1
|
Preuß S, Multmeier J, Stenzel W, Major S, Ploner CJ, Storm C, Nee J, Leithner C, Endisch C. Survival, but not the severity of hypoxic-ischemic encephalopathy, is associated with higher mean arterial blood pressure after cardiac arrest: a retrospective cohort study. Front Cardiovasc Med 2024; 11:1337344. [PMID: 38774664 PMCID: PMC11106407 DOI: 10.3389/fcvm.2024.1337344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background This study investigates the association between the mean arterial blood pressure (MAP), vasopressor requirement, and severity of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). Methods Between 2008 and 2017, we retrospectively analyzed the MAP 200 h after CA and quantified the vasopressor requirements using the cumulative vasopressor index (CVI). Through a postmortem brain autopsy in non-survivors, the severity of the HIE was histopathologically dichotomized into no/mild and severe HIE. In survivors, we dichotomized the severity of HIE into no/mild cerebral performance category (CPC) 1 and severe HIE (CPC 4). We investigated the regain of consciousness, causes of death, and 5-day survival as hemodynamic confounders. Results Among the 350 non-survivors, 117 had histopathologically severe HIE while 233 had no/mild HIE, without differences observed in the MAP (73.1 vs. 72.0 mmHg, pgroup = 0.639). Compared to the non-survivors, 211 patients with CPC 1 and 57 patients with CPC 4 had higher MAP values that showed significant, but clinically non-relevant, MAP differences (81.2 vs. 82.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors (n = 54), who regained consciousness before death, had higher MAP values compared to those with no/mild HIE (n = 179), who remained persistently comatose (74.7 vs. 69.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors, who regained consciousness, required fewer vasopressors (CVI 2.1 vs. 3.6, pgroup < 0.001). Independent of the severity of HIE, the survivors were weaned faster from vasopressors (CVI 1.0). Conclusions Although a higher MAP was associated with survival in CA patients treated with a vasopressor-supported MAP target above 65 mmHg, the severity of HIE was not. Awakening from coma was associated with less vasopressor requirements. Our results provide no evidence for a MAP target above the current guideline recommendations that can decrease the severity of HIE.
Collapse
Affiliation(s)
- Sandra Preuß
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Multmeier
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Ada Health GmbH, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J. Ploner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Nee
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Leithner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Endisch
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
El-Menyar A, Wahlen BM. Cardiac arrest, stony heart, and cardiopulmonary resuscitation: An updated revisit. World J Cardiol 2024; 16:126-136. [PMID: 38576519 PMCID: PMC10989225 DOI: 10.4330/wjc.v16.i3.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The post-resuscitation period is recognized as the main predictor of cardiopulmonary resuscitation (CPR) outcomes. The first description of post-resuscitation syndrome and stony heart was published over 50 years ago. Major manifestations may include but are not limited to, persistent precipitating pathology, systemic ischemia/reperfusion response, post-cardiac arrest brain injury, and finally, post-cardiac arrest myocardial dysfunction (PAMD) after successful resuscitation. Why do some patients initially survive successful resuscitation, and others do not? Also, why does the myocardium response vary after resuscitation? These questions have kept scientists busy for several decades since the first successful resuscitation was described. By modifying the conventional modalities of resuscitation together with new promising agents, rescuers will be able to salvage the jeopardized post-resuscitation myocardium and prevent its progression to a dismal, stony heart. Community awareness and staff education are crucial for shortening the resuscitation time and improving short- and long-term outcomes. Awareness of these components before and early after the restoration of circulation will enhance the resuscitation outcomes. This review extensively addresses the underlying pathophysiology, management, and outcomes of post-resuscitation syndrome. The pattern, management, and outcome of PAMD and post-cardiac arrest shock are different based on many factors, including in-hospital cardiac arrest vs out-of-hospital cardiac arrest (OHCA), witnessed vs unwitnessed cardiac arrest, the underlying cause of arrest, the duration, and protocol used for CPR. Although restoring spontaneous circulation is a vital sign, it should not be the end of the game or lone primary outcome; it calls for better understanding and aggressive multi-disciplinary interventions and care. The development of stony heart post-CPR and OHCA remain the main challenges in emergency and critical care medicine.
Collapse
Affiliation(s)
- Ayman El-Menyar
- Department of Trauma and Vascular Surgery, Clinical Research, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha 24144, Qatar.
| | - Bianca M Wahlen
- Department of Anesthesiology, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
3
|
Nikolovski SS, Lazic AD, Fiser ZZ, Obradovic IA, Tijanic JZ, Raffay V. Recovery and Survival of Patients After Out-of-Hospital Cardiac Arrest: A Literature Review Showcasing the Big Picture of Intensive Care Unit-Related Factors. Cureus 2024; 16:e54827. [PMID: 38529434 PMCID: PMC10962929 DOI: 10.7759/cureus.54827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
As an important public health issue, out-of-hospital cardiac arrest (OHCA) requires several stages of high quality medical care, both on-field and after hospital admission. Post-cardiac arrest shock can lead to severe neurological injury, resulting in poor recovery outcome and increased risk of death. These characteristics make this condition one of the most important issues to deal with in post-OHCA patients hospitalized in intensive care units (ICUs). Also, the majority of initial post-resuscitation survivors have underlying coronary diseases making revascularization procedure another crucial step in early management of these patients. Besides keeping myocardial blood flow at a satisfactory level, other tissues must not be neglected as well, and maintaining mean arterial pressure within optimal range is also preferable. All these procedures can be simplified to a certain level along with using targeted temperature management methods in order to decrease metabolic demands in ICU-hospitalized post-OHCA patients. Additionally, withdrawal of life-sustaining therapy as a controversial ethical topic is under constant re-evaluation due to its possible influence on overall mortality rates in patients initially surviving OHCA. Focusing on all of these important points in process of managing ICU patients is an imperative towards better survival and complete recovery rates.
Collapse
Affiliation(s)
- Srdjan S Nikolovski
- Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago Health Science Campus, Maywood, USA
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Aleksandra D Lazic
- Emergency Center, Clinical Center of Vojvodina, Novi Sad, SRB
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Zoran Z Fiser
- Emergency Medicine, Department of Emergency Medicine, Novi Sad, SRB
| | - Ivana A Obradovic
- Anesthesiology, Resuscitation, and Intensive Care, Sveti Vračevi Hospital, Bijeljina, BIH
| | - Jelena Z Tijanic
- Emergency Medicine, Municipal Institute of Emergency Medicine, Kragujevac, SRB
| | - Violetta Raffay
- School of Medicine, European University Cyprus, Nicosia, CYP
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| |
Collapse
|
4
|
Smith D, Kenigsberg BB. Management of Patients After Cardiac Arrest. Crit Care Clin 2024; 40:57-72. [PMID: 37973357 DOI: 10.1016/j.ccc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cardiac arrest remains a significant cause of morbidity and mortality, although contemporary care now enables potential survival with good neurologic outcome. The core acute management goals for survivors of cardiac arrest are to provide organ support, sustain adequate hemodynamics, and evaluate the underlying cause of the cardiac arrest. In this article, the authors review the current state of knowledge and clinical intensive care unit practice recommendations for patients after cardiac arrest, particularly focusing on important areas of uncertainty, such as targeted temperature management, neuroprognostication, coronary evaluation, and hemodynamic targets.
Collapse
Affiliation(s)
- Damien Smith
- Department of Medicine, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Benjamin B Kenigsberg
- Department of Critical Care, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA; Division of Cardiology, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA.
| |
Collapse
|
5
|
Grand J, Møller JE, Hassager C, Schmidt H, Mølstrøm S, Boesgaard S, Meyer MAS, Josiassen J, Højgaard HF, Frydland M, Dahl JS, Obling LER, Bak M, Lind Jørgensen V, Thomsen JH, Wiberg S, Madsen SA, Nyholm B, Kjaergaard J. Impact of blood pressure targets on central hemodynamics during intensive care after out-of-hospital cardiac arrest. Resuscitation 2024; 194:110094. [PMID: 38103857 DOI: 10.1016/j.resuscitation.2023.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES The aim was to investigate the advanced hemodynamic effects of the two MAP-targets during intensive care on systemic hemodynamics in comatose patients after cardiac arrest. DESIGN Secondary analysis of a randomized controlled trial. SETTING Primary vasopressor used was per protocol norepinephrine. Hemodynamic monitoring was done with pulmonary artery catheters (PAC) and measurements were made on predefined time points. The primary endpoint of this substudy was the difference in cardiac index within 48 h from a repeated measurements-mixed model. Secondary endpoints included systemic vascular resistance index (SVRI), heart rate, and stroke volume index. PATIENTS Comatose survivors after out-of-hospital cardiac arrest. INTERVENTIONS The "Blood pressure and oxygenations targets after out-of-hospital cardiac arrest (BOX)"-trial was a randomized, controlled, double-blinded, multicenter-study comparing targeted mean arterial pressure (MAP) of 63 mmHg (MAP63) vs 77 mmHg (MAP77). MEASUREMENTS AND MAIN RESULTS Among 789 randomized patients, 730 (93%) patients were included in the hemodynamic substudy. From PAC-insertion (median 1 hours after ICU-admission) and the next 48 hours, the MAP77-group received significantly higher doses of norepinephrine (mean difference 0.09 µg/kg/min, 95% confidence interval (CI) 0.07-0.11, pgroup < 0.0001). Cardiac index was significantly increased (0.20 L/min/m2 (CI 0.12-0.28), pgroup < 0.0001) as was SVRI with an overall difference of (43 dynes m2/s/cm5 (CI 7-79); pgroup = 0.02). Heart rate was increased in the MAP77-group (4 beats/minute; CI 2-6, pgroup < 0.003), but stroke volume index was not (pgroup = 0.10). CONCLUSIONS Targeted MAP at 77 mmHg compared to 63 mmHg resulted in a higher dose of norepinephrine, increased cardiac index and SVRI. Heart rate was also increased, but stroke volume index was not affected by a higher blood pressure target.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, Amager-Hvidovre, Copenhagen, Denmark.
| | - Jacob E Møller
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Odense University Hospital, 5000 C Odense, Denmark; Clinical Institute University of Southern Denmark, Denmark
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Schmidt
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, 5000 Odense C, Denmark
| | - Simon Mølstrøm
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, 5000 Odense C, Denmark
| | - Søren Boesgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Jakob Josiassen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Martin Frydland
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jordi S Dahl
- Department of Cardiology, Odense University Hospital, 5000 C Odense, Denmark; Clinical Institute University of Southern Denmark, Denmark
| | | | - Mikkel Bak
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, 5000 Odense C, Denmark
| | - Vibeke Lind Jørgensen
- Department of Cardiothoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Hartvig Thomsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Wiberg
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Cardiothoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Aalbæk Madsen
- Department of Cardiothoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benjamin Nyholm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Beske RP, Obling LER, Bro-Jeppesen J, Nielsen N, Meyer MAS, Kjaergaard J, Johansson PI, Hassager C. The Effect of Targeted Temperature Management on the Metabolome Following Out-of-Hospital Cardiac Arrest. Ther Hypothermia Temp Manag 2023; 13:208-215. [PMID: 37219970 DOI: 10.1089/ther.2022.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Targeted temperature management (TTM) may moderate the injury from out-of-hospital cardiac arrest. Slowing the metabolism has been a suggested effect. Nevertheless, studies have found higher lactate levels in patients cooled to 33°C compared with 36°C even days from TTM cessation. Larger studies have not been performed on the TTM's effect on the metabolome. Accordingly, to explore the effect of TTM, we used ultra-performance liquid-mass spectrometry in a substudy of 146 patients randomized in the TTM trial to either 33°C or 36°C for 24 hours and quantified 60 circulating metabolites at the time of hospital arrival (T0) and 48 hours later (T48). From T0 to T48, profound changes to the metabolome were observed: tricarboxylic acid (TCA) cycle metabolites, amino acids, uric acid, and carnitine species all decreased. TTM significantly modified these changes in nine metabolites (Benjamini-Hochberg corrected false discovery rate <0.05): branched amino acids valine and leucine levels dropped more in the 33°C arm (change [95% confidence interval]: -60.9 μM [-70.8 to -50.9] vs. -36.0 μM [-45.8 to -26.3] and -35.5 μM [-43.1 to -27.8] vs. -21.2 μM [-28.7 to -13.6], respectively), whereas the TCA metabolites including malic acid and 2-oxoglutaric acid remained higher for the first 48 hours (-7.7 μM [-9.7 to -5.7] vs. -10.4 μM [-12.4 to -8.4] and -3 μM [-4.3 to -1.7] vs. -3.7 μM [-5 to -2.3]). Prostaglandin E2 only dropped in the TTM 36°C group. The results show that TTM affects the metabolism hours after normothermia have been reached. Clinical Trial Number: NCT01020916.
