin matrix-assisted autologous bone-marrow-derived mesenchymal stromal cell therapy was compared to acellular fibrin matrix therapy in a porcine in vivo model. First, disc degeneration was induced by annular puncture and partial nucleotomy with a large 16G-needle, and 12 weeks later, disc therapy was performed in a second surgery with a thinner 26G needle. Seventy-two lumbar discs from 12 aged adult pigs were evaluated by histology, micro-CT, and gene expression analysis 13 and 24 weeks after nucleotomy and 1 and 12 weeks after treatment, respectively. RESULTS Radiologic disc height was not significantly different in both treatment groups. In the semi-quantitative histologic degeneration score, significant disc degeneration was still evident 1 week after treatment both in the mesenchymal stromal cell group and in the acellular fibrin matrix group. 12 weeks after treatment, degeneration was, however, not further increased and mesenchymal-stromal-cell-treated discs showed significantly less disc degeneration in the annulus fibrosus (p = 0.02), whereas reduction in the nucleus pulposus did not reach statistical significance. Cell treatment compared to matrix alone found less Col1 gene expression as a marker for fibrosis and more expression of the trophic factor BMP2 in the nucleus pulposus, whereas the inflammation marker IL1ß was reduced in the annulus fibrosus. CONCLUSIONS Disc treatment with fibrin matrix-assisted autologous mesenchymal stromal cells reduced degenerative findings compared to acellular fibrin matrix alone. Regenerative changes, however, were not significant for all parameters showing limitations in a large biomechanically demanding model with aged discs. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
36
|
Periprosthetic Joint Infection Does Not Preclude Good Outcomes after a Revision Total Knee Arthroplasty: A 7-Year Follow-Up Study of 144 Retrospective Cases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2582140. [PMID: 30159324 PMCID: PMC6109570 DOI: 10.1155/2018/2582140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/08/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
Abstract
Background and Purpose Debate exists on whether septic revision total knee arthroplasty (TKA) results in inferior clinical outcomes, and limited information is available regarding the factors associated with such outcomes. This study aimed to (1) compare clinical outcomes and characteristics of aseptic versus septic revision TKA and (2) identify the risk factors associated with inferior clinical outcomes. Methods We retrospectively reviewed 144 revision TKAs (90 aseptic and 54 septic revisions) that were followed for a minimum of 3 years (mean = 7 years). Clinical outcome data, namely, Knee Society knee and function scores and the Hospital for Special Surgery knee score, were collected. We reviewed 13 pre- and intraoperative variables. Results Postoperative clinical outcomes were inferior in septic revision surgeries (p<0.05). In regression analyses, however, septic revision was not an independent risk factor for poor clinical outcomes. The independent risk factors for poor outcome were identified where Anderson Orthopedic Research Institute grade 3 femoral and tibial bone defects, more than three surgeries, and treatment for persistent infection were associated with inferior clinical outcomes (all p<0.05). Standard two-stage septic revision without grade 3 bone defects or additional surgeries showed comparable outcomes to aseptic revision. Interpretation Clinical outcomes of septic revision were inferior to those of aseptic revision. However, poor outcomes were mainly associated with large bone defects and an increased number of surgeries. The outcomes of aseptic and septic revision surgery were similar when patients with larger bone defects and more than three surgeries were excluded.
