1
|
Petrovčič R, Rakusa M, Markota A. Monitoring of Cerebral Blood Flow Autoregulation after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1381. [PMID: 39336422 PMCID: PMC11433513 DOI: 10.3390/medicina60091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Background: Cardiac arrest remains one of the leading causes of death. After successful resuscitation of patients in cardiac arrest, post-cardiac arrest syndrome develops, part of it being an impaired cerebral blood flow autoregulation. Monitoring cerebral blood flow autoregulation after cardiac arrest is important for optimizing patient care and prognosticating patients' survival, yet remains a challenge. There are still gaps in clinical implications and everyday use. In this article, we present a systematic review of studies with different methods of monitoring cerebral blood flow autoregulation after non-traumatic cardiac arrest. Methods: A comprehensive literature search was performed from 1 June 2024 to 27 June 2024 by using multiple databases: PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. Inclusion criteria were studies with an included description of the measurement of cerebral blood flow autoregulation in adult patients after non-traumatic cardiac arrest. Results: A total of 16 studies met inclusion criteria. Our data show that the most used methods in the reviewed studies were near-infrared spectroscopy and transcranial Doppler. The most used mathematical methods for calculating cerebral autoregulation were cerebral oximetry index, tissue oxygenation reactivity index, and mean flow index. Conclusions: The use of various monitoring and mathematical methods for calculating cerebral blood flow autoregulation poses a challenge for standardization, validation, and daily use in clinical practice. In the future studies, focus should be considered on clinical validation and transitioning autoregulation monitoring techniques to everyday clinical practice, which could improve the survival outcomes of patients after cardiac arrest.
Collapse
Affiliation(s)
- Rok Petrovčič
- Emergency Department, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Andrej Markota
- Department of Intensive Internal Medicine, Division of Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
2
|
Beekman R, Khosla A, Buckley R, Honiden S, Gilmore EJ. Temperature Control in the Era of Personalized Medicine: Knowledge Gaps, Research Priorities, and Future Directions. J Intensive Care Med 2024; 39:611-622. [PMID: 37787185 DOI: 10.1177/08850666231203596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic brain injury (HIBI) is the leading cause of death and disability after cardiac arrest. To date, temperature control is the only intervention shown to improve neurologic outcomes in patients with HIBI. Despite robust preclinical evidence supporting hypothermia as neuroprotective therapy after cardiac arrest, there remains clinical equipoise regarding optimal core temperature, therapeutic window, and duration of therapy. Current guidelines recommend continuous temperature monitoring and active fever prevention for at least 72 h and additionally note insufficient evidence regarding temperature control targeting 32 °C-36 °C. However, population-based thresholds may be inadequate to support the metabolic demands of ischemic, reperfused, and dysregulated tissue. Promoting a more personalized approach with individualized targets has the potential to further improve outcomes. This review will analyze current knowledge and evidence, address research priorities, explore the components of high-quality temperature control, and define critical future steps that are needed to advance patient-centered care for cardiac arrest survivors.
Collapse
Affiliation(s)
- Rachel Beekman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Akhil Khosla
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Buckley
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shyoko Honiden
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Chalifoux N, Ko T, Slovis J, Spelde A, Kilbaugh T, Mavroudis CD. Cerebral Autoregulation: A Target for Improving Neurological Outcomes in Extracorporeal Life Support. Neurocrit Care 2024:10.1007/s12028-024-02002-5. [PMID: 38811513 DOI: 10.1007/s12028-024-02002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Despite improvements in survival after illnesses requiring extracorporeal life support, cerebral injury continues to hinder successful outcomes. Cerebral autoregulation (CA) is an innate protective mechanism that maintains constant cerebral blood flow in the face of varying systemic blood pressure. However, it is impaired in certain disease states and, potentially, following initiation of extracorporeal circulatory support. In this review, we first discuss patient-related factors pertaining to venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) and their potential role in CA impairment. Next, we examine factors intrinsic to ECMO that may affect CA, such as cannulation, changes in pulsatility, the inflammatory and adaptive immune response, intracranial hemorrhage, and ischemic stroke, in addition to ECMO management factors, such as oxygenation, ventilation, flow rates, and blood pressure management. We highlight potential mechanisms that lead to disruption of CA in both pediatric and adult populations, the challenges of measuring CA in these patients, and potential associations with neurological outcome. Altogether, we discuss individualized CA monitoring as a potential target for improving neurological outcomes in extracorporeal life support.
