1
|
Pinheiro da Silva F. Transcriptomics in Human Septic Shock: State of the Art. Surg Infect (Larchmt) 2024. [PMID: 39718937 DOI: 10.1089/sur.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Background: Septic shock is a complex syndrome characterized by signs of intense systemic inflammation and a profound dysregulation of the immune response. Large-scale gene expression analysis is a valuable tool in this scenario because sepsis affects various cellular components and signaling pathways. Results: In this article, we provide an overview of the transcriptomic studies that investigated human sepsis from 2007 to 2024, highlighting their major contributions. Conclusions: The field, however, still faces substantial limitations and several challenges. To advance further, we believe that standardization of sample collection and data analysis, preservation of cell and tissue architecture, and integration with other omics techniques are crucial for a broader understanding of this lethal disease.
Collapse
Affiliation(s)
- Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Miao Y, Xie L, Chen S, Zhang X, Liu W, Xie P. Ketogenic diet in treating sepsis-related acquired weakness: is it friend or foe? Front Nutr 2024; 11:1484856. [PMID: 39668897 PMCID: PMC11636000 DOI: 10.3389/fnut.2024.1484856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background Sepsis is the body's extreme response to an infection leading to organ dysfunction. Sepsis-related acquired weakness (SAW), a critical illness closely related to metabolic disorders, is characterized by generalized sepsis-induced skeletal muscle weakness, mainly manifesting as symmetrical atrophy of respiratory and limb muscles. Muscle accounts for 40% of the body's total mass and is one of the major sites of glucose and energy absorption. Diet affects skeletal muscle metabolism, which further impacts physiology and signaling pathways. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has shown benefits in patients with a variety of neuromuscular disorders. Patients with SAW are in a hypermetabolic state and can consume approximately 1% of total body muscle mass in a day. Due to the decreased total body energy expenditure secondary to starvation, skeletal muscles enter a low metabolic state, with reduced gluconeogenesis and protein consumption and elevated levels of ketone bodies. The latest research suggests that KD may be a new strategy for SAW prevention and treatment, but its mechanism is still unclear. Objective Our article aims to explore the effect and mechanism of KD on SAW. And we hope that our review will inspire further research on the KD and foster the exploration of novel strategies for combating SAW. Methods Search medical databases and related academic websites, using keywords such as "Sepsis-related acquired weakness," "ketogenic diet," and "skeletal muscle," and select representative literature. Using the method of induction and summary, analyze the effect and mechanism of KD on SAW. Results Compared with early nutrition, KD has a more protective effect on SAW, but its mechanism is complex. Firstly, KD can alter energy metabolism substrates to affect SAW's energy metabolism; Secondly, KD can directly act as a signaling molecule to improve mitochondrial function in skeletal muscle and stimulate skeletal muscle regeneration signaling molecules; Thirdly, KD can affect the gut microbiota to exert anti-inflammatory effects, enhance immunity, and thus protect SAW. Conclusion KD has a protective effect on SAW, which includes improving energy metabolism, stimulating muscle regeneration signals, optimizing gut microbiota composition, and reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaoming Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Li N, Deng J, Zhang J, Yu F, Ye F, Hao L, Li S, Hu X. A New Strategy for Targeting UCP2 to Modulate Glycolytic Reprogramming as a Treatment for Sepsis A New Strategy for Targeting UCP2. Inflammation 2024; 47:1634-1647. [PMID: 38429403 PMCID: PMC11549132 DOI: 10.1007/s10753-024-01998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fei Yu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanghang Ye
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Koutroulis I, Kratimenos P, Hoptay C, O’Brien WN, Sanidas G, Byrd C, Triantafyllou M, Goldstein E, Jablonska B, Bharadwaj M, Gallo V, Freishtat R. Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy. iScience 2024; 27:110573. [PMID: 39165840 PMCID: PMC11334791 DOI: 10.1016/j.isci.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that results in high mortality and long-term sequela. The central nervous system (CNS) is susceptible to injury from infectious processes, which can lead to clinical symptoms of septic encephalopathy (SE). SE is linked to a profound energetic deficit associated with immune dysregulation. Here, we show that intravenous administration of adipose tissue mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) in septic mice improved disease outcomes by reducing SE clinical severity, restoring aerobic metabolism, and lowering pro-inflammatory cytokines in the cerebellum, a key region affected by SE. Our high throughput analysis showed that MSC-derived sEVs partially reversed sepsis-induced transcriptomic changes, highlighting the potential association of miRNA regulators in the cerebellum of MSC-derived sEV-treated mice with miRNAs identified in sEV cargo. MSC-derived sEVs could serve as a promising therapeutic agent in SE through their favorable immunometabolic properties.