Collapse
Affiliation(s)
- Rasmus Paulin Beske
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niklas Nielsen
- Department of Clinical Sciences at Helsingborg, Lund University, Lund, Sweden
| | | | - Jesper Kjaergaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Pär Ingemar Johansson
- Department of Clinical Immunology, Center for Endotheliomics, CAG, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Behringer W, Skrifvars MB, Taccone FS. Postresuscitation management. Curr Opin Crit Care 2023; 29:640-647. [PMID: 37909369 DOI: 10.1097/mcc.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW To describe the most recent scientific evidence on ventilation/oxygenation, circulation, temperature control, general intensive care, and prognostication after successful resuscitation from adult cardiac arrest. RECENT FINDINGS Targeting a lower oxygen target (90-94%) is associated with adverse outcome. Targeting mild hypercapnia is not associated with improved functional outcomes or survival. There is no compelling evidence supporting improved outcomes associated with a higher mean arterial pressure target compared to a target of >65 mmHg. Noradrenalin seems to be the preferred vasopressor. A low cardiac index is common over the first 24 h but aggressive fluid loading and the use of inotropes are not associated with improved outcome. Several meta-analyses of randomized clinical trials show conflicting results whether hypothermia in the 32-34°C range as compared to normothermia or no temperature control improves functional outcome. The role of sedation is currently under evaluation. Observational studies suggest that the use of neuromuscular blockade may be associated with improved survival and functional outcome. Prophylactic antibiotic does not impact on outcome. No single predictor is entirely accurate to determine neurological prognosis. The presence of at least two predictors of severe neurological injury indicates that an unfavorable neurological outcome is very likely. SUMMARY Postresuscitation care aims for normoxemia, normocapnia, and normotension. The optimal target core temperature remains a matter of debate, whether to implement temperature management within the 32-34°C range or focus on fever prevention, as recommended in the latest European Resuscitation Council/European Society of Intensive Care Medicine guidelines Prognostication of neurological outcome demands a multimodal approach.
Collapse
Affiliation(s)
- Wilhelm Behringer
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
8
|
Grand J, Hassager C. State of the art post-cardiac arrest care: evolution and future of post cardiac arrest care. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:559-570. [PMID: 37329248 DOI: 10.1093/ehjacc/zuad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
Out-of-hospital cardiac arrest is a leading cause of mortality. In the pre-hospital setting, bystander response with cardiopulmonary resuscitation and the use of publicly available automated external defibrillators have been associated with improved survival. Early in-hospital treatment still focuses on emergency coronary angiography for selected patients. For patients remaining comatose, temperature control to avoid fever is still recommended, but former hypothermic targets have been abandoned. For patients without spontaneous awakening, the use of a multimodal prognostication model is key. After discharge, follow-up with screening for cognitive and emotional disabilities is recommended. There has been an incredible evolution of research on cardiac arrest. Two decades ago, the largest trials include a few hundred patients. Today, undergoing studies are planning to include 10-20 times as many patients, with improved methodology. This article describes the evolution and perspectives for the future in post-cardiac arrest care.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet. Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet. Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Kjaergaard J, Møller JE. Haemodynamic, oxygenation, and ventilation targets after cardiac arrest: the current ABC of post-cardiac arrest intensive care. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:513-517. [PMID: 37459572 DOI: 10.1093/ehjacc/zuad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Jesper Kjaergaard
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Department of Cardiology, Odense University Hospital, JB Winsløvvej 4, Odense 5000, Denmark
| |
Collapse
|
10
|
Haxhija Z, Seder DB, May TL, Hassager C, Friberg H, Lilja G, Ceric A, Nielsen N, Dankiewicz J. External validation of the CREST model to predict early circulatory-etiology death after out-of-hospital cardiac arrest without initial ST-segment elevation myocardial infarction. BMC Cardiovasc Disord 2023; 23:311. [PMID: 37340361 DOI: 10.1186/s12872-023-03334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The CREST model is a prediction model, quantitating the risk of circulatory-etiology death (CED) after cardiac arrest based on variables available at hospital admission, and intend to guide the triage of comatose patients without ST-segment-elevation myocardial infarction after successful cardiopulmonary resuscitation. This study assessed performance of the CREST model in the Target Temperature Management (TTM) trial cohort. METHODS We retrospectively analyzed data from resuscitated out-of-hospital cardiac arrest (OHCA) patients in the TTM-trial. Demographics, clinical characteristics, and CREST variables (history of coronary artery disease, initial heart rhythm, initial ejection fraction, shock at admission and ischemic time > 25 min) were assessed in univariate and multivariable analysis. The primary outcome was CED. The discriminatory power of the logistic regression model was assessed using the C-statistic and goodness of fit was tested according to Hosmer-Lemeshow. RESULTS Among 329 patients eligible for final analysis, 71 (22%) had CED. History of ischemic heart disease, previous arrhythmia, older age, initial non-shockable rhythm, shock at admission, ischemic time > 25 min and severe left ventricular dysfunction were variables associated with CED in univariate analysis. CREST variables were entered into a logistic regression model and the area under the curve for the model was 0.73 with adequate calibration according to Hosmer-Lemeshow test (p = 0.602). CONCLUSIONS The CREST model had good validity and a discrimination capability for predicting circulatory-etiology death after resuscitation from cardiac arrest without ST-segment elevation myocardial infarction. Application of this model could help to triage high-risk patients for transfer to specialized cardiac centers.
Collapse
Affiliation(s)
- Zana Haxhija
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Skane University Hospital, Malmo, Sweden.
- Division of Anesthesia and Intensive Care, Department of Clinical sciences Lund, Lund University, Skane University Hospital, Carl Bertil Laurells gata 9, Malmo, 205 02, Sweden.
| | - David B Seder
- Department of Critical Care Services, Maine Medical Center, Portland Maine, USA
| | - Teresa L May
- Department of Critical Care Services, Maine Medical Center, Portland Maine, USA
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Skane University Hospital, Malmo, Sweden
| | - Gisela Lilja
- Department of Clinical sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Ameldina Ceric
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Skane University Hospital, Malmo, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences, Cardiology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
11
|
Chalkias A, Adamos G, Mentzelopoulos SD. General Critical Care, Temperature Control, and End-of-Life Decision Making in Patients Resuscitated from Cardiac Arrest. J Clin Med 2023; 12:4118. [PMID: 37373812 DOI: 10.3390/jcm12124118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac arrest affects millions of people per year worldwide. Although advances in cardiopulmonary resuscitation and intensive care have improved outcomes over time, neurologic impairment and multiple organ dysfunction continue to be associated with a high mortality rate. The pathophysiologic mechanisms underlying the post-resuscitation disease are complex, and a coordinated, evidence-based approach to post-resuscitation care has significant potential to improve survival. Critical care management of patients resuscitated from cardiac arrest focuses on the identification and treatment of the underlying cause(s), hemodynamic and respiratory support, organ protection, and active temperature control. This review provides a state-of-the-art appraisal of critical care management of the post-cardiac arrest patient.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Georgios Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, 10675 Athens, Greece
| |
Collapse
|
12
|
Niemelä V, Siddiqui F, Ameloot K, Reinikainen M, Grand J, Hästbacka J, Hassager C, Kjaergard J, Åneman A, Tiainen M, Nielsen N, Harboe Olsen M, Kamp Jorgensen C, Juul Petersen J, Dankiewicz J, Saxena M, Jakobsen JC, Skrifvars MB. Higher versus lower blood pressure targets after cardiac arrest: systematic review with individual patient data meta-analysis. Resuscitation 2023:109862. [PMID: 37295549 DOI: 10.1016/j.resuscitation.2023.109862] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Guidelines recommend targeting mean arterial pressure (MAP) > 65 mmHg in patients after cardiac arrest (CA). Recent trials have studied the effects of targeting a higher MAP as compared to a lower MAP after CA. We performed a systematic review and individual patient data meta-analysis to investigate the effects of higher versus lower MAP targets on patient outcome. METHOD We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, LILACS, BIOSIS, CINAHL, Scopus, the Web of Science Core Collection, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry, Google Scholar and the Turning Research into Practice database to identify trials randomizing patients to higher (≥ 71 mmHg) or lower (≤70 mmHg) MAP targets after CA and resuscitation. We used the Cochrane Risk of Bias tool, version 2 (RoB 2) to assess for risk of bias. The primary outcomes were 180-day all-cause mortality and poor neurologic recovery defined by a modified Rankin score of 4-6 or a cerebral performance category score of 3-5. RESULTS Four eligible clinical trials were identified, randomizing a total of 1,087 patients. All the included trials were assessed as having a low risk for bias. The risk ratio (RR) with 95% confidence interval for 180-day all-cause mortality for a higher versus a lower MAP target was 1.08 (0.92-1.26) and for poor neurologic recovery 1.01 (0.86-1.19). Trial sequential analysis showed that a 25% or higher treatment effect, i.e., RR<0.75, can be excluded. No difference in serious adverse events was found between the higher and lower MAP groups. CONCLUSIONS Targeting a higher MAP compared to a lower MAP is unlikely to reduce mortality or improve neurologic recovery after CA. Only a large treatment effect above 25% (RR<0.75) could be excluded, and future studies are needed to investigate if relevant but lower treatment effect exists. Targeting a higher MAP was not associated with any increase in adverse effects.
Collapse
Affiliation(s)
- Ville Niemelä
- Department of Anaesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Faiza Siddiqui
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Koen Ameloot
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Department of Cardiology, University Hospitals Leuven, Leuven, Belgium; Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium
| | - Matti Reinikainen
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Johannes Grand
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Johanna Hästbacka
- Department of Anaesthesiology and Intensive Care, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergard
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Åneman
- Intensive Care Unit, Liverpool Hospital, South Western Sydney Local Health District, South Western Clinical School, University of New South Wales, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marjaana Tiainen
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Niklas Nielsen
- Lund University and Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Helsingborg Hospital, Lund, Sweden; Skåne University Hospital, Clinical Studies Sweden - Forum South, Lund, Sweden; Anaesthesia and Intensive Care, Helsingborg Hospital, Lund, Sweden
| | - Markus Harboe Olsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Caroline Kamp Jorgensen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Johanne Juul Petersen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Manoj Saxena
- South Western Clinical School, University of New South Wales, Sydney, Australia; Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Changes in the treatment of pediatric acute encephalopathy in Japan between 2015 and 2021: A national questionnaire-based survey. Brain Dev 2023; 45:153-160. [PMID: 36446696 DOI: 10.1016/j.braindev.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although acute encephalopathy (AE) is the most serious disorder associated with a viral infection in childhood and often causes death or neurological sequelae, standard treatments have not been established. In 2016, the Japanese Society of Child Neurology published the "Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood 2016" (AE GL 2016). We conducted a questionnaire survey to evaluate the status of the treatment of pediatric AE in 2021 and the changes in treatment before and after the publication of the AE GL 2016. METHODS In October 2021, questionnaires were mailed via the web to members of two mailing lists who were involved in the practice of pediatric neurological disorders. RESULTS Most Japanese physicians (98 %) engaged in the treatment of pediatric AE used the AE GL 2016 as a clinical reference. From 2015 to 2021, the number of institutions that implemented targeted temperature management (TTM), vitamin administration, and continuous electroencephalographic monitoring increased significantly. Regarding the targeted temperature for TTM, the proportion of patients who were treated with normothermia (36.0-37.0 °C) increased from 2015 (55 %) to 2021 (79 %). The use of corticosteroids in patients with AE caused by a cytokine storm, which is recommended in the AE GL 2016, had already been implemented in most institutions by 2015. CONCLUSION The AE GL 2016 could be used to disseminate the knowledge accumulated to date. Evidence of the efficacy and proper indication criteria for the treatment of AE is insufficient and must be further accumulated.