Collapse
Affiliation(s)
- Nolan Chalifoux
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Tiffany Ko
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Spelde
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Smielewski P, Beqiri E, Mataczynski C, Placek M, Kazimierska A, Hutchinson P, Czosnyka M, Kasprowicz M. Advanced neuromonitoring powered by ICM+ and its place in the Brand New AI World, reflections at the 20th anniversary boundary. BRAIN & SPINE 2024; 4:102835. [PMID: 39071453 PMCID: PMC11278591 DOI: 10.1016/j.bas.2024.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/30/2024]
Abstract
Introduction Adoption of the ICM+® brain monitoring software by clinical research centres worldwide has been continuously growing over the past 20 years. This has necessitated ongoing updates to accommodate evolving neuromonitoring research needs, including recent explosion of artificial intelligence (AI). Research question We sought to provide an update on the current features of the software. In particular, we aimed to highlight the new options of integrating AI models. Material and methods We reviewed all currently available ICM+ analytical areas and discussed potential AI based extensions in each. We tested a proof-of-concept integration of an AI model and evaluated its performance for real-time data processing. Results ICM+ current analytical tools serve both real-time (bed-side) and offline (file based) analysis, including the calculation engine, Signal Calculator, Custom Statistics, Batch tools, ScriptLab and charting. The ICM+ Python plugin engine allows to execute custom Python scripts and take advantage of complex AI frameworks. For the proof-of-concept, we used a neural network convolutional model with 207,000 trainable parameters that classifies morphology of intracranial pressure (ICP) pulse waveform into 5 pulse categories (normal to pathological plus artefactual). When evaluated within ICM+ plugin script on a Windows 10 laptop the classification of a 5 min ICP waveform segment took only 0.19s with a 2.3s of initial, one-off, model loading time required. Conclusions Modernised ICM+ analytical tools, reviewed in this manuscript, include integration of custom AI models allowing them to be shared and run in real-time, facilitating rapid prototyping and validating of new AI ideas at the bed-side.
Collapse
Affiliation(s)
- P. Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - E. Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - C. Mataczynski
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - M. Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A. Kazimierska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - P.J. Hutchinson
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
- Neurosurgery Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - M. Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M. Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
6
|
Stein KY, Froese L, Sekhon M, Griesdale D, Thelin EP, Raj R, Tas J, Aries M, Gallagher C, Bernard F, Gomez A, Kramer AH, Zeiler FA. Intracranial Pressure-Derived Cerebrovascular Reactivity Indices and Their Critical Thresholds: A Canadian High Resolution-Traumatic Brain Injury Validation Study. J Neurotrauma 2024; 41:910-923. [PMID: 37861325 DOI: 10.1089/neu.2023.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Current neurointensive care guidelines recommend intracranial pressure (ICP) and cerebral perfusion pressure (CPP) centered management for moderate-severe traumatic brain injury (TBI) because of their demonstrated associations with patient outcome. Cerebrovascular reactivity metrics, such as the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC index, have also demonstrated significant prognostic capabilities with regard to outcome. However, critical thresholds for cerebrovascular reactivity indices have only been identified in two studies conducted at the same center. In this study, we aim to determine the critical thresholds of these metrics by leveraging a unique multi-center database. The study included a total of 354 patients from the CAnadian High-Resolution TBI (CAHR-TBI) Research Collaborative. Based on 6-month Glasgow Outcome Scores, patients were dichotomized into alive versus dead and favorable versus unfavorable. Chi-square values were then computed for incrementally increasing values of each physiological parameter of interest against outcome. The values that generated the greatest chi-squares for each parameter were considered to be the thresholds with the greatest outcome discriminatory capacity. To confirm that the identified thresholds provide prognostic utility, univariate and multivariable logistical regression analyses were performed adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. Through the chi-square analysis, a lower limit CPP threshold of 60 mm Hg and ICP thresholds of 18 mm Hg and 22 mm Hg were identified for both survival and favorable outcome predictions. For the cerebrovascular reactivity metrics, different thresholds were identified for the two outcome dichotomizations. For survival prediction, thresholds of 0.35, 0.25, and 0 were identified for PRx, PAx, and RAC, respectively. For favorable outcome prediction, thresholds of 0.325, 0.20, and 0.05 were found. Univariate logistical regression analysis demonstrated that the time spent above/below thresholds were associated with outcome. Further, multivariable logistical regression analysis found that percent time above/below the identified thresholds added additional variance to the IMPACT core model for predicting both survival and favorable outcome. In this study, we were able to validate the results of the previous two works as well as to reaffirm the ICP and CPP guidelines from the Brain Trauma Foundation (BTF) and the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).