Collapse
|
37
|
Yang H, Tian W, Wang S, Liu X, Wang Z, Hou L, Ge J, Zhang X, He Z, Wang X. TSG-6 secreted by bone marrow mesenchymal stem cells attenuates intervertebral disc degeneration by inhibiting the TLR2/NF-κB signaling pathway. J Transl Med 2018; 98:755-772. [PMID: 29483622 DOI: 10.1038/s41374-018-0036-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation has been correlated with intervertebral disc degeneration (IDD). Recent evidence suggests that TNF-α-stimulated gene 6 protein (TSG-6) secreted by bone marrow mesenchymal stem cells (BMSCs) displays a remarkable ability to inhibit inflammatory processes in a variety of diseases. However, it is unknown whether BMSCs exert their therapeutic effect against IDD by secreting TSG-6. Here we investigated the effects of BMSCs and TSG-6 on IDD and explored the possible underlying mechanisms in vitro and in vivo. We found that BMSCs and TSG-6 reduced the expression of MMP-3 and MMP-13, and increased the expression of collagen II and aggrecan in the IL-1β-treated nucleus pulposus cells (NPCs), but the protective effects of BMSCs and TSG-6 were attenuated when TSG-6 expression was silenced. We also found that the activation of the TLR2/NF-κB pathway was inhibited by BMSCs and TSG-6. The levels of IL-6 and TNF-α in the degenerated NPCs were reduced and the proliferation of IL-1β-treated NPCs was increased in the presence of BMSCs and TSG-6. Furthermore, in vivo experiments showed that BMSCs and TSG-6 restored the MRI T2-weighted signal intensity and increased collagen II and aggrecan expression in the degenerated nucleus pulposus (NP) tissues. Finally, our results showed that BMSCs and TSG-6 downregulated the TLR2/NF-κB signaling and reduced the expression of MMPs and inflammatory cytokines in the degenerated NP tissues. The present study is the first to demonstrate the involvement of TLR2/NF-κB pathway in the potential anti-IDD therapeutic effect of TSG-6, and the results provide new insight into the beneficial effect of BMSCs in the treatment of IDD.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weitian Tian
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaocheng Wang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaohua Liu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhankui Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lei Hou
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiaxi Ge
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Zhang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiangrui Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
38
|
Ford JJ, Richards MC, Surkitt LD, Chan AYP, Slater SL, Taylor NF, Hahne AJ. Development of a Multivariate Prognostic Model for Pain and Activity Limitation in People With Low Back Disorders Receiving Physiotherapy. Arch Phys Med Rehabil 2018; 99:2504-2512.e12. [PMID: 29852152 DOI: 10.1016/j.apmr.2018.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/19/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify predictors for back pain, leg pain, and activity limitation in patients with early persistent low back disorders (LBDs). DESIGN Prospective inception cohort study. SETTING Primary care private physiotherapy clinics in Melbourne, Australia. PARTICIPANTS Individuals (N=300) aged 18-65 years with low back and/or referred leg pain of ≥6 weeks and ≤6 months duration. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Numeric rating scales for back pain and leg pain as well as the Oswestry Disability Scale. RESULTS Prognostic factors included sociodemographics, treatment related factors, subjective/physical examination, subgrouping factors, and standardized questionnaires. Univariate analysis followed by generalized estimating equations were used to develop a multivariate prognostic model for back pain, leg pain, and activity limitation. Fifty-eight prognostic factors progressed to the multivariate stage where 15 showed significant (P<.05) associations with at least 1 of the 3 outcomes. There were 5 indicators of positive outcome (2 types of LBD subgroups, paresthesia below waist, walking as an easing factor, and low transversus abdominis tone) and 10 indicators of negative outcome (both parents born overseas, deep leg symptoms, longer sick leave duration, high multifidus tone, clinically determined inflammation, higher back and leg pain severity, lower lifting capacity, lower work capacity, and higher pain drawing percentage coverage). The preliminary model identifying predictors of LBDs explained up to 37% of the variance in outcome. CONCLUSIONS This study evaluated a comprehensive range of prognostic factors reflective of both the biomedical and psychosocial domains of LBDs. The preliminary multivariate model requires further validation before being considered for clinical use.
Collapse
Affiliation(s)
- Jon J Ford
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia.