Collapse
|
14
|
Jorge-Perez P, Nikolaou N, Donadello K, Khoury A, Behringer W, Hassager C, Boettiger B, Sionis A, Nolan J, Combes A, Quinn T, Price S, Grand J. Management of comatose survivors of out-of-hospital cardiac arrest in Europe: current treatment practice and adherence to guidelines. A joint survey by the Association for Acute CardioVascular Care (ACVC) of the ESC, the European Resuscitation Council (ERC), the European Society for Emergency Medicine (EUSEM), and the European Society of Intensive Care Medicine (ESICM). EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:96-105. [PMID: 36454812 DOI: 10.1093/ehjacc/zuac153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS International guidelines give recommendations for the management of comatose out-of-hospital cardiac arrest (OHCA) survivors. We aimed to investigate adherence to guidelines and disparities in the treatment of OHCA in hospitals in Europe. METHODS AND RESULTS A web-based, multi-institutional, multinational survey in Europe was conducted using an electronic platform with a predefined questionnaire developed by experts in post-resuscitation care. The survey was disseminated to all members of the societies via email, social media, websites, and newsletters in June 2021. Of 252 answers received, 237 responses from different units were included and 166 (70%) were from cardiac arrest centres. First-line vasopressor used was noradrenaline in 195 (83%) and the first-line inotrope was dobutamine in 148 (64%) of the responses. Echocardiography is available 24/7 in 204 (87%) institutions. Targeted temperature management was used in 160 (75%) institutions for adult comatose survivors of OHCA with an initial shockable rhythm. Invasive or external cooling methods with feedback were used in 72 cardiac arrest centres (44%) and 17 (24%) non-cardiac arrest centres (P < 0.0003). A target temperature between 32 and 34°C was preferred by 46 centres (21%); a target between 34 and 36°C by 103 centres (52%); and <37.5°C by 35 (16%). Multimodal neuroprognostication was poorly implemented and a follow-up at 3 months after discharge was done in 71 (30%) institutions. CONCLUSION Post-resuscitation care is not well established and varies among centres in European hospitals. Cardiac arrest centres have a higher coherence with guidelines compared with respondents from non-cardiac arrest centres. The overall inconsistency in approaches and deviation from recommendations could be a focus for improvement.
Collapse
Affiliation(s)
- Pablo Jorge-Perez
- Department of Cardiology, Canary Islands University Hospital, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - Nikolaos Nikolaou
- Intensive Cardiac Care Unit, Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Katia Donadello
- Department of Anesthesia and Intensive Care B, Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, AOUI-University Hospital Integrated Trust of Verona, Policlinico G.B. Rossi, P.le L. Scuro, Verone, Italy
| | - Abdo Khoury
- Department of Emergency Medicine and Critical Care, Besançon University Hospital, Besançon, France.,INSERM CIC 1431, Besançon University Hospital, Besançon, France
| | - Wilhelm Behringer
- Department of Emergency Medicine, Medical University Vienna, Vienna, Austria
| | - Christian Hassager
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, The Heart Center, Copenhagen, Denmark
| | - Bernd Boettiger
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.,European Resuscitation Council (ERC), Niel, Belgium.,German Resuscitation Council (GRC), Ulm, Germany
| | - Alessandro Sionis
- Intensive Cardiac Care Unit, Cardiology Department, Hospital de Sant Pau, IIB-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Jerry Nolan
- Warwick Medical School, University of Warwick, Coventry, UK.,Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Alain Combes
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France.,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Tom Quinn
- Kingston University and St. Georges, University of London, London, UK
| | - Susanna Price
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Johannes Grand
- Department of Cardiology, Amager-Hvidovre Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Drew KL, Bhowmick S, Laughlin BW, Goropashnaya AV, Tøien Ø, Sugiura MH, Wong A, Pourrezaei K, Barati Z, Chen CY. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front Neurol 2023; 14:1009718. [PMID: 36779060 PMCID: PMC9911456 DOI: 10.3389/fneur.2023.1009718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.
Collapse
Affiliation(s)
- Kelly L. Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Saurav Bhowmick
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Bernard W. Laughlin
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Anna V. Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Øivind Tøien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - M. Hoshi Sugiura
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, United States
| | - Zeinab Barati
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
- Barati Medical LLC, Fairbanks, AK, United States
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
McGuigan PJ, Giallongo E, Blackwood B, Doidge J, Harrison DA, Nichol AD, Rowan KM, Shankar-Hari M, Skrifvars MB, Thomas K, McAuley DF. The effect of blood pressure on mortality following out-of-hospital cardiac arrest: a retrospective cohort study of the United Kingdom Intensive Care National Audit and Research Centre database. Crit Care 2023; 27:4. [PMID: 36604745 PMCID: PMC9817239 DOI: 10.1186/s13054-022-04289-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypotension following out-of-hospital cardiac arrest (OHCA) may cause secondary brain injury and increase mortality rates. Current guidelines recommend avoiding hypotension. However, the optimal blood pressure following OHCA is unknown. We hypothesised that exposure to hypotension and hypertension in the first 24 h in ICU would be associated with mortality following OHCA. METHODS We conducted a retrospective analysis of OHCA patients included in the Intensive Care National Audit and Research Centre Case Mix Programme from 1 January 2010 to 31 December 2019. Restricted cubic splines were created following adjustment for important prognostic variables. We report the adjusted odds ratio for associations between lowest and highest mean arterial pressure (MAP) and systolic blood pressure (SBP) in the first 24 h of ICU care and hospital mortality. RESULTS A total of 32,349 patients were included in the analysis. Hospital mortality was 56.2%. The median lowest and highest MAP and SBP were similar in survivors and non-survivors. Both hypotension and hypertension were associated with increased mortality. Patients who had a lowest recorded MAP in the range 60-63 mmHg had the lowest associated mortality. Patients who had a highest recorded MAP in the range 95-104 mmHg had the lowest associated mortality. The association between SBP and mortality followed a similar pattern to MAP. CONCLUSIONS We found an association between hypotension and hypertension in the first 24 h in ICU and mortality following OHCA. The inability to distinguish between the median blood pressure of survivors and non-survivors indicates the need for research into individualised blood pressure targets for survivors following OHCA.
Collapse
Affiliation(s)
- Peter J McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Elisa Giallongo
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - James Doidge
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - David A Harrison
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Alistair D Nichol
- University College Dublin Clinical Research Centre, St Vincent's University Hospital, Dublin, Ireland
- The Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- The Alfred Hospital, Melbourne, Australia
| | - Kathryn M Rowan
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Karen Thomas
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Danny F McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
17
|
Lazzarin T, Tonon CR, Martins D, Fávero EL, Baumgratz TD, Pereira FWL, Pinheiro VR, Ballarin RS, Queiroz DAR, Azevedo PS, Polegato BF, Okoshi MP, Zornoff L, Rupp de Paiva SA, Minicucci MF. Post-Cardiac Arrest: Mechanisms, Management, and Future Perspectives. J Clin Med 2022; 12:259. [PMID: 36615059 PMCID: PMC9820907 DOI: 10.3390/jcm12010259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiac arrest is an important public health issue, with a survival rate of approximately 15 to 22%. A great proportion of these deaths occur after resuscitation due to post-cardiac arrest syndrome, which is characterized by the ischemia-reperfusion injury that affects the role body. Understanding physiopathology is mandatory to discover new treatment strategies and obtain better results. Besides improvements in cardiopulmonary resuscitation maneuvers, the great increase in survival rates observed in recent decades is due to new approaches to post-cardiac arrest care. In this review, we will discuss physiopathology, etiologies, and post-resuscitation care, emphasizing targeted temperature management, early coronary angiography, and rehabilitation.
Collapse
Affiliation(s)
- Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu 18607-741, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Battaglini D, Pelosi P, Robba C. Ten rules for optimizing ventilatory settings and targets in post-cardiac arrest patients. Crit Care 2022; 26:390. [PMID: 36527126 PMCID: PMC9758928 DOI: 10.1186/s13054-022-04268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiac arrest (CA) is a major cause of morbidity and mortality frequently associated with neurological and systemic involvement. Supportive therapeutic strategies such as mechanical ventilation, hemodynamic settings, and temperature management have been implemented in the last decade in post-CA patients, aiming at protecting both the brain and the lungs and preventing systemic complications. A lung-protective ventilator strategy is currently the standard of care among critically ill patients since it demonstrated beneficial effects on mortality, ventilator-free days, and other clinical outcomes. The role of protective and personalized mechanical ventilation setting in patients without acute respiratory distress syndrome and after CA is becoming more evident. The individual effect of different parameters of lung-protective ventilation, including mechanical power as well as the optimal oxygen and carbon dioxide targets, on clinical outcomes is a matter of debate in post-CA patients. The management of hemodynamics and temperature in post-CA patients represents critical steps for obtaining clinical improvement. The aim of this review is to summarize and discuss current evidence on how to optimize mechanical ventilation in post-CA patients. We will provide ten tips and key insights to apply a lung-protective ventilator strategy in post-CA patients, considering the interplay between the lungs and other systems and organs, including the brain.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| |
Collapse
|
19
|
Ziriat I, Le Thuaut A, Colin G, Merdji H, Grillet G, Girardie P, Souweine B, Dequin PF, Boulain T, Frat JP, Asfar P, Francois B, Landais M, Plantefeve G, Quenot JP, Chakarian JC, Sirodot M, Legriel S, Massart N, Thevenin D, Desachy A, Delahaye A, Botoc V, Vimeux S, Martino F, Reignier J, Cariou A, Lascarrou JB. Outcomes of mild-to-moderate postresuscitation shock after non-shockable cardiac arrest and association with temperature management: a post hoc analysis of HYPERION trial data. Ann Intensive Care 2022; 12:96. [PMID: 36251223 PMCID: PMC9576832 DOI: 10.1186/s13613-022-01071-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Outcomes of postresuscitation shock after cardiac arrest can be affected by targeted temperature management (TTM). A post hoc analysis of the "TTM1 trial" suggested higher mortality with hypothermia at 33 °C. We performed a post hoc analysis of HYPERION trial data to assess potential associations linking postresuscitation shock after non-shockable cardiac arrest to hypothermia at 33 °C on favourable functional outcome. METHODS We divided the patients into groups with vs. without postresuscitation (defined as the need for vasoactive drugs) shock then assessed the proportion of patients with a favourable functional outcome (day-90 Cerebral Performance Category [CPC] 1 or 2) after hypothermia (33 °C) vs. controlled normothermia (37 °C) in each group. Patients with norepinephrine or epinephrine > 1 µg/kg/min were not included. RESULTS Of the 581 patients included in 25 ICUs in France and who did not withdraw consent, 339 had a postresuscitation shock and 242 did not. In the postresuscitation-shock group, 159 received hypothermia, including 14 with a day-90 CPC of 1-2, and 180 normothermia, including 10 with a day-90 CPC of 1-2 (8.81% vs. 5.56%, respectively; P = 0.24). After adjustment, the proportion of patients with CPC 1-2 also did not differ significantly between the hypothermia and normothermia groups (adjusted hazards ratio, 1.99; 95% confidence interval, 0.72-5.50; P = 0.18). Day-90 mortality was comparable in these two groups (83% vs. 86%, respectively; P = 0.43). CONCLUSIONS After non-shockable cardiac arrest, mild-to-moderate postresuscitation shock at intensive-care-unit admission did not seem associated with day-90 functional outcome or survival. Therapeutic hypothermia at 33 °C was not associated with worse outcomes compared to controlled normothermia in patients with postresuscitation shock. Trial registration ClinicalTrials.gov, NCT01994772.