Collapse
Affiliation(s)
- Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Panagiotis Kratimenos
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pediatrics, Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Claire Hoptay
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Wade N. O’Brien
- Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - Georgios Sanidas
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Chad Byrd
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Evan Goldstein
- Augusta University Medical College of Georgia, Augusta, GA 30912, USA
| | - Beata Jablonska
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Vittorio Gallo
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| |
Collapse
|
6
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
7
|
Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med 2023; 12:139-152. [PMID: 37397587 PMCID: PMC10308342 DOI: 10.5492/wjccm.v12.i3.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction. Mitochondrial function has been shown to be severely impaired during the early phase of critical illness, with a reduction in biogenesis, increased generation of reactive oxygen species and a decrease in adenosine triphosphate synthesis of up to 50%. Mitochondrial dysfunction can be assessed using mitochondrial DNA concentration and respirometry assays, particularly in peripheral mononuclear cells. Isolation of monocytes and lymphocytes seems to be the most promising strategy for measuring mitochondrial activity in clinical settings because of the ease of collection, sample processing, and clinical relevance of the association between metabolic alterations and deficient immune responses in mononuclear cells. Studies have reported alterations in these variables in patients with sepsis compared with healthy controls and non-septic patients. However, few studies have explored the association between mitochondrial dysfunction in immune mononuclear cells and unfavorable clinical outcomes. An improvement in mitochondrial parameters in sepsis could theoretically serve as a biomarker of clinical recovery and response to oxygen and vasopressor therapies as well as reveal unexplored pathophysiological mechanistic targets. These features highlight the need for further studies on mitochondrial metabolism in immune cells as a feasible tool to evaluate patients in intensive care settings. The evaluation of mitochondrial metabolism is a promising tool for the evaluation and management of critically ill patients, especially those with sepsis. In this article, we explore the pathophysiological aspects, main methods of measurement, and the main studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91350200, Brazil
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Brazilian Research in Intensive Care Network-BRICNet, São Paulo 04039-002, Brazil
| | - Caroline Deutschendorf
- Infection Control Committee, Hospital de Clínicas de Porto Alegre, Porto Alegre 90410-000, Brazil
| | - Luis Valmor Cruz Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
8
|
Laight BJ, Jawa NA, Tyryshkin K, Maslove DM, Boyd JG, Greer PA. Establishing the role of the FES tyrosine kinase in the pathogenesis, pathophysiology, and severity of sepsis and its outcomes. Front Immunol 2023; 14:1145826. [PMID: 37122758 PMCID: PMC10140553 DOI: 10.3389/fimmu.2023.1145826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Sepsis is a result of initial over-activation of the immune system in response to an infection or trauma that results in reduced blood flow and life-threatening end-organ damage, followed by suppression of the immune system that prevents proper clearance of the infection or trauma. Because of this, therapies that not only limit the activation of the immune system early on, but also improve blood flow to crucial organs and reactivate the immune system in late-stage sepsis, may be effective treatments. The tyrosine kinase FES may fulfill this role. FES is present in immune cells and serves to limit immune system activation. We hypothesize that by enhancing FES in early sepsis and inhibiting its effects in late sepsis, the severity and outcome of septic illness can be improved. Methods and analysis In vitro and in vivo modeling will be performed to determine the degree of inflammatory signaling, cytokine production, and neutrophil extracellular trap (NET) formation that occurs in wild-type (WT) and FES knockout (FES-/- ) mice. Clinically available treatments known to enhance or inhibit FES expression (lorlatinib and decitabine, respectively), will be used to explore the impact of early vs. late FES modulation on outcomes in WT mice. Bioinformatic analysis will be performed to examine FES expression levels in RNA transcriptomic data from sepsis patient cohorts, and correlate FES expression data with clinical outcomes (diagnosis of sepsis, illness severity, hospital length-of-stay). Ethics and dissemination Ethics approval pending from the Queen's University Health Sciences & Affiliated Teaching Hospitals Research Ethics Board. Results will be disseminated through scientific publications and through lay summaries to patients and families.
Collapse
Affiliation(s)
- Brian J. Laight
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Queen’s Cancer Research Institute, Queen’s University, Kingston, Ontario, ON, Canada
| | - Natasha A. Jawa
- School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Centre for Neuroscience Studies, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
| | - Kathrin Tyryshkin
- School of Computing, Queen’s University, Kingston, Ontario, ON, Canada
| | - David M. Maslove
- Division of Medicine and Critical Care Medicine, Department of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Departments of Medicine and Critical Care Medicine, Kingston General Hospital, Kingston, Ontario, ON, Canada
| | - J. Gordon Boyd
- Centre for Neuroscience Studies, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Division of Medicine and Critical Care Medicine, Department of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Departments of Medicine and Critical Care Medicine, Kingston General Hospital, Kingston, Ontario, ON, Canada
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, ON, Canada
- Queen’s Cancer Research Institute, Queen’s University, Kingston, Ontario, ON, Canada
| |
Collapse
|
9
|
Liu W, Liu T, Zheng Y, Xia Z. Metabolic Reprogramming and Its Regulatory Mechanism in Sepsis-Mediated Inflammation. J Inflamm Res 2023; 16:1195-1207. [PMID: 36968575 PMCID: PMC10038208 DOI: 10.2147/jir.s403778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by an infection that can lead to multiple organ failure. Sepsis alters energy metabolism, leading to metabolic reprogramming of immune cells, which consequently disrupts innate and adaptive immune responses, triggering hyperinflammation and immunosuppression. This review summarizes metabolic reprogramming and its regulatory mechanism in sepsis-induced hyperinflammation and immunosuppression, highlights the significance and intricacies of immune cell metabolic reprogramming, and emphasizes the pivotal role of mitochondria in metabolic regulation and treatment of sepsis. This review provides an up-to-date overview of the relevant literature to inform future research directions in understanding the regulation of sepsis immunometabolism. Metabolic reprogramming has great promise as a new target for sepsis treatment in the future.