| | - Matt C Richards
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Luke D Surkitt
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Alexander Y P Chan
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Sarah L Slater
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Nicholas F Taylor
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Hahne
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
39
|
Evashwick-Rogler TW, Lai A, Watanabe H, Salandra JM, Winkelstein BA, Cho SK, Hecht AC, Iatridis JC. Inhibiting tumor necrosis factor-alpha at time of induced intervertebral disc injury limits long-term pain and degeneration in a rat model. JOR Spine 2018; 1. [PMID: 29963655 PMCID: PMC6022768 DOI: 10.1002/jsp2.1014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Painful intervertebral disc (IVD) degeneration has tremendous societal costs and few effective therapies. Intradiscal tumor necrosis factor‐alpha (TNFα) is commonly associated with low back pain, but the direct relationship remains unclear. Purpose Treatment strategies for low back pain require improved understanding of the complex relationships between pain, intradiscal pro‐inflammatory cytokines, and structural IVD degeneration. A rat in vivo lumbar IVD puncture model was used to 1) determine the role of TNFα in initiating painful IVD degeneration, and 2) identify statistical relationships between painful behavior, IVD degeneration, and intradiscal pro‐inflammatory cytokine expression. Methods Lumbar IVDs were punctured anteriorly and injected with TNFα, anti‐TNFα, or saline and compared with sham and naive controls. Hindpaw mechanical hyperalgesia was assayed weekly to determine pain over time. 6‐weeks post‐surgery, animals were sacrificed, and IVD degeneration, IVD height, and intradiscal TNFα and interleukin‐1 beta (IL‐1β) expressions were assayed. Results Intradiscal TNFα injection increased pain and IVD degeneration whereas anti‐TNFα alleviated pain to sham level. Multivariate step‐wise linear regression identified pain threshold was predicted by IVD degeneration and intradiscal TNFα expression. Pain threshold was also linearly associated with IVD height loss and IL‐1β. Discussion The significant associations between IVD degeneration, height loss, inflammation, and painful behavior highlight the multifactorial nature of painful IVD degeneration and the challenges to diagnose and treat a specific underlying factor. We concluded that TNFα is an initiator of painful IVD degeneration and its early inhibition can mitigate pain and degeneration. Intradiscal TNFα inhibition following IVD injury may warrant investigation for its potential to alter downstream painful IVD degeneration processes.
Collapse
Affiliation(s)
- Thomas W Evashwick-Rogler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hironobu Watanabe
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York.,Keiyu Spine Center, Keiyu Orthopedic Hospital, Tatebayashi, Japan
| | - Jonathan M Salandra
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Beth A Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel K Cho
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
40
|
The influence of spinal-pelvic parameters on the prevalence of endplate Modic changes in degenerative thoracolumbar/lumbar kyphosis patients. PLoS One 2018; 13:e0197470. [PMID: 29763470 PMCID: PMC5953463 DOI: 10.1371/journal.pone.0197470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
Background The typical degeneration of the vertebral endplate shown in MRI imaging is Modic change. The aim of this study was to observe the distribution of the Modic changes of vertebral endplate in degenerative thoracolumbar/lumbar kyphosis (DTK/LK) patients and analyse the correlation between spinal-pelvic parameters and Modic changes. Methods The imaging data of 58 patients diagnosed with DTK/LK (coronal Cobb angle<10°with sagittal imbalance) in our hospital from March 2016 to May 2017 were reviewed retrospectively. Observe the prevalence, type and distribution characteristics of Modic changes occurred at the vertebral endplate from T10 to S1;analyse the correlation between Modic changes and disc degeneration, the sagittal vertical axis (SVA), thoracic kyphosis (TK), thoracolumbar kyphosis (TLK), lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT) and pelvic incidence (PI). Results Of the 928 intervertebral endplates from 58 patients, Modic changes occurred at 90 endplates (9.7%) of 30 patients (51.7%). 5 endplates (0.5%) of 3 patients (5.2%) were classified as type I, 68 endplates (7.3%) of 25 patients (43.1%) as type II, 17 endplates (1.8%) of 9 patients (15.5%) as type III. The location of the degenerative endplates: 2 (2.2%) superior and inferior endplates of L1, 3 (3.3%) inferior endplates of T11and T12, 4 (4.4%) superior endplates of L2, 6 (6.7%) inferior endplates of L2 and L4, 8 (8.9%) superior endplates of S1, 9 (10%) superior endplates of L3, 11 (12.2%) inferior endplates of L3 and L5 and superior endplates of L4, 12 (13.3%) superior endplates of L5. Modic changes were significantly correlated with intervertebral disc degeneration (r = 0.414, p<0.01); the amount of Modic changes were significantly correlated with LL (r = -0.562, p = 0.012), SS (r = -0.46, p = 0.048), PT (r = 0.516, p = 0.024). Conclusions Most of the Modic changes of vertebral endplates in DTK/LK patients are type II which are prevalently located at L3/4, L4/5 and L5/S1. The Modic changes of vertebral endplates were found to be significantly correlated with disc degeneration, LL, SS, and PT.