Collapse
Affiliation(s)
- Ines Ziriat
- Médecine Intensive Réanimation, University Hospital Centre, Nantes, France
| | - Aurélie Le Thuaut
- Direction de la Recherche Clinique et l'Innovation, Plateforme de Méthodologie et Biostatistique, University Hospital Centre, Nantes, France
| | - Gwenhael Colin
- Medecine Intensive Reanimation, District Hospital Center, La Roche-sur-Yon, France
- AfterROSC Network, Paris, France
| | - Hamid Merdji
- Université de Strasbourg (UNISTRA), Faculté de Médecine; Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive Réanimation, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Guillaume Grillet
- Medical Intensive Care Unit, South Brittany General Hospital Centre, Lorient, France
| | - Patrick Girardie
- Médecine Intensive Réanimation, CHU Lille, 59000, Lille, France
- Faculté de Médicine, Université de Lille, 59000, Lille, France
| | - Bertrand Souweine
- Medical Intensive Care Unit, University Hospital Centre, Clermond-Ferrand, France
| | - Pierre-François Dequin
- INSERM CIC1415, CHRU de Tours, Tours, France
- Medical Intensive Care Unit, University Hospital Centre, Tours, France
- Inserm UMR 1100 - Centre d'Étude des Pathologies Respiratoires, Tours University, Tours, France
| | - Thierry Boulain
- Medical Intensive Care Unit, Regional Hospital Centre, Orleans, France
| | - Jean-Pierre Frat
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
- INSERM, CIC-1402, ALIVES, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France
| | - Pierre Asfar
- Medical Intensive Care Unit, University Hospital Centre, Angers, France
| | - Bruno Francois
- Service de Réanimation Polyvalente, University Hospital Centre, Limoges, France
- INSERM CIC 1435 & UMR 1092, University Hospital Centre, Limoges, France
| | - Mickael Landais
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Le Mans, France
| | - Gaëtan Plantefeve
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Argenteuil, France
| | | | | | - Michel Sirodot
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Annecy, France
| | - Stéphane Legriel
- AfterROSC Network, Paris, France
- Medical-Surgical Intensive Care Unit, Versailles Hospital, Versailles, France
| | - Nicolas Massart
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Saint Brieuc, France
| | - Didier Thevenin
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Lens, France
| | - Arnaud Desachy
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Angoulême, France
| | - Arnaud Delahaye
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Rodez, France
| | - Vlad Botoc
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Saint Malo, France
| | - Sylvie Vimeux
- Medical-Surgical Intensive Care Unit, Community Hospital Centre, Montauban, France
| | - Frederic Martino
- Medical Intensive Care Unit, University Hospital Centre, Pointe-à-Pitre, France
| | - Jean Reignier
- Médecine Intensive Réanimation, University Hospital Centre, Nantes, France
| | - Alain Cariou
- AfterROSC Network, Paris, France
- Medical Intensive Care Unit, Cochin Hospital (APHP) and University of Paris, Paris, France
- Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Jean Baptiste Lascarrou
- Médecine Intensive Réanimation, University Hospital Centre, Nantes, France.
- AfterROSC Network, Paris, France.
- Paris Cardiovascular Research Centre, INSERM U970, Paris, France.
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire, 30 Boulevard Jean Monnet, 44093, Nantes Cedex 1, France.
| |
Collapse
|
20
|
van Diepen S, Tavazzi G, Morrow DA. Blood pressure and oxygenation targets after out-of-hospital cardiac arrest-trial (BOX). EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:714-715. [PMID: 36106622 PMCID: PMC9522253 DOI: 10.1093/ehjacc/zuac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sean van Diepen
- Department of Critical Care Medicine and Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Guido Tavazzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia , Pavia , Italy
- Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation , Pavia , Italy
| | - David A Morrow
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
21
|
Petit M, Lascarrou JB, Colin G, Merdji H, Cariou A, Geri G. Hemodynamics and vasopressor support during targeted temperature management after cardiac arrest with non-shockable rhythm: A post hoc analysis of a randomized controlled trial. Resusc Plus 2022; 11:100271. [PMID: 35860752 PMCID: PMC9289859 DOI: 10.1016/j.resplu.2022.100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background Patients admitted after cardiac arrest with non-shockable rhythm frequently experience hemodynamic instability. This study assessed the hemodynamic consequences of TTM in this sub population. Methods This is a post hoc analysis of the HYPERION trial (NCT01994772), that randomized patients to either hypothermia or normothermia after non-shockable rhythm related cardiac arrest. Patients with no, moderate or severe circulatory failure were identified with cardiovascular Sequential Organ Failure Assessment at randomization. Primary outcome was the number of patients at day 7 with resolution of shock, accounting for the risk of death (competing risk analysis). Secondary endpoint included neurological outcome and death at day-90. Results 584 patients were included in the analysis: 195 (34%), 46 (8%) and 340 (59%) had no, moderate and severe circulatory failure, respectively. Resolution of circulatory failure at day 7 was more frequently observed in the normothermia group than in the TTM group (60% [95 %CI 54-66] versus 53% [95 %CI 46-60], Gray-test: p = 0.016). The severity of circulatory failure at randomization was associated with its less frequent resolution at day 7 accounting for the risk of death (76 % [62-86] versus 54% [49-59] for patients with moderate versus severe circulatory failure, Gray test, p < 0.001, respectively). At day 90, the proportion of patients with Cerebral Performance Category score of 1 or 2 was lower in patients presenting severe circulatory failure (p = 0.038). Conclusion Circulatory failure is frequent after CA with non-shockable rhythm. Its severity at admission and TTM were associated with delayed resolution of circulatory failure.
Collapse
Affiliation(s)
- Matthieu Petit
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France
- Paris-Saclay University, UVSQ, Inserm, CESP, 94807 Villejuif, France
| | - Jean-Baptiste Lascarrou
- Médecine Intensive Réanimation, University Hospital Center, Nantes, France
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
| | - Gwenhael Colin
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
| | - Hamid Merdji
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive Réanimation, Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Alain Cariou
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
- Medical Intensive Care Unit, Cochin University Hospital Center, Paris, France
| | - Guillaume Geri
- Medical and Surgical Intensive Care Unit, Ambroise Paré Clinic, Neuilly-sur-Seine, France
| | - HYPERION investigators1
- Medical Intensive Care Unit, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France
- Paris-Saclay University, UVSQ, Inserm, CESP, 94807 Villejuif, France
- Médecine Intensive Réanimation, University Hospital Center, Nantes, France
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
- AfterROSC Network, France
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive Réanimation, Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Medical Intensive Care Unit, Cochin University Hospital Center, Paris, France
- Medical and Surgical Intensive Care Unit, Ambroise Paré Clinic, Neuilly-sur-Seine, France
| |
Collapse
|
22
|
Düring J, Annborn M, Dankiewicz J, Dupont A, Forsberg S, Friberg H, Kern KB, May TL, McPherson J, Patel N, Seder DB, Stammet P, Sunde K, Søreide E, Ullén S, Nielsen N. Influence of circulatory shock at hospital admission on outcome after out-of-hospital cardiac arrest. Sci Rep 2022; 12:8293. [PMID: 35585159 PMCID: PMC9117194 DOI: 10.1038/s41598-022-12310-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Hypotension after cardiac arrest could aggravate prolonged hypoxic ischemic encephalopathy. The association of circulatory shock at hospital admission with outcome after cardiac arrest has not been well studied. The objective of this study was to investigate the independent association of circulatory shock at hospital admission with neurologic outcome, and to evaluate whether cardiovascular comorbidities interact with circulatory shock. 4004 adult patients with out-of-hospital cardiac arrest enrolled in the International Cardiac Arrest Registry 2006-2017 were included in analysis. Circulatory shock was defined as a systolic blood pressure below 90 mmHg and/or medical or mechanical supportive measures to maintain adequate perfusion during hospital admission. Primary outcome was cerebral performance category (CPC) dichotomized as good, (CPC 1-2) versus poor (CPC 3-5) outcome at hospital discharge. 38% of included patients were in circulatory shock at hospital admission, 32% had good neurologic outcome at hospital discharge. The adjusted odds ratio for good neurologic outcome in patients without preexisting cardiovascular disease with circulatory shock at hospital admission was 0.60 [0.46-0.79]. No significant interaction was detected with preexisting comorbidities in the main analysis. We conclude that circulatory shock at hospital admission after out-of-hospital cardiac arrest is independently associated with poor neurologic outcome.
Collapse
Affiliation(s)
- Joachim Düring
- Department of Clinical Sciences, Anesthesia & Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Martin Annborn
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Allison Dupont
- Department of Cardiology, Northside Cardiovascular Institute, Atlanta, GA, USA
| | - Sune Forsberg
- Department of Intensive Care, Norrtälje Hospital, Karolinska Institute, Norrtälje, Sweden
- Center for Resuscitation Science, Karolinska Institute, Stockholm, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesia & Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Karl B Kern
- Division of Cardiology Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Teresa L May
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | | | - Nainesh Patel
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | - David B Seder
- Division of Cardiology Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Pascal Stammet
- Department of Intensive Care Medicine, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kjetil Sunde
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eldar Søreide
- Critical Care and Anesthesiology Research Group, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Susann Ullén
- Clinical Studies Sweden- Forum South, Skåne University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| |
Collapse
|
23
|
Song H, Oh SH, Woo HR. Brain Death and Its Prediction in Out-of-Hospital Cardiac Arrest Patients Treated with Targeted Temperature Management. Diagnostics (Basel) 2022; 12:diagnostics12051190. [PMID: 35626345 PMCID: PMC9140750 DOI: 10.3390/diagnostics12051190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Evolution toward brain death (BD) in out-of-hospital cardiac arrest patients with targeted temperature management (TTM) provides opportunities for organ donation. However, knowledge regarding BD in these patients is limited. We retrospectively analyzed the TTM registry of one hospital where life-sustaining therapy was not withdrawn. In-hospital death patients were categorized into BD and non-BD groups. We explored the process of evolution toward BD and its predictors by comparing the serial measurements of clinical variables and the results of various prognostic tests between the two groups. Of the 121 patients who died before hospital discharge, 19 patients (15.7%) developed BD at a median of 6 (interquartile range, 5.0–7.0) days after cardiac arrest. Four patients with pupillary light reflexes at 48 h eventually developed BD. The area under the curves of the gray-to-white matter ratio (GWR) on early brain computed tomography images and the level of S100 calcium-binding protein B (S100B) at 72 h were 0.67 (95% CI, 0.55–0.77) and 0.70 (95% CI, 0.55–0.83), respectively. In conclusion, approximately one-sixth of all in-hospital deaths were diagnosed with BD at a median of 6 days after cardiac arrest. The use of GWR and serial S100B measurements may help to screen potential BD.
