1
|
Zhao W, Li Y, Cheng H, Wang M, Zhang Z, Cai M, Zhao C, Xi X, Zhao X, Zhao W, Yang Y, Shao R. Myofibrillogenesis Regulator-1 Regulates the Ubiquitin Lysosomal Pathway of Notch3 Intracellular Domain Through E3 Ubiquitin-Protein Ligase Itchy Homolog in the Metastasis of Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306472. [PMID: 38342606 PMCID: PMC11022719 DOI: 10.1002/advs.202306472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yang Li
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Hanzeng Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
- Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Zhishuo Zhang
- Department of EmergencyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Cong Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaoming Xi
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaojun Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| |
Collapse
|
2
|
Lin X, Tan Y, Pan L, Tian Z, Lin L, Su M, Ou G, Chen Y. Prognostic value of RRM1 and its effect on chemoresistance in pancreatic cancer. Cancer Chemother Pharmacol 2024; 93:237-251. [PMID: 38040978 DOI: 10.1007/s00280-023-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.
Collapse
Affiliation(s)
- Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lijun Lin
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, People's Republic of China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
3
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
4
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Stukas D, Jasukaitiene A, Bartkeviciene A, Matthews J, Maimets T, Teino I, Jaudzems K, Gulbinas A, Dambrauskas Z. Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway. Int J Mol Sci 2023; 24:13155. [PMID: 37685961 PMCID: PMC10487468 DOI: 10.3390/ijms241713155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.
Collapse
Affiliation(s)
- Darius Stukas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Aldona Jasukaitiene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Arenida Bartkeviciene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| |
Collapse
|
6
|
Song N, Guan X, Zhang S, Wang Y, Wang X, Lu Z, Chong D, Wang JY, Yu R, Yu W, Jiang T, Gu Y. Discovery of a pyrrole-pyridinimidazole derivative as novel SIRT6 inhibitor for sensitizing pancreatic cancer to gemcitabine. Cell Death Dis 2023; 14:499. [PMID: 37542062 PMCID: PMC10403574 DOI: 10.1038/s41419-023-06018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Pancreatic cancer is a highly aggressive cancer, and is primarily treated with gemcitabine, with increasing resistance. SIRT6 as a member of sirtuin family plays important roles in lifespan and diverse diseases, such as cancer, diabetes, inflammation and neurodegenerative diseases. Considering the role of SIRT6 in the cytoprotective effect, it might be a potential anticancer drug target, and is associated with resistance to anticancer therapy. However, very few SIRT6 inhibitors have been reported. Here, we reported the discovery of a pyrrole-pyridinimidazole derivative, 8a, as a new non-competitive SIRT6 inhibitor, and studied its roles and mechanisms in the antitumor activity and sensitization of pancreatic cancer to gemcitabine. Firstly, we found a potent SIRT6 inhibitor compound 8a by virtual screening and identified by molecular and cellular SIRT6 activity assays. 8a could effectively inhibit SIRT6 deacetylation activity with IC50 values of 7.46 ± 0.79 μM in FLUOR DE LYS assay, and 8a significantly increased the acetylation levels of H3 in cells. Then, we found that 8a could inhibit the cell proliferation and induce cell apoptosis in pancreatic cancer cells. We further demonstrate that 8a sensitize pancreatic cancer cells to gemcitabine via reversing the activation of PI3K/AKT/mTOR and ERK signaling pathways induced by gemcitabine and blocking the DNA damage repair pathway. Moreover, combination of 8a and gemcitabine induces cooperative antitumor activity in pancreatic cancer xenograft model in vivo. Overall, we demonstrate that 8a, a novel SIRT6 inhibitor, could be a promising potential drug candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yanqing Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xuekai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhongxia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Daochen Chong
- Department of Pathology, 971 Hospital of PLA Navy, Qingdao, 266071, China
| | - Jennifer Yiyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A Brief Review on Chemoresistance; Targeting Cancer Stem Cells as an Alternative Approach. Int J Mol Sci 2023; 24:ijms24054487. [PMID: 36901917 PMCID: PMC10003376 DOI: 10.3390/ijms24054487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The acquisition of resistance to traditional chemotherapy and the chemoresistant metastatic relapse of minimal residual disease both play a key role in the treatment failure and poor prognosis of cancer. Understanding how cancer cells overcome chemotherapy-induced cell death is critical to improve patient survival rate. Here, we briefly describe the technical approach directed at obtaining chemoresistant cell lines and we will focus on the main defense mechanisms against common chemotherapy triggers by tumor cells. Such as, the alteration of drug influx/efflux, the enhancement of drug metabolic neutralization, the improvement of DNA-repair mechanisms, the inhibition of apoptosis-related cell death, and the role of p53 and reactive oxygen species (ROS) levels in chemoresistance. Furthermore, we will focus on cancer stem cells (CSCs), the cell population that subsists after chemotherapy, increasing drug resistance by different processes such as epithelial-mesenchymal transition (EMT), an enhanced DNA repair machinery, and the capacity to avoid apoptosis mediated by BCL2 family proteins, such as BCL-XL, and the flexibility of their metabolism. Finally, we will review the latest approaches aimed at decreasing CSCs. Nevertheless, the development of long-term therapies to manage and control CSCs populations within the tumors is still necessary.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Aitor González-Titos
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Correspondence: (P.H.-C.); (M.P.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine, Institute (IBIMER), University of Granada, Centre for Biomedical Research (CIBM), 18071 Granada, Spain
- Correspondence: (P.H.-C.); (M.P.)