Collapse
Affiliation(s)
- Wenzhang Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Correspondence: Yongjun Zheng; Zhaofan Xia, Email ;
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
10
|
Zagmignan A, Mendes YC, Mesquita GP, dos Santos GDC, Silva LDS, de Souza Sales AC, Castelo Branco SJDS, Junior ARC, Bazán JMN, Alves ER, de Almeida BL, Santos AKM, Firmo WDCA, Silva MRC, Cantanhede Filho AJ, de Miranda RDCM, da Silva LCN. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients 2023; 15:nu15041059. [PMID: 36839417 PMCID: PMC9962425 DOI: 10.3390/nu15041059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Endotoxemia is a condition caused by increasing levels of lipopolysaccharide (LPS) characterized by an impaired systemic response that causes multiple organ dysfunction. Lacticaseibacillus rhamnosus ATCC 9595 is a strain with probiotic potential which shows immunomodulatory properties. The incorporation of this bacterium in food rich in bioactive compounds, such as cupuaçu juice (Theobroma grandiflorum), could result in a product with interesting health properties. This work evaluated the effects of the oral administration of cupuaçu juice fermented with L. rhamnosus on the outcome of LPS-induced endotoxemia in mice. C57BL/6 mice (12/group) received oral doses (100 µL) of saline solution and unfermented or fermented cupuaçu juice (108 CFU/mL). After 5 days, the endotoxemia was induced by an intraperitoneal injection of LPS (10 mg/kg). The endotoxemia severity was evaluated daily using a score based on grooming behavior, mobility, presence of piloerection, and weeping eyes. After 6 h and 120 h, the mice (6/group) were euthanized for analysis of cell counts (in peritoneal lavage and serum) and organ weight. L. rhamnosus grew in cupuaçu juice and produced organic acids without the need for supplementation. The bacteria counts were stable in the juice during storage at 4 °C for 28 days. The fermentation with L. rhamnosus ATCC 9595 changed the metabolites profile of cupuaçu juice due to the biotransformation and enhancement of some compounds. In general, the administration of L. rhamnosus-fermented juice allowed a significant improvement in several characteristics of endotoxemic status (weight loss, hypothermia, severity index, cell migration). In addition, treatment with fermented juice significantly reduced the weight of the spleen, liver, intestine, and kidneys compared to the saline-treated endotoxemic group. Taken together, our data show that short-term intake therapy of cupuaçu juice fermented with L. rhamnosus ATCC 9595 can reduce systemic inflammation in an experimental model of LPS-induced endotoxemia in mice.
Collapse
Affiliation(s)
- Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Laboratório de Microbiologia Ambiental, Universidade CEUMA, São Luís 65075-120, Brazil
- Correspondence:
| | - Yasmim Costa Mendes
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | | | | | | - Edinalva Rodrigues Alves
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | - Anne Karoline Maiorana Santos
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | - Wellyson da Cunha Araújo Firmo
- Programa de Pós-Graduação em Gestão de Serviços e Programas de Saúde, Universidade CEUMA, São Luís 65075-120, Brazil
- Centro de Ciências da Saúde, Campus Imperatriz, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz 65900-000, MA, Brazil
| | | | - Antônio José Cantanhede Filho
- Laboratório de Extração e Cromatografia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Monte Castelo, São Luís 65030-005, MA, Brazil
| | | | | |
Collapse
|
11
|
Nedel WL, Strogulski NR, Rodolphi MS, Kopczynski A, Montes THM, Portela LV. SHORT-TERM INFLAMMATORY BIOMARKER PROFILES ARE ASSOCIATED WITH DEFICIENT MITOCHONDRIAL BIOENERGETICS IN LYMPHOCYTES OF SEPTIC SHOCK PATIENTS-A PROSPECTIVE COHORT STUDY. Shock 2023; 59:288-293. [PMID: 36795959 DOI: 10.1097/shk.0000000000002055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. Routine, complex I, complex II respiration, and biochemical coupling efficiency were measured to evaluate mitochondrial activity. We measured IL-1ß, IL-6, IL-10, total lymphocyte count, and C-reactive protein levels on days 1 and 3 of septic shock management as well as mitochondrial variables. The variability of these measurements was evaluated using delta counts (days 3-1 counts). Results: Sixty-four patients were included in this analysis. There was a negative correlation between complex II respiration and IL-1ß (Spearman ρ, -0.275; P = 0.028). Biochemical coupling efficiency at day 1 was negative correlated with IL-6: Spearman ρ, -0.247; P = 0.05. Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.