Collapse
Affiliation(s)
- Hwan Song
- Department of Emergency Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Sang Hoon Oh
- Department of Emergency Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-1988; Fax: +82-2-2258-1997
| | - Hye Rim Woo
- Department of Emergency Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | | |
Collapse
|
24
|
Carbon monoxide-releasing molecule-2 ameliorates postresuscitation myocardial dysfunction in rat via mitochondrial-mediated apoptosis pathway and the regulation of mitochondrial dynamics. Eur J Pharmacol 2022; 927:175038. [DOI: 10.1016/j.ejphar.2022.175038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
|
25
|
Scholte NTB, van Wees C, Rietdijk WJR, van der Graaf M, Jewbali LSD, van der Jagt M, van den Berg RCM, Lenzen MJ, den Uil CA. Clinical Outcomes with Targeted Temperature Management (TTM) in Comatose Out-of-Hospital Cardiac Arrest Patients-A Retrospective Cohort Study. J Clin Med 2022; 11:jcm11071786. [PMID: 35407394 PMCID: PMC8999846 DOI: 10.3390/jcm11071786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Purpose: we evaluated the effects of the shift of a targeted temperature management (TTM) strategy from 33 °C to 36 °C in comatose out-of-hospital cardiac arrest (OHCA) patients admitted to the Intensive Care Unit (ICU). Methods: we performed a retrospective study of all comatose (GCS < 8) OHCA patients treated with TTM from 2010 to 2018 (n = 798) from a single-center academic hospital. We analyzed 90-day mortality, and neurological outcome (CPC score) at ICU discharge and ICU length of stay, as primary and secondary outcomes, respectively. Results: we included 798 OHCA patients (583 in the TTM33 group and 215 in the TTM36 group). We found no association between the TTM strategy (TTM33 and TTM36) and 90-day mortality (hazard ratio (HR)] 0.877, 95% CI 0.677−1.135, with TTM36 as reference). Also, no association was found between TTM strategy and favorable neurological outcome at ICU discharge (odds ratio (OR) 1.330, 95% CI 0.941−1.879). Patients in the TTM33 group had on average a longer ICU LOS (beta 1.180, 95% CI 0.222−2.138). Conclusion: no differences in clinical outcomes—both 90-day mortality and favorable neurological outcome at ICU discharge—were found between targeted temperature at 33 °C and 36 °C. These results may help to corroborate previous trial findings and assist in implementation of TTM.
Collapse
Affiliation(s)
- Niels T. B. Scholte
- Department of Cardiology, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands; (C.v.W.); (M.v.d.G.); (L.S.D.J.); (M.J.L.)
- Correspondence:
| | - Christiaan van Wees
- Department of Cardiology, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands; (C.v.W.); (M.v.d.G.); (L.S.D.J.); (M.J.L.)
- Department of Intensive Care, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Wim J. R. Rietdijk
- Department of Hospital Pharmacy, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marisa van der Graaf
- Department of Cardiology, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands; (C.v.W.); (M.v.d.G.); (L.S.D.J.); (M.J.L.)
| | - Lucia S. D. Jewbali
- Department of Cardiology, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands; (C.v.W.); (M.v.d.G.); (L.S.D.J.); (M.J.L.)
- Department of Intensive Care, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | | | - Mattie J. Lenzen
- Department of Cardiology, Erasmus MC—University Medical Center, 3015 GD Rotterdam, The Netherlands; (C.v.W.); (M.v.d.G.); (L.S.D.J.); (M.J.L.)
| | - Corstiaan A. den Uil
- Department of Intensive Care, Maasstad Hospital, 3079 DZ Rotterdam, The Netherlands;
| |
Collapse
|
26
|
Kjaergaard J, Schmidt H, Møller JE, Hassager C. The “Blood pressure and oxygenation targets in post resuscitation care, a randomized clinical trial”: design and statistical analysis plan. Trials 2022; 23:177. [PMID: 35209951 PMCID: PMC8867659 DOI: 10.1186/s13063-022-06101-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Comatose patients admitted after resuscitation from cardiac arrest have a significant risk of poor outcome due to hypoxic brain injury. While numerous studies have investigated and challenged the target temperature as the efficacious part of the guideline endorsed Targeted Temperature Management (TTM) protocols, our knowledge and how the remaining parts of the TTM are optimized remain sparse. The present randomized trial investigated two aspects of the TTM protocol: target blood pressure during the ICU stay and oxygenation during mechanical ventilation. Furthermore, the efficacy of device-based post-TTM fever management is addressed. Methods Investigator-initiated, dual-center, randomized clinical trial in comatose OHCA patients admitted to an intensive cardiac care unit. Patients are eligible for inclusion if unconscious, older than 18 years of age, and have return of spontaneous circulation for more than 20 min. Intervention: allocation 1:1:1:1 into a group defined by (a) blood pressure targets in double-blind intervention targeting a mean arterial blood pressure of 63 or 77 mmHg and (b) restrictive (9–10 kPa) or liberal (13–14 kPa) of arterial oxygen concentration during mechanical ventilation. As a subordinate intervention, device-based active fever management is discontinued after 36 h or 72. Patients will otherwise receive protocolized standard of care according to international guidelines, including targeted temperature management at 36 °C for 24 h, sedation with fentanyl and propofol, and multimodal neuro-prognostication. Primary endpoint: Discharge from hospital in poor neurological status (Cerebral Performance category 3 or 4) or death, whichever comes first. Secondary outcomes: Time to initiation of renal replacement therapy or death, neuron-specific enolase (NSE) level at 48 h, MOCA score at day 90, Modified Ranking Scale (mRS) and CPC at 3 months, NT-pro-BNP at 90 days, eGFR and LVEF at 90 days, daily cumulated vasopressor requirement during ICU stay, and need for a combination of vasopressors and inotropic agents or mechanical circulatory support. Discussion We hypothesize that low or high target blood pressure and restrictive and liberal oxygen administration will have an impact on mortality by reducing the risk and degree of hypoxic brain injury. This will be assessment neurological outcome and biochemical and neuropsychological testing after 90 days. Trial registration ClinicalTrials.gov NCT03141099. Registered on May 2017 (retrospectively registered)
Collapse
|
27
|
Sarma D, Tabi M, Jentzer JC. Society for Cardiovascular Angiography and Intervention Shock Classification Predicts Mortality After Out-of-Hospital Cardiac Arrest. Resuscitation 2022; 172:101-105. [PMID: 35122891 DOI: 10.1016/j.resuscitation.2022.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Shock is common in patients resuscitated from out-of-hospital-cardiac arrest (OHCA). Shock severity can be classified using the Society for Cardiovascular Angiography and Intervention (SCAI) Shock Classification. We aimed to examine the association of SCAI Shock Stage with in-hospital mortality and neurological outcome in comatose OHCA patients undergoing targeted temperature management (TTM). METHODS This study included 213 comatose adult patients who underwent TTM after OHCA between January 2007 and December 2017. SCAI shock stage (A through E) was assigned using data from the first 24 hours, with shock defined as SCAI shock stage C/D/E. Good neurological outcome was defined as a modified Rankin Scale (mRS) less than 3. RESULTS In-hospital mortality was higher in the 144 (67.6%) patients with shock (46.5% v. 23.2%, unadjusted OR 2.88, 95% CI 1.51-5.51, p = 0.001). After multivariable adjustment, each SCAI shock stage was incrementally associated with an increased risk of in-hospital mortality (adjusted OR 1.80 per stage, 95% CI 1.20-2.71, p = 0.003). Good neurological outcome was less likely in patients with shock (31.9% vs. 53.6%, unadjusted OR 0.41, 95% CI 0.23-0.73, p = 0.002) and a higher SCAI shock stage was incrementally associated with a lower likelihood of good neurological outcome after multivariable adjustment (adjusted OR 0.67 per stage, 95% CI 0.48-0.93, p = 0.015). CONCLUSION Higher shock severity, defined using the SCAI Shock Classification, was associated with increased in-hospital mortality and a lower likelihood of good neurological outcome in OHCA patients treated with TTM.
Collapse
Affiliation(s)
- Dhruv Sarma
- Department of Internal Medicine, Mayo Clinic, Rochester, MN.
| | - Meir Tabi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| | - Jacob C Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
28
|
Langeland H, Bergum D, Løberg M, Bjørnstad K, Skaug TR, Nordseth T, Klepstad P, Skjærvold NK. Characteristics of circulatory failure after out-of-hospital cardiac arrest: a prospective cohort study. Open Heart 2022; 9:openhrt-2021-001890. [PMID: 35046124 PMCID: PMC8772457 DOI: 10.1136/openhrt-2021-001890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Circulatory failure after out-of-hospital cardiac arrest (OHCA) as part of the postcardiac arrest syndrome (PCAS) is believed to be caused by an initial myocardial depression that later subsides into a superimposed vasodilatation. However, the relative contribution of myocardial dysfunction and systemic inflammation has not been established. Our objective was to describe the macrocirculatory and microcirculatory failure in PCAS in more detail. Methods We included 42 comatose patients after OHCA where circulatory variables were invasively monitored from admission until day 5. We measured the development in cardiac power output (CPO), stroke work (SW), aortic elastance, microcirculatory metabolism, inflammatory and cardiac biomarkers and need for vasoactive medications. We used survival analysis and Cox regression to assess time to norepinephrine discontinuation and negative fluid balance, stratified by inflammatory and cardiac biomarkers. Results CPO, SW and oxygen delivery increased during the first 48 hours. Although the estimated afterload fell, the blood pressure was kept above 65 mmHg with a diminishing need for norepinephrine, indicating a gradually re-established macrocirculatory homoeostasis. Time to norepinephrine discontinuation was longer for patients with higher pro-brain natriuretic peptide concentration (HR 0.45, 95% CI 0.21 to 0.96), while inflammatory biomarkers and other cardiac biomarkers did not predict the duration of vasoactive pressure support. Markers of microcirculatory distress, such as lactate and venous-to-arterial carbon dioxide difference, were normalised within 24 hours. Conclusion The circulatory failure was initially characterised by reduced CPO and SW, however, microcirculatory and macrocirculatory homoeostasis was restored within 48 hours. We found that biomarkers indicating acute heart failure, and not inflammation, predicted longer circulatory support with norepinephrine. Taken together, this indicates an early and resolving, rather than a late and emerging vasodilatation. Trial registration NCT02648061.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway .,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel Bergum
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Bjørnstad
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Thomas R Skaug
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Trond Nordseth
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Klepstad
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils Kristian Skjærvold
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
29
|
Grand J, Hassager C, Schmidt H, Møller JE, Mølstrøm S, Nyholm B, Kjaergaard J. Hemodynamic evaluation by serial right heart catheterizations after cardiac arrest; protocol of a sub-study from the Blood Pressure and Oxygenation Targets after Out-of-Hospital Cardiac Arrest-trial (BOX). Resusc Plus 2021; 8:100188. [PMID: 34950913 PMCID: PMC8671111 DOI: 10.1016/j.resplu.2021.100188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Neurological injury and mortality remain high in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). Hypotension and hypoxia during post-resuscitation care have been associated with poor outcome, but the optimal oxygenation- and blood pressure-targets are unknown. The impact of different doses of norepinephrine on advanced hemodynamic after OHCA and the impact of different oxygenation-targets on pulmonary circulation and resistance (PVR), are unknown. The aims of this substudy of the "Blood pressure and oxygenations targets after out-of-hospital cardiac arrest (BOX)"-trial are to investigate the effect of two different MAP- and oxygenation-targets on advanced systemic and pulmonary hemodynamics measured by pulmonary artery catheters (PAC). METHODS The BOX-trial is an investigator-initiated, randomized, controlled study comparing targeted MAP of 63 mmHg vs 77 mmHg (double-blinded intervention) and 9-10 kPa versus PaO2 of 13-14 kPa oxygenation-targets (open-label). Per protocol, all patients will be monitored systematically with PACs. The primary endpoint of the hemodynamic-substudy is cardiac output for the MAP-intervention, and PVR for the oxygenation-intervention. For both endpoints, the difference within 48 h between groups are assessed. Secondary endpoints are pulmonary capillary wedge pressure and pulmonary arterial pressure and association between advanced hemodynamic variables and mortality and biomarkers of inflammation and brain injury. DISCUSSION In the BOX-trial, patients will be randomly allocated to two levels of MAP and oxygenation, which are central parts of post-resuscitation care and where evidence is sparse. The advanced-hemodynamic substudy will give valuable knowledge of the hemodynamic consequences of changing blood pressure and oxygen-levels of the critical cardiac patient. It will be one of the largest clinical, prospective trials of advanced hemodynamics measured by serial PACs in consecutive comatose patients, resuscitated after OHCA. The randomized and placebo-controlled trialdesign of the MAP-intervention minimizes risk of selection bias and confounders. Furthermore, hemodynamic characteristics and associations with outcome will be investigated. TRIAL REGISTRATION ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT03141099). Registered March 30, 2017.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Henrik Schmidt
- Department of Anesthesiology and Intensive Care, Odense University Hospital, 5000 Odense C, Denmark
| | - Jacob E. Møller
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Cardiology, Odense University Hospital, 5000 C Odense, Denmark
| | - Simon Mølstrøm
- Department of Cardiology, Odense University Hospital, 5000 C Odense, Denmark
| | - Benjamin Nyholm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Jouffroy R, Vivien B. Time to Return of Spontaneous Circulation (ROSC) and Survival: Tissue and Brain Perfusion Is Probably More Important than ROSC. PREHOSP EMERG CARE 2021; 26:314-315. [PMID: 34505822 DOI: 10.1080/10903127.2021.1979144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Targeted Temperature Management in Out-of-Hospital Cardiac Arrest With Shockable Rhythm: A Post Hoc Analysis of the Coronary Angiography After Cardiac Arrest Trial. Crit Care Med 2021; 50:e129-e142. [PMID: 34637414 DOI: 10.1097/ccm.0000000000005271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The optimal targeted temperature in patients with shockable rhythm is unclear, and current guidelines recommend targeted temperature management with a correspondingly wide range between 32°C and 36°C. Our aim was to study survival and neurologic outcome associated with targeted temperature management strategy in postarrest patients with initial shockable rhythm. DESIGN Observational substudy of the Coronary Angiography after Cardiac Arrest without ST-segment Elevation trial. SETTING Nineteen hospitals in The Netherlands. PATIENTS The Coronary Angiography after Cardiac Arrest trial randomized successfully resuscitated patients with shockable rhythm and absence of ST-segment elevation to a strategy of immediate or delayed coronary angiography. In this substudy, 459 patients treated with mild therapeutic hypothermia (32.0-34.0°C) or targeted normothermia (36.0-37.0°C) were included. Allocation to targeted temperature management strategy was at the discretion of the physician. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS After 90 days, 171 patients (63.6%) in the mild therapeutic hypothermia group and 129 (67.9%) in the targeted normothermia group were alive (hazard ratio, 0.86 [95% CI, 0.62-1.18]; log-rank p = 0.35; adjusted odds ratio, 0.89; 95% CI, 0.45-1.72). Patients in the mild therapeutic hypothermia group had longer ICU stay (4 d [3-7 d] vs 3 d [2-5 d]; ratio of geometric means, 1.32; 95% CI, 1.15-1.51), lower blood pressures, higher lactate levels, and increased need for inotropic support. Cerebral Performance Category scores at ICU discharge and 90-day follow-up and patient-reported Mental and Physical Health Scores at 1 year were similar in the two groups. CONCLUSIONS In the context of out-of-hospital cardiac arrest with shockable rhythm and no ST-elevation, treatment with mild therapeutic hypothermia was not associated with improved 90-day survival compared with targeted normothermia. Neurologic outcomes at 90 days as well as patient-reported Mental and Physical Health Scores at 1 year did not differ between the groups.