| |
Collapse
|
8
|
Hinzpeter R, Kulanthaivelu R, Kohan A, Avery L, Pham NA, Ortega C, Metser U, Haider M, Veit-Haibach P. CT Radiomics and Whole Genome Sequencing in Patients with Pancreatic Ductal Adenocarcinoma: Predictive Radiogenomics Modeling. Cancers (Basel) 2022; 14:cancers14246224. [PMID: 36551709 PMCID: PMC9776865 DOI: 10.3390/cancers14246224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We investigate whether computed tomography (CT) derived radiomics may correlate with driver gene mutations in patients with pancreatic ductal adenocarcinoma (PDAC). In this retrospective study, 47 patients (mean age 64 ± 11 years; range: 42-86 years) with PDAC, who were treated surgically and who underwent preoperative CT imaging at our institution were included in the study. Image segmentation and feature extraction was performed semi-automatically with a commonly used open-source software platform. Genomic data from whole genome sequencing (WGS) were collected from our institution's web-based resource. Two statistical models were then built, in order to evaluate the predictive ability of CT-derived radiomics feature for driver gene mutations in PDAC. 30/47 of all tumor samples harbored 2 or more gene mutations. Overall, 81% of tumor samples demonstrated mutations in KRAS, 68% of samples had alterations in TP53, 26% in SMAD4 and 19% in CDKN2A. Extended statistical analysis revealed acceptable predictive ability for KRAS and TP53 (Youden Index 0.56 and 0.67, respectively) and mild to acceptable predictive signal for SMAD4 and CDKN2A (Youden Index 0.5, respectively). Our study establishes acceptable correlation of radiomics features and driver gene mutations in PDAC, indicating an acceptable prognostication of genomic profiles using CT-derived radiomics. A larger and more homogenous cohort may further enhance the predictive ability.
Collapse
Affiliation(s)
- Ricarda Hinzpeter
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Correspondence: ; Tel.: +1-416-340-4800
| | - Roshini Kulanthaivelu
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Lisa Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Masoom Haider
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
9
|
Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M. Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 2022; 86:69-80. [PMID: 36064086 PMCID: PMC10370390 DOI: 10.1016/j.semcancer.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
10
|
Park JM, Peng JM, Shen YS, Lin CY, Hsu TW, Su YH, Chen HA, Saengboonmee C, Chang JS, Chiu CF, Shan YS. Phosphomimetic Dicer S1016E triggers a switch to glutamine metabolism in gemcitabine-resistant pancreatic cancer. Mol Metab 2022; 65:101576. [PMID: 35995401 PMCID: PMC9460536 DOI: 10.1016/j.molmet.2022.101576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Dicer is an enzyme that processes microRNAs (miRNAs) precursors into mature miRNAs, which have been implicated in various aspects of cancer progressions, such as clinical aggressiveness, prognosis, and survival outcomes. We previously showed that high expression of Dicer is associated with gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC); thus, in this study, we aimed to focus on how Dicer is involved in GEM resistance in PDAC, including cancer prognosis, cell proliferation, and metabolic regulation. Methods We generated stable shRNA knockdown of Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells and explored cell viability by MTT and clonogenicity assays. Metabolomic profiling was employed to investigate metabolic changes between parental cells, PANC-1, and PANC-1 GR cells, and further implied to compare their sensitivity to the glutaminase inhibitor, CB839, and GEM treatments. To identify putative phosphorylation site