Collapse
Affiliation(s)
- Kevin Y Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mypinder Sekhon
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, and School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, and School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Clare Gallagher
- Section of Neurosurgery, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Gomez A, Froese L, Griesdale D, Thelin EP, Raj R, van Iperenburg L, Tas J, Aries M, Stein KY, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Prognostic value of near-infrared spectroscopy regional oxygen saturation and cerebrovascular reactivity index in acute traumatic neural injury: a CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Cohort Study. Crit Care 2024; 28:78. [PMID: 38486211 PMCID: PMC10938687 DOI: 10.1186/s13054-024-04859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Levi van Iperenburg
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Clare Gallagher
- Section of Neurosurgery, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Sainbhi AS, Marquez I, Gomez A, Stein KY, Amenta F, Vakitbilir N, Froese L, Zeiler FA. Regional disparity in continuously measured time-domain cerebrovascular reactivity indices: a scoping review of human literature. Physiol Meas 2023; 44:07TR02. [PMID: 37336236 DOI: 10.1088/1361-6579/acdfb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Objective: Cerebral blood vessels maintaining relatively constant cerebral blood flow (CBF) over wide range of systemic arterial blood pressure (ABP) is referred to as cerebral autoregulation (CA). Impairments in CA expose the brain to pressure-passive flow states leading to hypoperfusion and hyperperfusion. Cerebrovascular reactivity (CVR) metrics refer to surrogate metrics of pressure-based CA that evaluate the relationship between slow vasogenic fluctuations in cerebral perfusion pressure/ABP and a surrogate for pulsatile CBF/cerebral blood volume.Approach: We performed a systematically conducted scoping review of all available human literature examining the association between continuous CVR between more than one brain region/channel using the same CVR index.Main Results: In all the included 22 articles, only handful of transcranial doppler (TCD) and near-infrared spectroscopy (NIRS) based metrics were calculated for only two brain regions/channels. These metrics found no difference between left and right sides in healthy volunteer, cardiac surgery, and intracranial hemorrhage patient studies. In contrast, significant differences were reported in endarterectomy, and subarachnoid hemorrhage studies, while varying results were found regarding regional disparity in stroke, traumatic brain injury, and multiple population studies.Significance: Further research is required to evaluate regional disparity using NIRS-based indices and to understand if NIRS-based indices provide better regional disparity information than TCD-based indices.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Sainbhi AS, Froese L, Gomez A, Marquez I, Amenta F, Batson C, Stein KY, Zeiler FA. High spatial and temporal resolution cerebrovascular reactivity for humans and large mammals: A technological description of integrated fNIRS and niABP mapping system. Front Physiol 2023; 14:1124268. [PMID: 36755788 PMCID: PMC9899997 DOI: 10.3389/fphys.2023.1124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF) fairly constant over a wide range of arterial blood pressure is referred to as cerebral autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this process, which maintains CBF through constriction and dilation of cerebral vessels. Traditionally CA has been assessed statistically, limited by large, immobile, and costly neuroimaging platforms. However, with recent technology advancement, dynamic autoregulation assessment is able to provide more detailed information on the evolution of CA over long periods of time with continuous assessment. Yet, to date, such continuous assessments have been hampered by low temporal and spatial resolution systems, that are typically reliant on invasive point estimations of pulsatile CBF or cerebral blood volume using commercially