Collapse
|
32
|
Langeland H, Bergum D, Nordseth T, Løberg M, Skaug T, Bjørnstad K, Gundersen Ø, Skjærvold NK, Klepstad P. Circulatory trajectories after out-of-hospital cardiac arrest: a prospective cohort study. BMC Anesthesiol 2021; 21:219. [PMID: 34496748 PMCID: PMC8424149 DOI: 10.1186/s12871-021-01434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Circulatory failure frequently occurs after out-of-hospital cardiac arrest (OHCA) and is part of post-cardiac arrest syndrome (PCAS). The aim of this study was to investigate circulatory disturbances in PCAS by assessing the circulatory trajectory during treatment in the intensive care unit (ICU). METHODS This was a prospective single-center observational cohort study of patients after OHCA. Circulation was continuously and invasively monitored from the time of admission through the following five days. Every hour, patients were classified into one of three predefined circulatory states, yielding a longitudinal sequence of states for each patient. We used sequence analysis to describe the overall circulatory development and to identify clusters of patients with similar circulatory trajectories. We used ordered logistic regression to identify predictors for cluster membership. RESULTS Among 71 patients admitted to the ICU after OHCA during the study period, 50 were included in the study. The overall circulatory development after OHCA was two-phased. Low cardiac output (CO) and high systemic vascular resistance (SVR) characterized the initial phase, whereas high CO and low SVR characterized the later phase. Most patients were stabilized with respect to circulatory state within 72 h after cardiac arrest. We identified four clusters of circulatory trajectories. Initial shockable cardiac rhythm was associated with a favorable circulatory trajectory, whereas low base excess at admission was associated with an unfavorable circulatory trajectory. CONCLUSION Circulatory failure after OHCA exhibits time-dependent characteristics. We identified four distinct circulatory trajectories and their characteristics. These findings may guide clinical support for circulatory failure after OHCA. TRIAL REGISTRATION ClinicalTrials.gov: NCT02648061.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- St. Olavs Hospital HF, Avdeling for Thoraxanestesi Og Intensivmedisin, Postboks 3250, 7006, Trondheim, Torgarden, Norway.
| | - Daniel Bergum
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Trond Nordseth
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Anesthesia, Molde Hospital, Molde, Norway
- Department of Emergency Medicine and Pre-Hospital Services, St. Olav's University Hospital, Trondheim, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Skaug
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Knut Bjørnstad
- Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Ørjan Gundersen
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Nils-Kristian Skjærvold
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Klepstad
- Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
33
|
Grand J, Kjaergaard J, Hassager C, Møller JE, Bro-Jeppesen J. Comparing Doppler Echocardiography and Thermodilution for Cardiac Output Measurements in a Contemporary Cohort of Comatose Cardiac Arrest Patients Undergoing Targeted Temperature Management. Ther Hypothermia Temp Manag 2021; 12:159-167. [PMID: 34415801 DOI: 10.1089/ther.2021.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Measuring cardiac output is used to guide treatment during postresuscitation care. The aim of this study was to compare Doppler echocardiography (Doppler-CO) with thermodilution using pulmonary artery catheters (PAC-CO) for cardiac output estimation in a large cohort of comatose out-of-hospital cardiac arrest (OHCA) patients undergoing targeted temperature management (TTM). Single-center substudy of 141 patients included in the TTM trial randomly assigned to 33 or 36°C for 24 hours after OHCA. Per protocol, PAC-CO and Doppler-CO were measured simultaneously shortly after admission and again at 24 and 48 hours. Linear correlation was assessed between methods and positive predictive value (PPV) and negative predictive value (NPV) of Doppler to estimate low cardiac output (<3.5 L/min) was calculated. A total of 301 paired cardiac output measurements were available. Average cardiac output was 5.28 ± 1.94 L/min measured by thermodilution and 4.06 ± 1.49 L/min measured by Doppler with a mean bias of 1.22 L/min (limits of agreements -1.92 to 4.36 L/min). Correlation between methods was moderate (R2 = 0.36). Using PAC-CO as the gold standard, PPV of a low cardiac output measurement (<3.5 L/min) by Doppler was 33%. However, the NPV was 92%. Hypothermia at 33°C did not negatively affect the correlations of CO methods. In the lowest quartile of Doppler, 13% had elevated lactate (>2 mmol/L). In the lowest quartile of thermodilution, 36% had elevated lactate (>2 mmol/L). In ventilated OHCA patients, the two methods for estimating cardiac output correlated moderately and there was a consistent underestimation of Doppler-CO. Absolute cardiac output values from Doppler-CO should be interpreted with caution. However, Doppler can be used to exclude low cardiac output with high accuracy. TTM at 33°C did not negatively affect the correlation or bias of cardiac output measurements. ClinicalTrials.gov ID: NCT01020916.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
34
|
Abstract
Cardiac arrest results from a broad range of etiologies that can be broadly grouped as sudden and asphyxial. Animal studies point to differences in injury pathways invoked in the heart and brain that drive injury and outcome after these different forms of cardiac arrest. Present guidelines largely ignore etiology in their management recommendations. Existing clinical data reveal significant heterogeneity in the utility of presently employed resuscitation and postresuscitation strategies based on etiology. The development of future neuroprotective and cardioprotective therapies should also take etiology into consideration to optimize the chances for successful translation.
Collapse
|
35
|
Hawkins WA, Kim JY, Smith SE, Sikora Newsome A, Hall RG. Effects of Propofol on Hemodynamic Profile in Adults Receiving Targeted Temperature Management. Hosp Pharm 2021; 57:329-335. [DOI: 10.1177/00185787211032359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Propofol is a key component for the management of sedation and shivering during targeted temperature management (TTM) following cardiac arrest. The cardiac depressant effects of propofol have not been described during TTM and may be especially relevant given the stress to the myocardium following cardiac arrest. The purpose of this study is to describe hemodynamic changes associated with propofol administration during TTM. Methods: This single center, retrospective cohort study evaluated adult patients who received a propofol infusion for at least 30 minutes during TTM. The primary outcome was the change in cardiovascular Sequential Organ Failure Assessment (cvSOFA) score 30 minutes after propofol initiation. Secondary outcomes included change in systolic blood pressure (SBP), mean arterial pressure (MAP), heart rate (HR), and vasopressor requirements (VR) expressed as norepinephrine equivalents at 30, 60, 120, 180, and 240 minutes after propofol initiation. A multivariate regression was performed to assess the influence of propofol and body temperature on MAP, while controlling for vasopressor dose and cardiac arrest hospital prognosis (CAHP) score. Results: The cohort included 40 patients with a median CAHP score of 197. The goal temperature of 33°C was achieved for all patients. The median cvSOFA score was 1 at baseline and 0.5 at 30 minutes, with a non-significant change after propofol initiation ( P = .96). SBP and MAP reductions were the greatest at 60 minutes (17 and 8 mmHg; P < .05 for both). The median change in HR at 120 minutes was −9 beats/minute from baseline. This reduction was sustained through 240 minutes ( P < .05). No change in VR were seen at any time point. In multivariate regression, body temperature was the only characteristic independently associated with changes in MAP (coefficient 4.95, 95% CI 1.6-8.3). Conclusion: Administration of propofol during TTM did not affect cvSOFA score. The reductions in SBP, MAP, and HR did not have a corresponding change in vasopressor requirements and are likely not clinically meaningful. Propofol appears to be a safe choice for sedation in patients receiving targeted temperature management after cardiac arrest.
Collapse
Affiliation(s)
- W. Anthony Hawkins
- University of Georgia College of Pharmacy, Albany, GA, USA
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Susan E. Smith
- University of Georgia College of Pharmacy, Athens, GA, USA
| | - Andrea Sikora Newsome
- University of Georgia College of Pharmacy, Augusta, GA, USA
- Augusta University Medical Center, Augusta, GA, USA
| | - Ronald G. Hall
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Dose Optimization and Outcomes Research Program, Dallas, TX, USA
| |
Collapse
|
36
|
Left Ventricular Function Changes Induced by Moderate Hypothermia Are Rapidly Reversed After Rewarming-A Clinical Study. Crit Care Med 2021; 50:e52-e60. [PMID: 34259452 DOI: 10.1097/ccm.0000000000005170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Targeted temperature management (32-36°C) is used for neuroprotection in cardiac arrest survivors. The isolated effects of hypothermia on myocardial function, as used in clinical practice, remain unclear. Based on experimental results, we hypothesized that hypothermia would reversibly impair diastolic function with less tolerance to increased heart rate in patients with uninsulted hearts. DESIGN Prospective clinical study, from June 2015 to May 2018. SETTING Cardiothoracic surgery operation room, Oslo University Hospital. PATIENTS Twenty patients with left ventricular ejection fraction greater than 55%, undergoing ascending aorta graft-replacement connected to cardiopulmonary bypass were included. INTERVENTIONS Left ventricular function was assessed during reduced cardiopulmonary bypass support at 36°C, 32°C prior to graft-replacement, and at 36°C postsurgery. Electrocardiogram, hemodynamic, and echocardiographic recordings were made at spontaneous heart rate and 90 beats per minute at comparable loading conditions. MEASUREMENTS AND MAIN RESULTS Hypothermia decreased spontaneous heart rate, and R-R interval was prolonged (862 ± 170 to 1,156 ± 254 ms, p < 0.001). Although systolic and diastolic fractions of R-R interval were preserved (0.43 ± 0.07 and 0.57 ± 0.07), isovolumic relaxation time increased and diastolic filling time was shortened. Filling pattern changed from early to late filling. Systolic function was preserved with unchanged myocardial strain and stroke volume index, but cardiac index was reduced with maintained mixed venous oxygen saturation. At increased heart rate, systolic fraction exceeded diastolic fraction (0.53 ± 0.05 and 0.47 ± 0.05) with diastolic impairment. Strain and stroke volume index were reduced, the latter to 65% of stroke volume index at spontaneous heart rate. Cardiac index decreased, but mixed venous oxygen saturation was maintained. After rewarming, myocardial function was restored. CONCLUSIONS In patients with normal left ventricular function, hypothermia impaired diastolic function. At increased heart rate, systolic function was subsequently reduced due to impeded filling. Changes in left ventricular function were rapidly reversed after rewarming.