Collapse
|
41
|
Miyagi M, Uchida K, Takano S, Fujimaki H, Aikawa J, Sekiguchi H, Nagura N, Ohtori S, Inoue G, Takaso M. Macrophage-derived inflammatory cytokines regulate growth factors and pain-related molecules in mice with intervertebral disc injury. J Orthop Res 2018; 36:2274-2279. [PMID: 29508435 DOI: 10.1002/jor.23888] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/22/2018] [Indexed: 02/04/2023]
Abstract
Upregulation of inflammatory cytokines and various growth factors is a significant contributor to discogenic low back pain. The aim of this study was to investigate possible regulation of pain-related molecules by macrophages and the role of macrophage-derived molecules in injured intervertebral disc (IVD)s. C57BL/6J mice were used in this study. We characterized the expression profiles of genes for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) in both intact and injured IVDs. We examined whether macrophage depletion, induced by systemic injection of clodronate-laden liposomes, affected the expression of these molecules in injured IVDs. The effect of TNF-alpha on cultured F4/80-CD11b-cells in injured IVDs was investigated. Expression of TNF-alpha and IL-1beta was significantly increased in injured IVDs, but decreased by macrophage depletion. Expression of NGF and VEGF was also significantly increased, but by contrast was not decreased by macrophage depletion. TNF-alpha treatment of F4/80-cells from injured IVDs upregulated NGF, VEGF, cyclooxygenase (COX)-2, and microsomal prostaglandin E synthase-1 (mPGES1). IVD injury upregulated inflammatory cytokines and various growth factors. Macrophages in the injured IVDs produced inflammatory cytokines, but not growth factors. Macrophage-derived inflammatory cytokines regulate growth factors and pain-related molecules. These findings demonstrate further complexity in the pathogenesis of discogenic pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hisako Fujimaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sekiguchi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Naoshige Nagura
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
42
|
Fischgrund JS, Rhyne A, Franke J, Sasso R, Kitchel S, Bae H, Yeung C, Truumees E, Schaufele M, Yuan P, Vajkoczy P, DePalma M, Anderson DG, Thibodeau L, Meyer B. Intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: a prospective randomized double-blind sham-controlled multi-center study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1146-1156. [PMID: 29423885 DOI: 10.1007/s00586-018-5496-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the safety and efficacy of radiofrequency (RF) ablation of the basivertebral nerve (BVN) for the treatment of chronic low back pain (CLBP) in a Food and Drug Administration approved Investigational Device Exemption trial. The BVN has been shown to innervate endplate nociceptors which are thought to be a source of CLBP. METHODS A total of 225 patients diagnosed with CLBP were randomized to either a sham (78 patients) or treatment (147 patients) intervention. The mean age within the study was 47 years (range 25-69) and the mean baseline ODI was 42. All patients had Type I or Type II Modic changes of the treated vertebral bodies. Patients were evaluated preoperatively, and at 2 weeks, 6 weeks and 3, 6 and 12 months postoperatively. The primary endpoint was the comparative change in ODI from baseline to 3 months. RESULTS At 3 months, the average ODI in the treatment arm decreased 20.5 points, as compared to a 15.2 point decrease in the sham arm (p = 0.019, per-protocol population). A responder analysis based on ODI decrease ≥ 10 points showed that 75.6% of patients in the treatment arm as compared to 55.3% in the sham control arm exhibited a clinically meaningful improvement at 3 months. CONCLUSION Patients treated with RF ablation of the BVN for CLBP exhibited significantly greater improvement in ODI at 3 months and a higher responder rate than sham treated controls. BVN ablation represents a potential minimally invasive treatment for the relief of chronic low back pain. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Jeffrey S Fischgrund
- Department of Orthopedic Surgery, Oakland University William Beaumont School of Medicine, 3535 West 13 Mile Road, Suite 744, Royal Oak, MI, 48073, USA.