involves with Dicer and its effects on GEM resistance in PDAC cells, we further generated phosphomimetic or phosphomutant Dicer at S1016 site and examined the changes in drug sensitivity, metabolic alteration, and miRNA regulation. Results We observed that high Dicer levels in pancreatic ductal adenocarcinoma cells were positively correlated with advanced pancreatic cancer and acquired resistance to GEM. Metabolomic analysis indicated that PANC-1 GR cells rapidly utilised glutamine as their major fuel and increased levels of glutaminase (GLS): glutamine synthetase (GLUL) ratio which is related to high Dicer expression. In addition, we found that phosphomimetic Dicer S1016E but not phosphomutant Dicer S1016A facilitated miRNA maturation, causing an imbalance in GLS and GLUL and resulting in an increased response to GLS inhibitors. Conclusion Our results suggest that phosphorylation of Dicer on site S1016 affects miRNA biogenesis and glutamine metabolism in GEM-resistant pancreatic cancer. Dicer expression is positively correlated with advanced pancreatic cancer. Dicer expression is significantly correlated with high level of GLS and GLS/GLUL ratio. Phosphomimetic Dicer S1016E enhances glutamine consumption and GLS inhibitor sensitivity. Phosphomimetic Dicer S1016E facilitates miRNAs maturation to increase GLS/GLUL ratio.
Collapse
Affiliation(s)
- Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shiuan Shen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ying Lin
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hao Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jung-Su Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taiwan; Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Fujiwara-Tani R, Sasaki T, Takagi T, Mori S, Kishi S, Nishiguchi Y, Ohmori H, Fujii K, Kuniyasu H. Gemcitabine Resistance in Pancreatic Ductal Carcinoma Cell Lines Stems from Reprogramming of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23147824. [PMID: 35887170 PMCID: PMC9323155 DOI: 10.3390/ijms23147824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis because it is often detected at an advanced stage, and drug resistance interferes with treatment. However, the mechanism underlying drug resistance in PDAC remains unclear. Here, we investigated metabolic changes between a parental PDAC cell line and a gemcitabine (GEM)-resistant PDAC cell line. We established a GEM-resistant cell line, MIA-G, from MIA-PaCa-2 parental (MIA-P) cells using continuous therapeutic-dose GEM treatment. MIA-G cells were also more resistant to 5-fluorouracil in comparison to MIA-P cells. Metabolic flux analysis showed a higher oxygen consumption rate (OCR) in MIA-G cells than in MIA-P cells. Notably, OCR was suppressed by GEM treatment only in MIA-G cells. GEM treatment increased mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) in MIA-P cells, but not in MIA-G cells. Glutamine uptake and peroxidase levels were elevated in MIA-G cells. The antioxidants N-acetyl-L-cysteine and vitamin C increased the sensitivity to GEM in both cell lines. In MIA-G cells, the expression of the mitochondrial transcription factor A also decreased. Furthermore, rotenone reduced the sensitivity of MIA-P cells to GEM. These findings suggest that the suppression of oxidative phosphorylation contributes to GEM resistance by reducing ROS production. Our study provides a new approach for reducing GEM resistance in PDAC.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Correspondence: (R.F.-T.); (H.K.); Tel.: +81-744-22-3051 (R.F.-T. & H.K.); Fax: +81-744-25-7308 (R.F.-T. & H.K.)
| | | | | | | | | | | | | | | | - Hiroki Kuniyasu
- Correspondence: (R.F.-T.); (H.K.); Tel.: +81-744-22-3051 (R.F.-T. & H.K.); Fax: +81-744-25-7308 (R.F.-T. & H.K.)