Collapse
|
37
|
Lacocque J, Siegel L, Sporer KA. Prehospital, post-ROSC blood pressure and associated neurologic outcome. Am J Emerg Med 2021; 49:195-199. [PMID: 34144261 DOI: 10.1016/j.ajem.2021.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate the relationship between hypotension and neurologic outcome in adults with return of spontaneous circulation after out-of-hospital cardiac arrest. METHODS Blood pressure and medication data were extracted from adult patients who had ROSC after OHCA in Alameda County and matched with neurologic outcome using the CARES database from January 1, 2018 through July 1, 2019. We used univariate logistic regression with p ≤ 0.2 followed by multivariate logistic regression and reported an odds ratio with 95% confidence intervals. RESULTS Among the 781 adult patients who had ROSC after OHCA, 107 (13.7%) were noted to be hypotensive and 61 (57% of the hypotensive group) received vasopressors. Patients with a final prehospital blood pressure recording of <90 mmHg were more likely to have a poor neurologic outcome (adjusted odds ratio 2.13, adj p = 0.048). About twice as many patients who were not hypotensive had a good neurologic outcome compared to hypotensive patients who had a good neurologic outcome (23% to 10.3%). Additionally, patients who were hypotensive and did not receive vasopressors had a similar neurologic outcome compared to patients who did receive vasopressors. CONCLUSION Prehospital post-ROSC hypotension was associated with worse neurologic outcome and giving hypotensive patients vasopressors may not improve neurologic outcome in the prehospital setting.
Collapse
Affiliation(s)
- Jeremy Lacocque
- UCSF, Department of Emergency Medicine, United States of America.
| | - Lee Siegel
- Alameda County EMS Agency, United States of America
| | - Karl A Sporer
- UCSF, Department of Emergency Medicine, United States of America; Alameda County EMS Agency, United States of America
| |
Collapse
|
38
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Tabi M, Burstein BJ, Anavekar NS, Kashani KB, Jentzer JC. Associations of Vasopressor Requirements With Echocardiographic Parameters After Out-of-Hospital Cardiac Arrest. J Intensive Care Med 2021; 37:518-527. [PMID: 34044666 DOI: 10.1177/0885066621998936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Post-arrest hypotension is common after out of hospital cardiac arrest (OHCA) and many patients resuscitated after OHCA will require vasopressors. We sought to determine the associations between echocardiographic parameters and vasopressor requirements in OHCA patients. METHODS We retrospectively analyzed adult patients with OHCA treated with targeted temperature management between December 2005 and September 2016 who underwent a transthoracic echocardiogram (TTE). Categorical variables were compared using 2-tailed Fisher's exact and Pearson's correlation coefficients and variance (r2) values were used to assess relationships between continuous variables. RESULTS Among 217 included patients, the mean age was 62 ± 12 years, including 74% males. The arrest was witnessed in 90%, the initial rhythm was shockable in 88%, and 58% received bystander CPR. At the time of TTE, 41% of patients were receiving vasopressors; this group of patients was older, had greater severity of illness, higher inpatient mortality and left ventricular ejection fraction (LVEF) was modestly lower (36.8 ± 17.1% vs. 41.4 ± 16.4%, P = 0.04). Stroke volume, cardiac power output and left ventricular stroke work index correlated with number of vasopressors (Pearson r -0.24 to -0.34, all P < 0.002), but the correlation with LVEF was weak (Pearson r -0.13, P = 0.06). CONCLUSIONS In patients after OHCA, left ventricular systolic dysfunction was associated with the need for vasopressors, and Doppler TTE hemodynamic parameters had higher correlation coefficients compared with vasopressor requirements than LVEF. This emphasizes the complex nature of shock after OHCA, including pathophysiologic processes not captured by TTE assessment alone.
Collapse
Affiliation(s)
- Meir Tabi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barry J Burstein
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nandan S Anavekar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kianoush B Kashani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob C Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
Grand J, Hassager C, Skrifvars MB, Tiainen M, Grejs AM, Jeppesen AN, Duez CHV, Rasmussen BS, Laitio T, Nee J, Taccone F, Søreide E, Kirkegaard H. Haemodynamics and vasopressor support during prolonged targeted temperature management for 48 hours after out-of-hospital cardiac arrest: a post hoc substudy of a randomised clinical trial. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:132–141. [PMID: 32551835 DOI: 10.1177/2048872620934305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Comatose patients admitted after out-of-hospital cardiac arrest frequently experience haemodynamic instability and anoxic brain injury. Targeted temperature management is used for neuroprotection; however, targeted temperature management also affects patients' haemodynamic status. This study assessed the haemodynamic status of out-of-hospital cardiac arrest survivors during prolonged (48 hours) targeted temperature management at 33°C. METHODS Analysis of haemodynamic and vasopressor data from 311 patients included in a randomised, clinical trial conducted in 10 European hospitals (the TTH48 trial). Patients were randomly allocated to targeted temperature management at 33°C for 24 (TTM24) or 48 (TTM48) hours. Vasopressor and haemodynamic data were reported hourly for 72 hours after admission. Vasopressor load was calculated as norepinephrine (µg/kg/min) plus dopamine(µg/kg/min/100) plus epinephrine (µg/kg/min). RESULTS After 24 hours, mean arterial pressure (mean±SD) was 74±9 versus 75±9 mmHg (P=0.19), heart rate was 57±16 and 55±14 beats/min (P=0.18), vasopressor load was 0.06 (0.03-0.15) versus 0.08 (0.03-0.15) µg/kg/min (P=0.22) for the TTM24 and TTM48 groups, respectively. From 24 to 48 hours, there was no difference in mean arterial pressure (Pgroup=0.32) or lactate (Pgroup=0.20), while heart rate was significantly lower (average difference 5 (95% confidence interval 2-8) beats/min, Pgroup<0.0001) and vasopressor load was significantly higher in the TTM48 group (Pgroup=0.005). In a univariate Cox regression model, high vasopressor load was associated with mortality in univariate analysis (hazard ratio 1.59 (1.05-2.42) P=0.03), but not in multivariate analysis (hazard ratio 0.77 (0.46-1.29) P=0.33). CONCLUSIONS In this study, prolonged targeted temperature management at 33°C for 48 hours was associated with higher vasopressor requirement but no sign of any detrimental haemodynamic effects.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Markus B Skrifvars
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Marjaana Tiainen
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Anders M Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark
| | | | | | - Bodil S Rasmussen
- Anaesthesiology and Intensive Care, Aalborg University Hospital, Denmark
| | - Timo Laitio
- Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Finland
| | - Jens Nee
- Department of Intensive Care Medicine, Charité - Universitaetsmedizin Berlin, Germany
| | | | - Eldar Søreide
- Critical Care and Anesthesiology Research Group, Stavanger University Hospital, Norway
- Department of Clinical Medicine, University of Bergen, Norway
| | - Hans Kirkegaard
- Research Center for Emergency Medicine, Aarhus University Hospital and Aarhus University, Denmark
| |
Collapse
|
41
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 473] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
42
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
43
|
Dezfulian C, Orkin AM, Maron BA, Elmer J, Girotra S, Gladwin MT, Merchant RM, Panchal AR, Perman SM, Starks MA, van Diepen S, Lavonas EJ. Opioid-Associated Out-of-Hospital Cardiac Arrest: Distinctive Clinical Features and Implications for Health Care and Public Responses: A Scientific Statement From the American Heart Association. Circulation 2021; 143:e836-e870. [PMID: 33682423 DOI: 10.1161/cir.0000000000000958] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Opioid overdose is the leading cause of death for Americans 25 to 64 years of age, and opioid use disorder affects >2 million Americans. The epidemiology of opioid-associated out-of-hospital cardiac arrest in the United States is changing rapidly, with exponential increases in death resulting from synthetic opioids and linear increases in heroin deaths more than offsetting modest reductions in deaths from prescription opioids. The pathophysiology of polysubstance toxidromes involving opioids, asphyxial death, and prolonged hypoxemia leading to global ischemia (cardiac arrest) differs from that of sudden cardiac arrest. People who use opioids may also develop bacteremia, central nervous system vasculitis and leukoencephalopathy, torsades de pointes, pulmonary vasculopathy, and pulmonary edema. Emergency management of opioid poisoning requires recognition by the lay public or emergency dispatchers, prompt emergency response, and effective ventilation coupled to compressions in the setting of opioid-associated out-of-hospital cardiac arrest. Effective ventilation is challenging to teach, whereas naloxone, an opioid antagonist, can be administered by emergency medical personnel, trained laypeople, and the general public with dispatcher instruction to prevent cardiac arrest. Opioid education and naloxone distributions programs have been developed to teach people who are likely to encounter a person with opioid poisoning how to administer naloxone, deliver high-quality compressions, and perform rescue breathing. Current American Heart Association recommendations call for laypeople and others who cannot reliably establish the presence of a pulse to initiate cardiopulmonary resuscitation in any individual who is unconscious and not breathing normally; if opioid overdose is suspected, naloxone should also be administered. Secondary prevention, including counseling, opioid overdose education with take-home naloxone, and medication for opioid use disorder, is important to prevent recurrent opioid overdose.
Collapse
|
44
|
Nutma S, le Feber J, Hofmeijer J. Neuroprotective Treatment of Postanoxic Encephalopathy: A Review of Clinical Evidence. Front Neurol 2021; 12:614698. [PMID: 33679581 PMCID: PMC7930064 DOI: 10.3389/fneur.2021.614698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Postanoxic encephalopathy is the key determinant of death or disability after successful cardiopulmonary resuscitation. Animal studies have provided proof-of-principle evidence of efficacy of divergent classes of neuroprotective treatments to promote brain recovery. However, apart from targeted temperature management (TTM), neuroprotective treatments are not included in current care of patients with postanoxic encephalopathy after cardiac arrest. We aimed to review the clinical evidence of efficacy of neuroprotective strategies to improve recovery of comatose patients after cardiac arrest and to propose future directions. We performed a systematic search of the literature to identify prospective, comparative clinical trials on interventions to improve neurological outcome of comatose patients after cardiac arrest. We included 53 studies on 21 interventions. None showed unequivocal benefit. TTM at 33 or 36°C and adrenaline (epinephrine) are studied most, followed by xenon, erythropoietin, and calcium antagonists. Lack of efficacy is associated with heterogeneity of patient groups and limited specificity of outcome measures. Ongoing and future trials will benefit from systematic collection of measures of baseline encephalopathy and sufficiently powered predefined subgroup analyses. Outcome measurement should include comprehensive neuropsychological follow-up, to show treatment effects that are not detectable by gross measures of functional recovery. To enhance translation from animal models to patients, studies under experimental conditions should adhere to strict methodological and publication guidelines.