available technology. Methods: Using a combination of multi-channel functional near-infrared spectroscopy and non-invasive arterial blood pressure devices, we were able to create a system that visualizes CA metrics by converting them to heat maps drawn on a template of human brain. Results: The custom Python heat map module works in "offline" mode to visually portray the CA index per channel with the use of colourmap. The module was tested on two different mapping grids, 8 channel and 24 channel, using data from two separate recordings and the Python heat map module was able read the CA indices file and represent the data visually at a preselected rate of 10 s. Conclusion: The generation of the heat maps are entirely non-invasive, with high temporal and spatial resolution by leveraging the recent advances in NIRS technology along with niABP. The CA mapping system is in its initial stage and development plans are ready to transform it from "offline" to real-time heat map generation.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada,*Correspondence: Amanjyot Singh Sainbhi,
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Izzy Marquez
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Fiorella Amenta
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Teo EJ, Chand KK, Miller SM, Wixey JA, Colditz PB, Bjorkman ST. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain. Sci Rep 2023; 13:282. [PMID: 36609414 PMCID: PMC9823001 DOI: 10.1038/s41598-022-27034-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1β), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)β in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.
Collapse
Affiliation(s)
- Elliot J. Teo
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Kirat. K. Chand
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Stephanie M. Miller
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - S. Tracey. Bjorkman
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
11
|
Smida T, Menegazzi JJ, Crowe RP, Weiss LS, Salcido DD. Association of prehospital hypotension depth and dose with survival following out-of-hospital cardiac arrest. Resuscitation 2022; 180:99-107. [PMID: 36191809 DOI: 10.1016/j.resuscitation.2022.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Hypotension following resuscitation from out-of-hospital cardiac arrest (OHCA) may cause harm by exacerbating secondary brain injury; however, limited research has explored this relationship. Our objective was to examine the association between duration and depth of prehospital post return of spontaneous circulation (ROSC) hypotension and survival. METHODS We utilized the 2019 and 2020 ESO Data Collaborative public use research data sets for this study (ESO, Austin, TX). Hypotension dose (mmHg*min.), average prehospital systolic blood pressure (SBP), and lowest recorded prehospital SBP were calculated. The association of these measures with survival to home (STH) and rearrest were explored using multivariable logistic regression. Time to hypotension resolution analyses by hypotension management strategy (push dose vasopressors, vasopressor infusion, or fluid only) were conducted using adjusted Cox proportional hazards models. RESULTS 17,280 OHCA patients met inclusion criteria, of which 3,345 had associated hospital outcome data. Over one-third (37.8%; 6,526/17,280) of all patients had at least one recorded SBP below 90 mmHg. When modeled continuously, average prehospital SBP (1.19 [1.15, 1.23] per 10 mmHg), lowest prehospital SBP (1.20 [1.17, 1.24] per 10 mmHg), and hypotension dose (0.995 [0.993, 0.996] per mmHg*min.) were independently associated with STH. Differences in hypotension management were not associated with differences in survival or time to hypotension resolution. CONCLUSION Severity and duration of hypotension were significantly associated with worse outcomes in this dataset. Defining a threshold for hypotension requiring treatment above the classical SBP threshold of 90 mmHg may be warranted in the setting of prehospital post-resuscitation care.
Collapse
Affiliation(s)
- Tanner Smida
- West Virginia University MD/PhD Program, Morgantown, WV, United States.