| | - A Rhyne
- Ortho Carolina Spine Center, Charlotte, USA
| | - J Franke
- Department of Orthopedics-Spine and Pediatric Orthopedics, Klinikum Magdeburg GmbH, Magdeburg, Germany
| | - R Sasso
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, USA
| | | | - H Bae
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, USA
| | - C Yeung
- Desert Institute for Spine Care, Phoenix, USA
| | - E Truumees
- Seton Spine and Scoliosis Center, Seton Medical Center, Brackenridge University Hospital, Austin, USA
| | - M Schaufele
- Pain Solutions Treatment Centers, Marietta, USA
| | - P Yuan
- Long Beach Memorial Medical Center, Long Beach, USA
| | - P Vajkoczy
- Department of Neurosurgery, Charité-Universitaetsmedizin Berlin, Campus Virchow Medical Center, Berlin, Germany
| | - M DePalma
- Virginia iSpine Physicians, Richmond, USA
| | - D G Anderson
- Departments of Orthopaedic and Neurological Surgery, Thomas Jefferson University, Philadelphia, USA
| | | | - B Meyer
- Direktor der Neurochirurgischen Klinik und Poliklinik, Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
43
|
Sato J, Inage K, Miyagi M, Sakuma Y, Yamauchi K, Suzuki M, Koda M, Furuya T, Nakamura J, Eguchi Y, Suzuki M, Kubota G, Oikawa Y, Sainoh T, Fujimoto K, Shiga Y, Abe K, Kanamoto H, Inoue M, Kinoshita H, Norimoto M, Umimura T, Takahashi K, Ohtori S, Orita S. Vascular endothelial growth factor in degenerating intervertebral discs of rat caudal vertebrae. Spine Surg Relat Res 2018; 2:42-47. [PMID: 31440645 PMCID: PMC6698553 DOI: 10.22603/ssrr.2017-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 11/27/2022] Open
Abstract
Introduction Discogenic back pain remains poorly understood with respect to etiopathogenesis, despite being a considerable burden. We sought to examine the expression of vascular endothelial growth factor in injured intervertebral discs in rat caudal vertebrae. Methods Forty-eight male Sprague Dawley rats were assigned to 2 groups according to disc puncture injury: puncture (n = 32) or non-puncture (n = 16). Disc puncture was performed percutaneously such that the incision would be in the primary plane of motion for the coccygeal discs 5-6, 6-7, and 7-8. A 26-gauge needle was used to puncture each disc 10 times. Punctured discs were examined histologically by hematoxylin and eosin staining at 1, 7, 14, and 28 days post-injury. Results Vascular endothelial growth factor was localized immunohistochemically, and determined quantitatively using an enzyme-linked immunosorbent assay. Peak inflammation occurred on the 7th day post-injury, but tissue degeneration continued until day 28. Local expression of vascular endothelial growth factor tended to be highest in the annulus fibrosus on the 7th and 14th days after puncture injury. The level of vascular endothelial growth factor was highest 1-day post-injury, and then gradually decreased thereafter. Furthermore, vascular endothelial growth factor levels in the puncture group were significantly higher than those in the non-puncture control group (p < 0.05). Conclusions We found increased expression of the inflammatory cytokine vascular endothelial growth factor in injured intervertebral discs, suggesting that vascular endothelial growth factor may be clinically important in discogenic back pain.
Collapse
Affiliation(s)
- Jun Sato
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Orthopaedic Surgery, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, National Hospital Organization Chiba Medical Center, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiko Suzuki
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, National Hospital Organization Shimoshizu National Hospital, Chiba, Japan
| | - Miyako Suzuki
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Go Kubota
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Chiba Children's Hospital, Chiba, Japan
| | - Takeshi Sainoh
- Department of Orthopaedic Surgery, Sainou Hospital, Toyama, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koki Abe
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hirohito Kanamoto
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideyuki Kinoshita
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Norimoto
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomotaka Umimura
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
44
|