Collapse
Affiliation(s)
- Sjoukje Nutma
- Department of Neurology, Medisch Spectrum Twente, Enschede, Netherlands
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Joost le Feber
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
- Department of Neurology, Rijnstate Hospital Arnhem, Arnhem, Netherlands
| |
Collapse
|
45
|
Yamada KP, Kariya T, Aikawa T, Ishikawa K. Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 2021; 8:642843. [PMID: 33659283 PMCID: PMC7919696 DOI: 10.3389/fcvm.2021.642843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has been used for treating brain injury after out-of-hospital cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been explored, but clinical evidence has yet to confirm positive results in preclinical studies. Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling of the heart than ever and new clinical trials are designed to examine the efficacy of rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize current knowledge regarding the effect of hypothermia on normal and ischemic hearts and discuss issues to be solved in order to realize its clinical application for treating acute myocardial infarction.
Collapse
Affiliation(s)
- Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taro Kariya
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Which Target Temperature for Post-Anoxic Brain Injury? A Systematic Review from "Real Life" Studies. Brain Sci 2021; 11:brainsci11020186. [PMID: 33546105 PMCID: PMC7913247 DOI: 10.3390/brainsci11020186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
There is a persistent debate on the optimal target temperature to use during cooling procedures in cardiac arrest survivors. A large randomized clinical trial (RCT) including more than 900 patients showed that targeted temperature management (TTM) at 33 °C had similar mortality and unfavorable neurological outcome (UO) rates as TTM at 36 °C in out-of-hospital cardiac arrest patients with any initial rhythm. Since then, several observational studies have been published on the effects of changes in target temperature (i.e., from 33 to 36 °C) on patients’ outcome. We performed a systematic literature search from 1 January 2014 to 4 December 2020 and identified ten retrospective studies (very low levels of certainty; high risk of bias), including 5509 patients, that evaluated TTM at 33 °C vs. TTM at 36 °C on the occurrence of UO (n = eight studies) and mortality (n = ten studies). TTM at 33 °C was associated with a lower risk of UO when studies assessing neurological outcome with the Cerebral Performance Categories were analyzed (OR 0.80 [95% CIs 0.72–0.98]; p = 0.03). No differences in mortality were observed within the two TTM strategies. These results suggest that an inappropriate translation of TTM protocols from large well-conducted randomized trials into clinical management may result in unexpected effects on patients’ outcome. As for all newly commercialized drugs, epidemiological studies and surveillance programs with an adequate follow-up on large databases are necessary to understand how RCTs are implemented into medical practice.
Collapse
|
47
|
Ameloot K, Jakkula P, Hästbacka J, Reinikainen M, Pettilä V, Loisa P, Tiainen M, Bendel S, Birkelund T, Belmans A, Palmers PJ, Bogaerts E, Lemmens R, De Deyne C, Ferdinande B, Dupont M, Janssens S, Dens J, Skrifvars MB. Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest. J Am Coll Cardiol 2021; 76:812-824. [PMID: 32792079 DOI: 10.1016/j.jacc.2020.06.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND In patients with shock after acute myocardial infarction (AMI), the optimal level of pharmacologic support is unknown. Whereas higher doses may increase myocardial oxygen consumption and induce arrhythmias, diastolic hypotension may reduce coronary perfusion and increase infarct size. OBJECTIVES This study aimed to determine the optimal mean arterial pressure (MAP) in patients with AMI and shock after cardiac arrest. METHODS This study used patient-level pooled analysis of post-cardiac arrest patients with shock after AMI randomized in the Neuroprotect (Neuroprotective Goal Directed Hemodynamic Optimization in Post-cardiac Arrest Patients; NCT02541591) and COMACARE (Carbon Dioxide, Oxygen and Mean Arterial Pressure After Cardiac Arrest and Resuscitation; NCT02698917) trials who were randomized to MAP 65 mm Hg or MAP 80/85 to 100 mm Hg targets during the first 36 h after admission. The primary endpoint was the area under the 72-h high-sensitivity troponin-T curve. RESULTS Of 235 patients originally randomized, 120 patients had AMI with shock. Patients assigned to the higher MAP target (n = 58) received higher doses of norepinephrine (p = 0.004) and dobutamine (p = 0.01) and reached higher MAPs (86 ± 9 mm Hg vs. 72 ± 10 mm Hg, p < 0.001). Whereas admission hemodynamics and angiographic findings were all well-balanced and revascularization was performed equally effective, the area under the 72-h high-sensitivity troponin-T curve was lower in patients assigned to the higher MAP target (median: 1.14 μg.72 h/l [interquartile range: 0.35 to 2.31 μg.72 h/l] vs. median: 1.56 μg.72 h/l [interquartile range: 0.61 to 4.72 μg. 72 h/l]; p = 0.04). Additional pharmacologic support did not increase the risk of a new cardiac arrest (p = 0.88) or atrial fibrillation (p = 0.94). Survival with good neurologic outcome at 180 days was not different between both groups (64% vs. 53%, odds ratio: 1.55; 95% confidence interval: 0.74 to 3.22). CONCLUSIONS In post-cardiac arrest patients with shock after AMI, targeting MAP between 80/85 and 100 mm Hg with additional use of inotropes and vasopressors was associated with smaller myocardial injury.
Collapse
Affiliation(s)
- Koen Ameloot
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Department of Cardiology, University Hospitals Leuven, Leuven, Belgium; Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium.
| | - Pekka Jakkula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matti Reinikainen
- Department of Anaesthesiology and Intensive Care, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Ville Pettilä
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka Loisa
- Department of Intensive Care, Päijät-Häme Central Hospital, Lahti, Finland
| | - Marjaana Tiainen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stepani Bendel
- Department of Intensive Care, Kuopio University Hospital, Kuopio, Finland
| | | | - Ann Belmans
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | - Eline Bogaerts
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Cathy De Deyne
- Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium; Department of Anesthesiology and Critical Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Bert Ferdinande
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Stefan Janssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Joseph Dens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium
| | - Markus B Skrifvars
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
48
|
Review of Hypothermia Protocol and Timing of the Echocardiogram. Curr Probl Cardiol 2021; 46:100786. [PMID: 33516091 DOI: 10.1016/j.cpcardiol.2021.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022]
Abstract
Targeted temperature management, also known as therapeutic hypothermia (TH), is recommended for out-of-hospital cardiac arrest (OHCA). Both internal or external methods of cooling can be applied. Individuals resuscitated from OHCA frequently develop postarrest myocardial dysfunction resulting in decreased cardiac output and left ventricular systolic function. This dysfunction is usually transient and improves with spontaneous recovery over time. Echocardiogram (ECHO) can be a vital tool for the assessment and management of these patients. This manuscript reviewed methods available for TH after OHCA and reviews role of ECHO in the diagnosis and prognosis in this setting.
Collapse
|
49
|
Josiassen J, Lerche Helgestad OK, Møller JE, Kjaergaard J, Hoejgaard HF, Schmidt H, Jensen LO, Holmvang L, Ravn HB, Hassager C. Hemodynamic and metabolic recovery in acute myocardial infarction-related cardiogenic shock is more rapid among patients presenting with out-of-hospital cardiac arrest. PLoS One 2020; 15:e0244294. [PMID: 33362228 PMCID: PMC7757873 DOI: 10.1371/journal.pone.0244294] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Most studies in acute myocardial infarction complicated by cardiogenic shock (AMICS) include patients presenting with and without out-of-hospital cardiac arrest (OHCA). The aim was to compare OHCA and non-OHCA AMICS patients in terms of hemodynamics, management in the intensive care unit (ICU) and outcome. Methods From a cohort corresponding to two thirds of the Danish population, all patients with AMICS admitted from 2010–2017 were individually identified through patient records. Results A total of 1716 AMICS patients were identified of which 723 (42%) presented with OHCA. A total of 1532 patients survived to ICU admission. At the time of ICU arrival, there were no differences between OHCA and non-OHCA AMICS patients in variables commonly used in the AMICS definition (mean arterial pressure (MAP) (72mmHg vs 70mmHg, p = 0.12), lactate (4.3mmol/L vs 4.0mmol/L, p = 0.09) and cardiac output (CO) (4.6L/min vs 4.4L/min, p = 0.30)) were observed. However, during the initial days of ICU treatment OHCA patients had a higher MAP despite a lower need for vasoactive drugs, higher CO, SVO2 and lactate clearance compared to non-OHCA patients (p<0.05 for all). In multivariable analysis outcome was similar but cause of death differed significantly with hypoxic brain injury being leading cause in OHCA and cardiac failure in non-OHCA AMICS patients. Conclusion OHCA and non-OHCA AMICS patients initially have comparable metabolic and hemodynamic profiles, but marked differences develop between the groups during the first days of ICU treatment. Thus, pooling of OHCA and non-OHCA patients as one clinical entity in studies should be done with caution.
Collapse
Affiliation(s)
- Jakob Josiassen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Ole Kristian Lerche Helgestad
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Henrik Schmidt
- Department of Cardiothoracic Anesthesia, Odense University Hospital, Odense, Denmark
| | | | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Berg Ravn
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiothoracic Anesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Jozwiak M, Bougouin W, Geri G, Grimaldi D, Cariou A. Post-resuscitation shock: recent advances in pathophysiology and treatment. Ann Intensive Care 2020; 10:170. [PMID: 33315152 PMCID: PMC7734609 DOI: 10.1186/s13613-020-00788-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
A post-resuscitation shock occurs in 50–70% of patients who had a cardiac arrest. It is an early and transient complication of the post-resuscitation phase, which frequently leads to multiple-organ failure and high mortality. The pathophysiology of post-resuscitation shock is complex and results from the whole-body ischemia–reperfusion process provoked by the sequence of circulatory arrest, resuscitation manoeuvers and return of spontaneous circulation, combining a myocardial dysfunction and sepsis features, such as vasoplegia, hypovolemia and endothelial dysfunction. Similarly to septic shock, the hemodynamic management of post-resuscitation shock is based on an early and aggressive hemodynamic management, including fluid administration, vasopressors and/or inotropes. Norepinephrine should be considered as the first-line vasopressor in order to avoid arrhythmogenic effects of other catecholamines and dobutamine is the most established inotrope in this situation. Importantly, the optimal mean arterial pressure target during the post-resuscitation shock still remains unknown and may probably vary according to patients. Mechanical circulatory support by extracorporeal membrane oxygenation can be necessary in the most severe patients, when the neurological prognosis is assumed to be favourable. Other symptomatic treatments include protective lung ventilation with a target of normoxia and normocapnia and targeted temperature management by avoiding the lowest temperature targets. Early coronary angiogram and coronary reperfusion must be considered in ST-elevation myocardial infarction (STEMI) patients with preserved neurological prognosis although the timing of coronary angiogram in non-STEMI patients is still a matter of debate. Further clinical research is needed in order to explore new therapeutic opportunities regarding inflammatory, hormonal and vascular dysfunction.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 27, rue du faubourg Saint Jacques, 75014, Paris, France. .,Université de Paris, Paris, France.
| | - Wulfran Bougouin
- Service de Médecine Intensive Réanimation, Hôpital Privé Jacques Cartier, Ramsay Générale de Santé, Massy, France.,INSERM U970, Paris-Cardiovascular-Research-Center, Paris, France.,Paris Sudden-Death-Expertise-Centre, Paris, France.,AfterROSC Network Group, Paris, France
| | - Guillaume Geri
- Service de Médecine Intensive Réanimation, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France.,Université Paris-Saclay, Paris, France.,INSERM UMR1018, Centre de Recherche en Epidémiologie Et Santé Des Populations, Villejuif, France.,AfterROSC Network Group, Paris, France
| | - David Grimaldi
- Service de Soins Intensifs CUB-Erasme, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,AfterROSC Network Group, Paris, France
| | - Alain Cariou
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 27, rue du faubourg Saint Jacques, 75014, Paris, France.,Université de Paris, Paris, France.,INSERM U970, Paris-Cardiovascular-Research-Center, Paris, France.,Paris Sudden-Death-Expertise-Centre, Paris, France.,AfterROSC Network Group, Paris, France
| |
Collapse
|