Collapse
|
12
|
Njunge JM, Tickell K, Diallo AH, Sayeem Bin Shahid ASM, Gazi MA, Saleem A, Kazi Z, Ali S, Tigoi C, Mupere E, Lancioni CL, Yoshioka E, Chisti MJ, Mburu M, Ngari M, Ngao N, Gichuki B, Omer E, Gumbi W, Singa B, Bandsma R, Ahmed T, Voskuijl W, Williams TN, Macharia A, Makale J, Mitchel A, Williams J, Gogain J, Janjic N, Mandal R, Wishart DS, Wu H, Xia L, Routledge M, Gong YY, Espinosa C, Aghaeepour N, Liu J, Houpt E, Lawley TD, Browne H, Shao Y, Rwigi D, Kariuki K, Kaburu T, Uhlig HH, Gartner L, Jones K, Koulman A, Walson J, Berkley J. The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia. Gates Open Res 2022; 6:77. [PMID: 36415883 PMCID: PMC9646488 DOI: 10.12688/gatesopenres.13635.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirkby Tickell
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - Abdoulaye Hama Diallo
- Department of Public Health, Faculty of Health Sciences, University of Ouagadougou, Ouagadougou, Burkina Faso
| | | | - Md. Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ali Saleem
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Zaubina Kazi
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Syed Ali
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Caroline Tigoi
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Emily Yoshioka
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Moses Mburu
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Moses Ngari
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Narshion Ngao
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bonface Gichuki
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Wilson Gumbi
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benson Singa
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Bandsma
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biomedical Sciences, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Wieger Voskuijl
- Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Centre for Global Child Health & Emma Children’s Hospital, Amsterdam, The Netherlands
| | - Thomas N. Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alex Macharia
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | | | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hang Wu
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Lei Xia
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Michael Routledge
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Camilo Espinosa
- Departments of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Yan Shao
- Wellcome Sanger Institute, Hinxton, UK
| | - Doreen Rwigi
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kevin Kariuki
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Timothy Kaburu
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey Jones
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children, London, UK
| | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Cambridge, UK
| | - Judd Walson
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - James Berkley
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
14
|
He Y, Huang B, Yang Y, Song W, Fan Y, Zhang L, Liu G. MicroRNA‐16‐5p exacerbates sepsis by upregulating aerobic glycolysis via SIRT3‐SDHA axis. Cell Biol Int 2022; 46:2207-2219. [DOI: 10.1002/cbin.11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xian He
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| | - Bo‐Lun Huang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Yi‐Yu Yang
- Department of PICU Guangzhou Women and Children's Medical Center Guangzhou Guangdong People's Republic of China
| | - Wen‐Xiu Song
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Yong‐Bo Fan
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Li‐Mei Zhang
- Department of Pediatrics The Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong People's Republic of China
| | - Guo‐Sheng Liu
- Department of Pediatrics The First Affiliated Hospital of Jinan University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
15
|
Alcamo AM, Weiss SL, Fitzgerald JC, Kirschen MP, Loftis LL, Tang SF, Thomas NJ, Nadkarni VM, Nett ST. Outcomes Associated With Timing of Neurologic Dysfunction Onset Relative to Pediatric Sepsis Recognition. Pediatr Crit Care Med 2022; 23:593-605. [PMID: 36165937 PMCID: PMC9524404 DOI: 10.1097/pcc.0000000000002979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES To compare outcomes associated with timing-early versus late-of any neurologic dysfunction during pediatric sepsis. DESIGN Secondary analysis of a cross-sectional point prevalence study. SETTING A total of 128 PICUs in 26 countries. PATIENTS Less than 18 years with severe sepsis on 5 separate days (2013-2014). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients were categorized as having either no neurologic dysfunction or neurologic dysfunction (i.e., present at or after sepsis recognition), which was defined as Glasgow Coma Scale score less than 5 and/or fixed dilated pupils. Our primary outcome was death or new moderate disability (i.e., Pediatric Overall [or Cerebral] Performance Category score ≥3 and change ≥1 from baseline) at hospital discharge, and 87 of 567 severe sepsis patients (15%) had neurologic dysfunction within 7 days of sepsis recognition (61 at sepsis recognition and 26 after sepsis recognition). Primary site of infection varied based on presence of neurologic dysfunction. Death or new moderate disability occurred in 161 of 480 (34%) without neurologic dysfunction, 45 of 61 (74%) with neurologic dysfunction at sepsis recognition, and 21 of 26 (81%) with neurologic dysfunction after sepsis recognition (p < 0.001 across all groups). On multivariable analysis, in comparison with those without neurologic dysfunction, neurologic dysfunction whether at sepsis recognition or after was associated with increased odds of death or new moderate disability (adjusted odds ratio, 4.9 [95% CI, 2.3-10.1] and 10.7 [95% CI, 3.8-30.5], respectively). We failed to identify a difference between these adjusted odds ratios of death or new moderate disability that would indicate a differential risk of outcome based on timing of neurologic dysfunction (p = 0.20). CONCLUSIONS In this severe sepsis international cohort, the presence of neurologic dysfunction during sepsis is associated with worse outcomes at hospital discharge. The impact of early versus late onset of neurologic dysfunction in sepsis on outcome remains unknown, and further work is needed to better understand timing of neurologic dysfunction onset in pediatric sepsis.