| |
Collapse
|
12
|
Yazal T, Bailleul J, Ruan Y, Sung D, Chu FI, Palomera D, Dao A, Sehgal A, Gurunathan V, Aryan L, Eghbali M, Vlashi E. Radiosensitizing Pancreatic Cancer via Effective Autophagy Inhibition. Mol Cancer Ther 2022; 21:79-88. [PMID: 34725193 DOI: 10.1158/1535-7163.mct-20-1103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/02/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
Despite aggressive treatments, pancreatic ductal adenocarcinoma (PDAC) remains an intractable disease, largely because it is refractory to therapeutic interventions. To overcome its nutrient-poor microenvironment, PDAC heavily relies on autophagy for metabolic needs to promote tumor growth and survival. Here, we explore autophagy inhibition as a method to enhance the effects of radiotherapy on PDAC tumors. Hydroxychloroquine is an autophagy inhibitor at the focus of many PDAC clinical trials, including in combination with radiotherapy. However, its acid-labile properties likely reduce its intratumoral efficacy. Here, we demonstrate that EAD1, a synthesized analogue of HCQ, is a more effective therapeutic for sensitizing PDAC tumors of various KRAS mutations to radiotherapy. Specifically, in vitro models show that EAD1 is an effective inhibitor of autophagic flux in PDAC cells, accompanied by a potent inhibition of proliferation. When combined with radiotherapy, EAD1 is consistently superior to HCQ not only as a single agent, but also in radiosensitizing PDAC cells, and perhaps most importantly, in decreasing the self-renewal capacity of PDAC cancer stem cells (PCSC). The more pronounced sensitizing effects of autophagy inhibitors on pancreatic stem over differentiated cells points to a new understanding that PCSCs may be more dependent on autophagy to counter the effects of radiation toxicity, a potential mechanism explaining the resistance of PCSCs to radiotherapy. Finally, in vivo subcutaneous tumor models demonstrate that combination of radiotherapy and EAD1 is the most successful at controlling tumor growth. The models also confirmed a similar toxicity profile between EAD1 and Hydroxychloroquine.
Collapse
Affiliation(s)
- Taha Yazal
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Yangjingyi Ruan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - David Sung
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Fang-I Chu
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Daisy Palomera
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Amy Dao
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Anahita Sehgal
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Vibha Gurunathan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Laila Aryan
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
14
|
Su YH, Hsu TW, Chen HA, Su CM, Huang MT, Chuang TH, Leo Su J, Hsieh CL, Chiu CF. ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J Cell Physiol 2021; 236:4420-4434. [PMID: 33184874 DOI: 10.1002/jcp.30159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcriptional Activation
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - J Leo Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Ling Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Uehara M, Domoto T, Takenaka S, Bolidong D, Takeuchi O, Miyashita T, Minamoto T. Glycogen synthase kinase-3β participates in acquired resistance to gemcitabine in pancreatic cancer. Cancer Sci 2020; 111:4405-4416. [PMID: 32986894 PMCID: PMC7734171 DOI: 10.1111/cas.14668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022] Open
Abstract
Acquisition of resistance to gemcitabine is a challenging clinical and biological hallmark property of refractory pancreatic cancer. Here, we investigated whether glycogen synthase kinase (GSK)-3β, an emerging therapeutic target in various cancer types, is mechanistically involved in acquired resistance to gemcitabine in human pancreatic cancer. This study included 3 gemcitabine-sensitive BxPC-3 cell-derived clones (BxG30, BxG140, BxG400) that acquired stepwise resistance to gemcitabine and overexpressed ribonucleotide reductase (RR)M1. Treatment with GSK3β-specific inhibitor alone attenuated the viability and proliferation of the gemcitabine-resistant clones, while synergistically enhancing the efficacy of gemcitabine against these clones and their xenograft tumors in rodents. The gemcitabine-resensitizing effect of GSK3β inhibition was associated with decreased expression of RRM1, reduced phosphorylation of Rb protein, and restored binding of Rb to the E2 transcription factor (E2F)1. This was followed by decreased E2F1 transcriptional activity, which ultimately suppressed the expression of E2F1 transcriptional targets including RRM1, CCND1 encoding cyclin D1, thymidylate synthase, and thymidine kinase 1. These results suggested that GSK3β participates in the acquisition of gemcitabine resistance by pancreatic cancer cells via impairment of the functional interaction between Rb tumor suppressor protein and E2F1 pro-oncogenic transcription factor, thereby highlighting GSK3β as a promising target in refractory pancreatic cancer. By providing insight into the molecular mechanism of gemcitabine resistance, this study identified a potentially novel strategy for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takahiro Domoto
- Division of Translational and Clinical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Satoshi Takenaka
- Division of Translational and Clinical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Dilireba Bolidong