Ohtori S, Miyagi M, Inoue G. Sensory nerve ingrowth, cytokines, and instability of discogenic low back pain: A review. Spine Surg Relat Res 2018; 2:11-17. [PMID: 31440640 PMCID: PMC6698542 DOI: 10.22603/ssrr.2016-0018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Many patients suffer from discogenic low back pain. However, the mechanisms, diagnosistic strategy, and treatment of discogenic low back pain all remain controversial. The purpose of this paper was to review the pathological mechanisms of discogenic low back pain. Methods Many authors have investigated the pathological mechanisms of discogenic low back pain using animal models and examining human patients. Central to most investigations is understanding the innervation and instabilities of diseased intervertebral discs and the role of inflammatory mediators. We discuss three pathological mechanisms of discogenic low back pain: innervation, inflammation, and mechanical hypermobility of the intervertebral disc. Results Sensory nerve fibers include C-fibers and A delta-fibers, which relay pain signals from the innervated outer layers of the intervertebral disc under normal conditions. However, ingrowth of these sensory nerve fibers into the inner layers of intervertebral disc occurs under disease conditions. Levels of neurotrophic factors and some cytokines are significantly higher in diseased discs than in normal discs. Stablization of the segmental hypermobility, which can be induced by intervertebral disc degeneration, suppresses inflammation and prevents sensitization of sensory nerve fibers innervating the disc. Conclusions Pathological mechanisms of discogenic low back pain include sensory nerve ingrowth into inner layers of the intervertebral disc, upregulation of neurotrophic factors and cytokines, and instability. Inhibition of these mechanisms is important in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine Chiba University, Chiba, Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Kanagawa, Japan
| |
Collapse
|
45
|
Monchaux M, Forterre S, Spreng D, Karol A, Forterre F, Wuertz-Kozak K. Inflammatory Processes Associated with Canine Intervertebral Disc Herniation. Front Immunol 2017; 8:1681. [PMID: 29255462 PMCID: PMC5723024 DOI: 10.3389/fimmu.2017.01681] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc herniation (IVDH) is an important pathology in humans and also in dogs. While the molecular disease mechanisms are well investigated in humans, little is known about the inflammatory mediators in naturally occurring canine IVDH. The objective of this study was to investigate whether the involved proinflammatory cytokines in human IVDH are also key cytokines in canine IVDH and thus to elucidate the suitability of the dog as a model for human trials. 59 samples from 25 dogs with surgically confirmed thoracolumbar IVDH were collected and classified in three subgroups: herniated (H), affected non-herniated (NH) disc, and adjacent non-affected (NA) disc. Discs from 11 healthy dogs acted as controls (C). Samples were analyzed for IL-1, IL-6, IL-8, and TNF-α expression (qPCR/ELISA) as well as cell infiltration and activation of the MAP kinase pathways (immunohistochemistry). Gene and protein expression of all key cytokines could be detected in IVDH affected dogs. Canine IVDH was significantly associated with a higher gene expression of IL-6 (H > C, NH > C) and TNF-α (H > C, NH > C, NA > C) and a significant down-regulation of IL-1β (H < C). Dogs with spontaneous pain had significantly higher IL-6 mRNA compared to those with pain arising only upon palpation. An inter-donor comparison (H and HN relative to NA) revealed a significant increase of IL-6 gene expression (H > NA, NH > NA). IL-8 (H > C, NA > C) and TNF-α (NH > C) protein levels were significantly increased in diseased dogs while inversely, IL-6 protein levels were significantly higher in patients with better clinical outcome. Aside from resident IVD cells, mostly monocytes and macrophages were found in extruded material, with concomitant activation of extracellular signal-regulated kinase p38 in the majority of samples. Dogs with spontaneous IVDH might provide a useful model for human disc diseases. Although the expression of key cytokines found in human IVDH was also demonstrated in canine tissue, the inflammatory mechanisms accompanying canine IVDH diverges partially from humans, which will require further investigations in the future. In dogs, IL-6 seems to play an important pathological role and may represent a new potential therapeutic target for canine patients.