Collapse
Affiliation(s)
- Alicia M. Alcamo
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott L. Weiss
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julie C. Fitzgerald
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew P. Kirschen
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laura L. Loftis
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Swee Fong Tang
- Pediatric Intensive Care Unit, Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neal J. Thomas
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Critical Care Medicine, Penn State Hershey Children’s Hospital, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Vinay M. Nadkarni
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sholeen T. Nett
- Department of Pediatric Critical Care Medicine, Children’s Hospital at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
16
|
Njunge JM, Tickell K, Diallo AH, Sayeem Bin Shahid ASM, Gazi MA, Saleem A, Kazi Z, Ali S, Tigoi C, Mupere E, Lancioni CL, Yoshioka E, Chisti MJ, Mburu M, Ngari M, Ngao N, Gichuki B, Omer E, Gumbi W, Singa B, Bandsma R, Ahmed T, Voskuijl W, Williams TN, Macharia A, Makale J, Mitchel A, Williams J, Gogain J, Janjic N, Mandal R, Wishart DS, Wu H, Xia L, Routledge M, Gong YY, Espinosa C, Aghaeepour N, Liu J, Houpt E, Lawley TD, Browne H, Shao Y, Rwigi D, Kariuki K, Kaburu T, Uhlig HH, Gartner L, Jones K, Koulman A, Walson J, Berkley J. The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia. Gates Open Res 2022; 6:77. [PMID: 36415883 PMCID: PMC9646488 DOI: 10.12688/gatesopenres.13635.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 02/15/2024] Open
Abstract
Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725.
Collapse
Affiliation(s)
- James M. Njunge
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirkby Tickell
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - Abdoulaye Hama Diallo
- Department of Public Health, Faculty of Health Sciences, University of Ouagadougou, Ouagadougou, Burkina Faso
| | | | - Md. Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ali Saleem
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Zaubina Kazi
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Syed Ali
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Karachi, Pakistan
| | - Caroline Tigoi
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Emily Yoshioka
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Moses Mburu
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Moses Ngari
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Narshion Ngao
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bonface Gichuki
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Wilson Gumbi
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benson Singa
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Bandsma
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biomedical Sciences, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Wieger Voskuijl
- Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Centre for Global Child Health & Emma Children’s Hospital, Amsterdam, The Netherlands
| | - Thomas N. Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alex Macharia
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | | | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hang Wu
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Lei Xia
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Michael Routledge
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Camilo Espinosa
- Departments of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Yan Shao
- Wellcome Sanger Institute, Hinxton, UK
| | - Doreen Rwigi
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kevin Kariuki
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Timothy Kaburu
- The Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey Jones
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children, London, UK
| | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Cambridge, UK
| | - Judd Walson
- Global Health and Epidemiology, University of Washington, Seattle, Seattle, USA
| | - James Berkley
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Chen F, Wu R, Liu J, Kang R, Li J, Tang D. The STING1-MYD88 complex drives ACOD1/IRG1 expression and function in lethal innate immunity. iScience 2022; 25:104561. [PMID: 35769880 PMCID: PMC9234224 DOI: 10.1016/j.isci.2022.104561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
ACOD1 (also known as IRG1) has emerged as a regulator of immunometabolism that operates by producing metabolite itaconate. Here, we report a key role of STING1 (also known as STING and TMEM173) in mediating ACOD1 expression in myeloid cells in response to toll-like receptor (TLR) signaling. The activation of STING1 through exogenous cyclic dinucleotides (e.g., 3'3'-cGAMP) or endogenous gain-of-function mutation (e.g., V155M) enhances lipopolysaccharide-induced ACOD1 expression and itaconate production in macrophages and monocytes, whereas the deletion of STING1 blocks this process. The adaptor protein MYD88, instead of DNA sensor cyclic GMP-AMP synthase (CGAS), favors STING1-dependent ACOD1 expression. Mechanistically, MYD88 directly blocks autophagic degradation of STING1 and causes subsequent IRF3/JUN-mediated ACOD1 gene transcription. Consequently, the conditional deletion of STING1 in myeloid cells fails to produce ACOD1 and itaconate, thereby protecting mice against endotoxemia and polymicrobial sepsis. Our results, therefore, establish a direct link between TLR4 signaling and ACOD1 expression through the STING1-MYD88 complex during septic shock.