- Division of Translational and Clinical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Osamu Takeuchi
- Biomedical LaboratoryDepartment of ResearchKitasato University Kitasato Institute HospitalTokyoJapan
| | - Tomoharu Miyashita
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
- Department of Surgical OncologyKanazawa Medical UniversityIshikawaJapan
| | - Toshinari Minamoto
- Division of Translational and Clinical OncologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| |
Collapse
|
16
|
Tong H, Huang Z, Chen H, Zhou B, Liao Y, Wang Z. Emodin Reverses Gemcitabine Resistance of Pancreatic Cancer Cell Lines Through Inhibition of IKKβ/NF-κB Signaling Pathway. Onco Targets Ther 2020; 13:9839-9848. [PMID: 33061461 PMCID: PMC7537840 DOI: 10.2147/ott.s253691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic cancer is one of the most malignant tumors, and gemcitabine has been considered as the standard treatment and been widely utilized as a first-line drug for advanced pancreatic cancer, but gemcitabine-resistance always occurs after a short period of treatment. Methods Two pancreatic cancer cell lines Panc-1 and MIA-PaCa-2 were used as the study subject and their gemcitabine-resistant cells were established. Both drug-resistant cells were divided into four groups: blank, emodin, gemcitabine, and emodin+gemcitabine. Cell viability was detected by MTT assay. Flow cytometry was performed to detect cell apoptosis rate and P-gp function. Quantitative real-time polymerase chain reaction and Western blotting were used to detect Survivin, XIAP, Caspase-9/3, NF-κB p65, IKKβ and IκB-α mRNA/protein expressions, respectively. Electrophoretic mobility shift assay (EMSA) was performed to detect NF-κB binding activity. Rhodamine 123 efflux assay was used to detect P-gp function. Results Emodin could inhibit cell activity in all cell lines. Both emodin and gemcitabine can significantly increase the apoptosis rate, and the combination of the two drugs can further significantly increase the apoptosis rate in normal pancreatic cancer cell lines. In both drug-resistant pancreatic cancer cell lines, it can be observed that although gemcitabine can increase the apoptosis rate, the effect of promoting apoptosis is significantly lower than that of emodin; the drug combination can still significantly increase the apoptosis rate on the basis of emodin alone. Emodin can significantly reduce the mRNA and protein expression levels of Survivin, XIAP, NF-κB, and IKKβ, and significantly increase the mRNA and protein expression levels of Caspase-3/9 and IκB-α. Emodin significantly reduced NF-κB activity and emodin significantly promoted P-gp fluorescence intensity from Rhodamine 123 efflux assay. Conclusion Emodin inhibits the expression of IKKβ, thereby inhibiting the expression and activity of downstream NF-κB, and inhibits P-gp function at the same time, ultimately achieving the purpose of reversing the drug-resistance of pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Hongfei Tong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| | - Zhen Huang
- Department of Pediatric Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| | - Yi Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| | - Zhaohong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325027, People's Republic of China
| |
Collapse
|
17
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
18
|
Ma T, Chen W, Zhi X, Liu H, Zhou Y, Chen BW, Hu L, Shen J, Zheng X, Zhang S, Zhang B, Li H, Liang T. USP9X inhibition improves gemcitabine sensitivity in pancreatic cancer by inhibiting autophagy. Cancer Lett 2018; 436:129-138. [DOI: 10.1016/j.canlet.2018.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
|
19
|
Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake M, Higuchi T, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Bouvet M, Singh SR, Unno M, Hoffman RM. Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 2018; 432:251-259. [DOI: 10.1016/j.canlet.2018.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
|
20
|
Armstrong EA, Beal EW, Chakedis J, Paredes AZ, Moris D, Pawlik TM, Schmidt CR, Dillhoff ME. Exosomes in Pancreatic Cancer: from Early Detection to Treatment. J Gastrointest Surg 2018; 22:737-750. [PMID: 29423813 DOI: 10.1007/s11605-018-3693-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) remains one of the most fatal forms of cancer worldwide with incidence nearly equal to mortality. This is often attributed to the fact that diagnosis is often not made until later disease stages when treatment proves difficult. Efforts have been made to reduce the mortality of PC through improvements in early screening techniques and treatments of late-stage disease. Exosomes, small extracellular vesicles involved in cellular communication, have shown promise in helping understand PC disease biology. METHODS In this review, we discuss current studies of the role of exosomes in PC physiology, and their potential use as diagnostic and treatment tools. RESULTS Exosomes have a role in diagnosing pancreatic cancer and in understanding tumor biology including migration, proliferation, chemoresistance, immunosuppression, cachexia and diabetes, and have a potential role in therapy for pancreatic cancer. CONCLUSIONS Exosomal analysis is beneficial in demonstrating mechanisms behind PC growth and metastasis, immunosuppression, drug resistance, and paraneoplastic conditions. Furthermore, the use of exosomes can be beneficial in detecting early-stage PC and exosomes have potential applications as therapeutic targets.