Collapse
Affiliation(s)
- Marie Monchaux
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - Simone Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland
| | - David Spreng
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Agnieszka Karol
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Franck Forterre
- Vetsuisse Faculty, Department of Clinical Veterinary Science, University of Bern, Bern, Switzerland.,Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Karin Wuertz-Kozak
- Competence Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Schön Clinic Munich, Harlaching, Munich, Germany.,Spine Research Institute, Paracelsus Medical University, Salzburg, Austria.,Department of Health Sciences, University of Postdam, Postdam, Germany
| |
Collapse
|
46
|
Stamuli E, Kesornsak W, Grevitt MP, Posnett J, Claxton K. A Cost-Effectiveness Analysis of Intradiscal Electrothermal Therapy Compared with Circumferential Lumbar Fusion. Pain Pract 2017; 18:515-522. [PMID: 28898530 DOI: 10.1111/papr.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/14/2017] [Accepted: 09/06/2017] [Indexed: 11/27/2022]
Abstract
STUDY DESIGN Cost-effectiveness analysis. OBJECTIVE To evaluate the cost-effectiveness of intradiscal electrothermal therapy (IDET) relative to circumferential lumbar fusion with femoral ring allograft (FRA) in the United Kingdom. SUMMARY OF BACKGROUND DATA Circumferential lumbar fusion is an established treatment for discogenic low back pain. However, IDET could be a cost-effective treatment alternative as it can be carried out as a day case. METHODS Patient-level data were available for patients with discogenic low back pain treated with FRA (n = 37) in a randomized trial of FRA vs. titanium cage, and for patients recruited to a separate study evaluating the use of IDET (n = 85). Both studies were carried out at a single institution in the United Kingdom. Patients were followed-up for 24 months, with data collected on low back disability (Oswestry Disability Index), back and leg pain (visual analog scale), quality of life (Short Form 36), radiographic evaluations, and U.K. National Health Service (NHS) resource use. Cost-effectiveness was measured by the incremental cost per quality-adjusted life year (QALY) gained. RESULTS Both treatments produced statistically significant improvements in outcome at 24-month follow-up. NHS costs were significantly lower with IDET due to a shorter mean procedure time (377.4 minutes vs. 49.9 minutes) and length of stay (7 days vs. 1.2 days). At a threshold of £20,000 per QALY, the probability that IDET is cost effective is high. CONCLUSIONS Both treatments led to significant improvements in patient outcomes that were sustained for at least 24 months. Costs were lower with IDET, and for appropriate patients IDET is an effective and cost-effective treatment alternative.
Collapse
Affiliation(s)
- Eugena Stamuli
- Department of Health Sciences, University of York, York, U.K
| | | | | | | | - Karl Claxton
- Department of Economics and Related Studies, University of York, York, U.K
| |
Collapse
|
47
|
The Quantitative Structural and Compositional Analyses of Degenerating Intervertebral Discs Using Magnetic Resonance Imaging and Contrast-Enhanced Micro-Computed Tomography. Ann Biomed Eng 2017; 45:2626-2634. [PMID: 28744842 DOI: 10.1007/s10439-017-1891-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023]
Abstract
The intervertebral disc (IVD) is susceptible to degenerative changes that are associated with low back pain. Murine models are often used to investigate the mechanistic changes in the development, aging, and diseased states of the IVD, yet the detection of early degenerative changes in structure is challenging because of the minute size of the murine IVDs. Histology is the gold standard for examining the IVD structure, but it is susceptible to sectioning artifacts, spatial biases, and requires the destructive preparation of the sample. We have previously demonstrated the feasibility of using Ioversol for the contrast-enhanced micro-computed tomography (microCT) to visualize and quantitate the intact healthy murine IVD. In this work, we demonstrate utility of this approach to monitor the longitudinal changes of in vitro nucleolytic- and mechanical injury- degeneration models of the murine discs and introduce novel quantitative metrics to characterize the structure and composition of the IVD. Moreover, we compared the imaging quality and quantitation of these in vitro models to magnetic resonance imaging (MRI) and histology. Stab puncture, trypsin injection, and collagenase injection all induced detectable and significant changes in structure and composition of the discs overtime. Compared to MRI and histology, contrast-enhanced microCT produced superior images that capture the degenerative progression in these models. Contrast-enhanced microCT was also capable of monitoring the structural deteriorations via the changes in disc height and volume, and novel the nucleus pulposus intensity/disc intensity (NI/DI) parameter provides a surrogate measure of proteoglycan composition (R = 0.96). Overall, this approach allows for the nondestructive monitoring of the structure and composition of the IVD at very high resolutions.
Collapse
|
48
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
49
|
Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model. Ann Biomed Eng 2017; 45:2373-2382. [DOI: 10.1007/s10439-017-1868-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022]
|
50
|
Jin L, Balian G, Li XJ. Animal models for disc degeneration-an update. Histol Histopathol 2017; 33:543-554. [PMID: 28580566 DOI: 10.14670/hh-11-910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is considered a major cause of back pain that places a heavy burden on society, both because of its effect on the physiology of individuals and its consequences on the world economy. During the past few decades, research findings in the pre-clinical setting have led to a significant increase in the understanding of intervertebral disc degeneration, although many aspects of the disease remain unclear. The goal of this review is to summarize existing animal models for disc degeneration studies and the difficulties that are associated with the use of such models. A firm understanding of the cellular and molecular events that ensue as a result of injuries, as well as environmental factors, could be instrumental in the development of targeted therapies for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Gary Balian
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xudong Joshua Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|