Collapse
Affiliation(s)
- Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Nadamuni M, Venable AH, Huen SC. When a calorie isn't just a calorie: a revised look at nutrition in critically ill patients with sepsis and acute kidney injury. Curr Opin Nephrol Hypertens 2022; 31:358-366. [PMID: 35703214 PMCID: PMC9248034 DOI: 10.1097/mnh.0000000000000801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss how nutritional management could be optimized to promote protective metabolism in sepsis and associated acute kidney injury. RECENT FINDINGS Recent evidence suggests that sepsis is a metabolically distinct critical illness and that certain metabolic alterations, such as activation of fasting metabolism, may be protective in bacterial sepsis. These findings may explain the lack of survival benefit in recent randomized controlled trials of nutrition therapy for critical illness. These trials are limited by cohort heterogeneity, combining both septic and nonseptic critical illness, and the use of inaccurate caloric estimates to determine energy requirements. These energy estimates are also unable to provide information on specific substrate preferences or the capacity for substrate utilization. As a result, high protein feeding beyond the capacity for protein synthesis could cause harm in septic patients. Excess glucose and insulin exposures suppress fatty acid oxidation, ketogenesis and autophagy, of which emerging evidence suggest are protective against sepsis associated organ damage such as acute kidney injury. SUMMARY Distinguishing pathogenic and protective sepsis-related metabolic changes are critical to enhancing and individualizing nutrition management for critically ill patients.
Collapse
Affiliation(s)
| | | | - Sarah C Huen
- Department of Internal Medicine
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW, Australia. .,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.
| | - Anthony S McLean
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW, Australia
| |
Collapse
|
20
|
She H, Tan L, Zhou Y, Zhu Y, Ma C, Wu Y, Du Y, Liu L, Hu Y, Mao Q, Li T. The Landscape of Featured Metabolism-Related Genes and Imbalanced Immune Cell Subsets in Sepsis. Front Genet 2022; 13:821275. [PMID: 35265105 PMCID: PMC8901109 DOI: 10.3389/fgene.2022.821275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a heterogeneous disease state triggered by an uncontrolled inflammatory host response with high mortality and morbidity in severely ill patients. Unfortunately, the treatment effectiveness varies among sepsis patients and the underlying mechanisms have yet to be elucidated. The present aim is to explore featured metabolism-related genes that may become the biomarkers in patients with sepsis. In this study, differentially expressed genes (DEGs) between sepsis and non-sepsis in whole blood samples were identified using two previously published datasets (GSE95233 and GSE54514). A total of 66 common DEGs were determined, namely, 52 upregulated and 14 downregulated DEGs. The Gene Set Enrichment Analysis (GSEA) results indicated that these DEGs participated in several metabolic processes including carbohydrate derivative, lipid, organic acid synthesis oxidation reduction, and small-molecule biosynthesis in patients with sepsis. Subsequently, a total of 8 hub genes were screened in the module with the highest score from the Cytoscape plugin cytoHubba. Further study showed that these hub DEGs may be robust markers for sepsis with high area under receiver operating characteristic curve (AUROC). The diagnostic values of these hub genes were further validated in myocardial tissues of septic rats and normal controls by untargeted metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Immune cell infiltration analysis revealed that different infiltration patterns were mainly characterized by B cells, T cells, NK cells, monocytes, macrophages, dendritics, eosinophils, and neutrophils between sepsis patients and normal controls. This study indicates that metabolic hub genes may be hopeful biomarkers for prognosis prediction and precise treatment in sepsis patients.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
21
|
Malavika M, Sanju S, Poorna MR, Vishnu Priya V, Sidharthan N, Varma P, Mony U. Role of myeloid derived suppressor cells in sepsis. Int Immunopharmacol 2022; 104:108452. [PMID: 34996010 DOI: 10.1016/j.intimp.2021.108452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Sepsis is a serious and menacing organ dysfunction that occur due to dysregulated response of the host towards the infection. This organ dysfunction may lead to sepsis with intense cellular, metabolic and circulatory dysregulation, multiple organ failure and high mortality. Lymphopenia is observed in two-third of sepsis patients and a significant depletion of lymphocytes occurs in non-survivors compared to sepsis survivors. Myeloid derived suppressor cells (MDSCs) gave new insights into sepsis-associated lymphopenia. If MDSC expansion and its tissue-infiltration persist, it can induce significant pathophysiology including lymphopenia, host immunosuppression and immune-paralysis that contributes to worsened patient outcomes. This review focuses on MDSCs and its subsets, the role of MDSCs in infection, sepsis and septic shock.