Collapse
Affiliation(s)
- Emily A Armstrong
- The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Eliza W Beal
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA.
| | - Jeffery Chakedis
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Anghela Z Paredes
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Carl R Schmidt
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Mary E Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| |
Collapse
|
21
|
Wang F, Xia X, Yang C, Shen J, Mai J, Kim HC, Kirui D, Kang Y, Fleming JB, Koay EJ, Mitra S, Ferrari M, Shen H. SMAD4 Gene Mutation Renders Pancreatic Cancer Resistance to Radiotherapy through Promotion of Autophagy. Clin Cancer Res 2018; 24:3176-3185. [PMID: 29602802 DOI: 10.1158/1078-0432.ccr-17-3435] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/11/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
Abstract
Purpose: Understanding the mechanism of radioresistance could help develop strategies to improve therapeutic response of patients with PDAC. The SMAD4 gene is frequently mutated in pancreatic cancer. In this study, we investigated the role of SMAD4 deficiency in pancreatic cancer cells' response to radiotherapy.Experimental Design: We downregulated SMAD4 expression with SMAD4 siRNA or SMAD4 shRNA and overexpressed SMAD4 in SMAD4 mutant pancreatic cancer cells followed by clonogenic survival assay to evaluate their effects on cell radioresistance. To study the mechanism of radioresistance, the effects of SMAD4 loss on reactive oxygen species (ROS) and autophagy were determined by flow cytometry and immunoblot analysis, respectively. Furthermore, we measured radioresistance by clonogenic survival assay after treatment with autophagy inhibitor (Chloroquine) and ROS inhibitor (N-acetyl-l-cysteine) in SMAD4-depleted pancreatic cancer cells. Finally, the effects of SMAD4 on radioresistance were also confirmed in an orthotopic tumor model derived from SMAD4-depleted Panc-1 cells.Results:SMAD4-depleted pancreatic cancer cells were more resistant to radiotherapy based on clonogenic survival assay. Overexpression of wild-type SMAD4 in SMAD4-mutant cells rescued their radiosensitivity. Radioresistance mediated by SMAD4 depletion was associated with persistently higher levels of ROS and radiation-induced autophagy. Finally, SMAD4 depletion induced in vivo radioresistance in Panc-1-derived orthotopic tumor model (P = 0.038). More interestingly, we observed that the protein level of SMAD4 is inversely correlated with autophagy in orthotopic tumor tissue samples.Conclusions: Our results demonstrate that defective SMAD4 is responsible for radioresistance in pancreatic cancer through induction of ROS and increased level of radiation-induced autophagy. Clin Cancer Res; 24(13); 3176-85. ©2018 AACR.