Collapse
Affiliation(s)
- M Malavika
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Neeraj Sidharthan
- Department of Clinical Hematology and Stem Cell Transplant, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
22
|
Song Z, Meng L, He Z, Huang J, Li F, Feng J, Jia Z, Huang Y, Liu W, Liu A, Fang H. LBP Protects Hepatocyte Mitochondrial Function Via the PPAR-CYP4A2 Signaling Pathway in a Rat Sepsis Model. Shock 2021; 56:1066-1079. [PMID: 33988537 DOI: 10.1097/shk.0000000000001808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To explore the role of LPS binding protein (LBP) in metabolism and optimize sepsis treatment. DESIGN A sepsis model was established by injecting LPS into LBP-/- rats and WT rats and observing changes in the liver over time (0, 1, 6, and 24 h). SETTING Detecting liver inflammation and injury. Optimizing the treatment of sepsis. SUBJECTS WT rats and LBP-/- rats. INTERVENTIONS We established a sepsis model by injecting LPS intravenously. MEASUREMENTS AND MAIN RESULTS First, we induced sepsis in WT and LBP-/- rats with LPS. The rats were sacrificed, and serum and liver samples were collected at 1, 6, and 24 h after LPS injection. We found that the deletion of LBP reduced LPS-induced liver inflammation and injury at 1 and 6 h. Ballooning degeneration was clearly present in LBP-/- rat livers at 24 h after LPS injection. We found that mitochondrial damage and reactive oxygen species (ROS) levels were higher in LBP-/- rat livers than in WT rat livers at 24 h after LPS injection. According to the transcriptomic results, the peroxisome proliferator-activated receptor (PPAR) pathway may be the reason for lesions in LBP-/- rats. To further investigate the function of PPARα in sepsis, we inhibited mTOR with rapamycin and examined mitochondrial injury and ROS levels. The levels of mitochondrial damage and ROS were reduced after LBP-/- rats were pretreated with rapamycin in the context of LPS-induced sepsis. Inhibiting CYP4a2, one of the PPARα-target gene products, reduced the level of LPS-induced ROS in LBP-/- rats. CONCLUSION LBP protects hepatic mitochondria against LPS-induced damage via the LBP-PPARα-CYP4a2 signaling pathway.
Collapse
Affiliation(s)
- Zichen Song
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Leilei Meng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Zhixiang He
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jing Huang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Fang Li
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jingjing Feng
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuoran Jia
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yue Huang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Liu
- Department of Clinical Laboratory, Binhu Hospital, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Liu T, Feng S, Zhang Y, Wang C. Commentary: Plasma Metabolic Profiling of Pediatric Sepsis in a Chinese Cohort. Front Cell Dev Biol 2021; 9:766357. [PMID: 34778274 PMCID: PMC8581402 DOI: 10.3389/fcell.2021.766357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Appiah MG, Park EJ, Akama Y, Nakamori Y, Kawamoto E, Gaowa A, Shimaoka M. Cellular and Exosomal Regulations of Sepsis-Induced Metabolic Alterations. Int J Mol Sci 2021; 22:ijms22158295. [PMID: 34361061 PMCID: PMC8347112 DOI: 10.3390/ijms22158295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a sustained systemic inflammatory condition involving multiple organ failures caused by dysregulated immune response to infections. Sepsis induces substantial changes in energy demands at the cellular level leading to metabolic reprogramming in immune cells and stromal cells. Although sepsis-associated organ dysfunction and mortality have been partly attributed to the initial acute hyperinflammation and immunosuppression precipitated by a dysfunction in innate and adaptive immune responses, the late mortality due to metabolic dysfunction and immune paralysis currently represent the major problem in clinics. It is becoming increasingly recognized that intertissue and/or intercellular metabolic crosstalk via endocrine factors modulates maintenance of homeostasis, and pathological events in sepsis and other inflammatory diseases. Exosomes have emerged as a novel means of intercellular communication in the regulation of cellular metabolism, owing to their capacity to transfer bioactive payloads such as proteins, lipids, and nucleic acids to their target cells. Recent evidence demonstrates transfer of intact metabolic intermediates from cancer-associated fibroblasts via exosomes to modify metabolic signaling in recipient cells and promote cancer progression. Here, we review the metabolic regulation of endothelial cells and immune cells in sepsis and highlight the role of exosomes as mediators of cellular metabolic signaling in sepsis.
Collapse
Affiliation(s)
- Michael G. Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Correspondence: (E.J.P.); (M.S.); Tel.: +81-59-231-6408 (E.J.P.); +81-59-231-5036 (M.S.)
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
| | - Yuki Nakamori
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan; (M.G.A.); (Y.A.); (Y.N.); (E.K.); (A.G.)
- Correspondence: (E.J.P.); (M.S.); Tel.: +81-59-231-6408 (E.J.P.); +81-59-231-5036 (M.S.)
| |
Collapse
|
25
|
The Effects of Biological Sex on Sepsis Treatments in Animal Models: A Systematic Review and a Narrative Elaboration on Sex- and Gender-Dependent Differences in Sepsis. Crit Care Explor 2021; 3:e0433. [PMID: 34151276 PMCID: PMC8205191 DOI: 10.1097/cce.0000000000000433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Preclinical studies provide an opportunity to evaluate the relationship between sex and sepsis, and investigate underlying mechanisms in a controlled experimental environment. The objective of our systematic review was to assess the impact of biological sex on treatment response to fluid and antibiotic therapy in animal models of sepsis. Furthermore, we provide a narrative elaboration of sex-dependent differences in preclinical models of sepsis. DATA SOURCES MEDLINE and Embase were searched from inception to March 16, 2020. STUDY SELECTION All studies reporting sex-stratified data comparing antibiotics and/or fluid resuscitation with a placebo or no treatment arm in an in vivo model of sepsis were included. DATA EXTRACTION Outcomes of interest were mortality (primary) and organ dysfunction (secondary). Risk of bias was assessed. Study selection and data extraction were conducted independently and in duplicate. DATA SYNTHESIS The systematic search returned 2,649 unique studies, and two met inclusion criteria. Both studies used cecal ligation and puncture models with imipenem/cilastatin antibiotics. No eligible studies investigated fluids. In one study, antibiotic therapy significantly reduced mortality in male, but not female, animals. The other study reported no sex differences in organ dysfunction. Both studies were deemed to be at a high overall risk of bias. CONCLUSIONS There is a remarkable and concerning paucity of data investigating sex-dependent differences in fluid and antibiotic therapy for the treatment of sepsis in animal models. This may reflect poor awareness of the importance of investigating sex-dependent differences. Our discussion therefore expands on general concepts of sex and gender in biomedical research and sex-dependent differences in key areas of sepsis research such as the cardiovascular system, immunometabolism, the microbiome, and epigenetics. Finally, we discuss current clinical knowledge, the potential for reverse translation, and directions for future studies. REGISTRATION PROSPERO CRD42020192738.
Collapse
|
26
|
Batabyal R, Freishtat N, Hill E, Rehman M, Freishtat R, Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int J Obes (Lond) 2021; 45:1163-1169. [PMID: 33727631 PMCID: PMC7961323 DOI: 10.1038/s41366-021-00804-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has emerged as a public health crisis and has placed a significant burden on healthcare systems. Patients with underlying metabolic dysfunction, such as type 2 diabetes mellitus and obesity, are at a higher risk for COVID-19 complications, including multi-organ dysfunction, secondary to a deranged immune response, and cellular energy deprivation. These patients are at a baseline state of chronic inflammation associated with increased susceptibility to the severe immune manifestations of COVID-19, which are triggered by the cellular hypoxic environment and cytokine storm. The altered metabolic profile and energy generation of immune cells affect their activation, exacerbating the imbalanced immune response. Key immunometabolic interactions may inform the development of an efficacious treatment for COVID-19. Novel therapeutic approaches with repurposed drugs, such as PPAR agonists, or newly developed molecules such as the antagomirs, which block microRNA function, have shown promising results. Those treatments, alone or in combination, target both immune and metabolic pathways and are ideal for septic COVID-19 patients with an underlying metabolic condition.
Collapse
Affiliation(s)
- Rachael Batabyal
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nathaniel Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
| | - Elaise Hill
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Muhammad Rehman
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ioannis Koutroulis
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
27
|
Al-Yousif N, Rawal S, Jurczak M, Mahmud H, Shah FA. Endogenous Glucose Production in Critical Illness. Nutr Clin Pract 2021; 36:344-359. [PMID: 33682953 DOI: 10.1002/ncp.10646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulation of endogenous glucose production (EGP) by hormonal, neuronal, and metabolic signaling pathways contributes to the maintenance of euglycemia under normal physiologic conditions. EGP is defined by the generation of glucose from substrates through glycogenolysis and gluconeogenesis, usually in fasted states, for local and systemic use. Abnormal increases in EGP are noted in patients with diabetes mellitus type 2, and elevated EGP may also impact the pathogenesis of nonalcoholic fatty liver disease and congestive heart failure. In this narrative review, we performed a literature search in PubMed to identify recently published English language articles characterizing EGP in critical illness. Evidence from preclinical and clinical studies demonstrates that critical illness can disrupt EGP through multiple mechanisms including increased systemic inflammation, counterregulatory hormone and catecholamine release, alterations in the hypothalamic-pituitary axis, insulin resistance, lactic acidosis, and iatrogenic insults such as vasopressors and glucocorticoids administered as part of clinical care. EGP contributes to hyperglycemia in critical illness when abnormally elevated and to hypoglycemia when abnormally depressed, each of which has been independently associated with increased mortality. Increased EGP may also promote protein catabolism that could worsen critical illness myopathy and impede recovery. Better understanding of the mechanisms and factors contributing to dysregulated EGP in critical illness may help in the development of therapeutic strategies that promote euglycemia, reduce intensive care unit-associated catabolism, and improve patient outcomes.
Collapse
Affiliation(s)
- Nameer Al-Yousif
- Department of Internal Medicine, UPMC Mercy Hospital, Pittsburgh, Pennsylvania, USA
| | - Sagar Rawal
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hussain Mahmud
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Faraaz Ali Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|