Collapse
Affiliation(s)
- Feng Wang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Experimental Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Han-Cheon Kim
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Dickson Kirui
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas. .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York.,Houston Methodist Cancer Center, Houston, Texas
| |
Collapse
|
22
|
Wang L, Tan RZ, Zhang ZX, Yin R, Zhang YL, Cui WJ, He T. Association between Twist and multidrug resistance gene-associated proteins in Taxol ®-resistant MCF-7 cells and a 293 cell model of Twist overexpression. Oncol Lett 2017; 15:1058-1066. [PMID: 29399166 PMCID: PMC5772891 DOI: 10.3892/ol.2017.7438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol® resistance in cells, a Taxol®-resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol®) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol®-resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol®, Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
Collapse
Affiliation(s)
- Li Wang
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui-Zhi Tan
- Research Center of Combined Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi-Xia Zhang
- Department of Medicine, Zaozhuang Vocational College, Zaozhuang, Shandong 277800, P.R. China
| | - Rui Yin
- Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yong-Liang Zhang
- Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei-Jia Cui
- Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, Research Center for Preclinical Medicine and College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
23
|
Yan T, Li HY, Wu JS, Niu Q, Duan WH, Han QZ, Ji WM, Zhang T, Lv W. Astaxanthin inhibits gemcitabine-resistant human pancreatic cancer progression through EMT inhibition and gemcitabine resensitization. Oncol Lett 2017; 14:5400-5408. [PMID: 29098031 PMCID: PMC5652142 DOI: 10.3892/ol.2017.6836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer rapidly acquires resistance to chemotherapy resulting in its being difficult to treat. Gemcitabine is the current clinical chemotherapy strategy; however, owing to gemcitabine resistance, it is only able to prolong the life of patients with pancreatic cancer for a limited number of months. Understanding the underlying molecular mechanisms of gemcitabine resistance and selecting a suitable combination of agents for the treatment of pancreatic cancer is required. Astaxanthin (ASX) is able to resensitize gemcitabine-resistant human pancreatic cancer cells (GR-HPCCs) to gemcitabine. ASX was identified to upregulate human equilibrative nucleoside transporter 1 (hENT1) and downregulate ribonucleoside diphosphate reductase (RRM) 1 and 2 to enhance gemcitabine-induced cell death in GR-HPCCs treated with gemcitabine, and also downregulates TWIST1 and ZEB1 to inhibit the gemcitabine-induced epithelial-mesenchymal transition (EMT) phenotype in GR-HPCCs and to mediate hENT1, RRM1 and RRM2. Furthermore, ASX acts through the hypoxia-inducible factor 1α/signal transducer and activator of transcription 3 signaling pathway to mediate TWIST1, ZEB1, hENT1, RRM1 and RRM2, regulating the gemcitabine-induced EMT phenotype and gemcitabine-induced cell death. Co-treatment with ASX and gemcitabine in a tumor xenograft model induced by GR-HPCCs supported the in vitro results. The results of the present study provide a novel therapeutic strategy for the treatment of gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Tao Yan
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Hai-Ying Li
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Jian-Song Wu
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Qiang Niu
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Wei-Hong Duan
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Qing-Zeng Han
- Surgical Department, Qinghe County Central Hospital, Qinghe, Xingtai, Hebei 054800, P.R. China
| | - Wang-Ming Ji
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Wei Lv
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| |
Collapse
|
24
|
Gemcitabine-Induced Autophagy Protects Human Lung Cancer Cells from Apoptotic Death. Lung 2016; 194:959-966. [PMID: 27604425 DOI: 10.1007/s00408-016-9936-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE Gemcitabine has been used as a therapeutic drug combined with cisplatin for the treatment of lung cancer patients. However, the prognosis is poor due to acquired resistance. Accumulating studies have revealed that autophagy may contribute to the drug resistance. Therefore, the present study is aimed to clarify the mechanisms underlying gemcitabine-acquired resistance. METHODS SPC-A1 and A549 cells were incubated with gemcitabine followed by assessment of cell viability with MTT assays. GFP-LC3 transient transfection, MDC staining, and transmission electron microscopy were used to detect the change of autophagy at morphological level. Flow cytometry was used to monitor the effect of 3-MA on gemcitabine-induced apoptosis. Western blot analysis was used to detect the expression of p62, LC3, Beclin-1, ATG5, activated caspase 3, Bax, BNIP3, BNIP3L, and Bcl-2. RESULTS Our study showed that gemcitabine significantly induced both autophagy and apoptosis in human lung cancer cells SPC-A1 and A549. Of interest was that when autophagy was inhibited by 3-MA, the gemcitabine-induced apoptosis was effectively enhanced, suggesting that gemcitabine can activate autophagy to impair the chemosensitivity of lung cancer cells. Furthermore, the inhibition of autophagy by 3-MA further increased the expression of activated caspase 3, Bax, BNIP3, and BNIP3L, all are critical apoptotic mediators. Contrarily, 3-MA treatment further decreased the expression of Bcl-2, which is an important anti-apoptotic protein. CONCLUSION Our study indicated that autophagy protected human lung cancer cells from gemcitabine-induced apoptosis, and the combined use of gemcitabine and an autophagic inhibitor in lung cancer patients may be an effective therapeutic strategy.
Collapse
|
25
|
MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Lett 2016; 373:130-137. [DOI: 10.1016/j.canlet.2016.01.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/25/2023]
|