| | - James J Menegazzi
- University of Pittsburgh School of Medicine, Department of Emergency Medicine, Pittsburgh, PA, United States
| | | | - Leonard S Weiss
- University of Pittsburgh School of Medicine, Department of Emergency Medicine, Pittsburgh, PA, United States
| | - David D Salcido
- University of Pittsburgh School of Medicine, Department of Emergency Medicine, Pittsburgh, PA, United States
| |
Collapse
|
12
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
13
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
14
|
Valkov S, Nilsen JH, Mohyuddin R, Schanche T, Kondratiev T, Sieck GC, Tveita T. Autoregulation of Cerebral Blood Flow During 3-h Continuous Cardiopulmonary Resuscitation at 27°C. Front Physiol 2022; 13:925292. [PMID: 35755426 PMCID: PMC9218627 DOI: 10.3389/fphys.2022.925292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Victims of accidental hypothermia in hypothermic cardiac arrest (HCA) may survive with favorable neurologic outcome if early and continuous prehospital cardiopulmonary resuscitation (CPR) is started and continued during evacuation and transport. The efficacy of cerebral autoregulation during hypothermic CPR is largely unknown and is aim of the present experiment. Methods: Anesthetized pigs (n = 8) were surface cooled to HCA at 27°C before 3 h continuous CPR. Central hemodynamics, cerebral O2 delivery (DO2) and uptake (VO2), cerebral blood flow (CBF), and cerebral perfusion pressure (CPP) were determined before cooling, at 32°C and at 27°C, then at 15 min after the start of CPR, and hourly thereafter. To estimate cerebral autoregulation, the static autoregulatory index (sARI), and the CBF/VO2 ratio were determined. Results: After the initial 15-min period of CPR at 27°C, cardiac output (CO) and mean arterial pressure (MAP) were reduced significantly when compared to corresponding values during spontaneous circulation at 27°C (-66.7% and -44.4%, respectively), and remained reduced during the subsequent 3-h period of CPR. During the first 2-h period of CPR at 27°C, blood flow in five different brain areas remained unchanged when compared to the level during spontaneous circulation at 27°C, but after 3 h of CPR blood flow in 2 of the 5 areas was significantly reduced. Cooling to 27°C reduced cerebral DO2 by 67.3% and VO2 by 84.4%. Cerebral VO2 was significantly reduced first after 3 h of CPR. Cerebral DO2 remained unaltered compared to corresponding levels measured during spontaneous circulation at 27°C. Cerebral autoregulation was preserved (sARI > 0.4), at least during the first 2 h of CPR. Interestingly, the CBF/VO2 ratio during spontaneous circulation at 27°C indicated the presence of an affluent cerebral DO2, whereas after CPR, the CBF/VO2 ratio returned to the level of spontaneous circulation at 38°C. Conclusion: Despite a reduced CO, continuous CPR for 3 h at 27°C provided sufficient cerebral DO2 to maintain aerobic metabolism and to preserve cerebral autoregulation during the first 2-h period of CPR. This new information supports early start and continued CPR in accidental hypothermia patients during rescue and transportation for in hospital rewarming.
Collapse
Affiliation(s)
- Sergei Valkov
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jan Harald Nilsen
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Research and Education, Norwegian Air Ambulance Foundation, Drøbak, Norway
| | - Rizwan Mohyuddin
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torstein Schanche
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| | - Timofei Kondratiev
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| | - Torkjel Tveita
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| |
Collapse
|
15
|
Sainbhi AS, Froese L, Gomez A, Batson C, Stein KY, Alizadeh A, Zeiler FA. Continuous Time-Domain Cerebrovascular Reactivity Metrics and Discriminate Capacity for the Upper and Lower Limits of Autoregulation: A Scoping Review of the Animal Literature. Neurotrauma Rep 2021; 2:639-659. [PMID: 35018365 PMCID: PMC8742280 DOI: 10.1089/neur.2021.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over a wide range of systemic arterial pressures, cerebral blood flow (CBF) is regulated fairly constantly by the cerebral vessels in a process termed cerebral autoregulation (CA), which is depicted by the Lassen autoregulatory curve. After traumatic brain injury (TBI), CA can get impaired and these impairments manifest in changes of the Lassen autoregulatory curve. Continuous surrogate metrics of pressure-based CA, termed cerebrovascular reactivity (CVR) metrics, evaluate the relationship between slow vasogenic fluctuations in a driving pressure for cerebral blood flow, and the most commonly studied and utilized measures are based in the time domain and have been increasingly applied in bedside TBI care and have sparked the investigation of individualized cerebral perfusion pressure targets. However, not all CVR metrics have been validated as true measures of autoregulation in the pre-clinical setting. We reviewed all available pre-clinical animal literature that assessed the association between continuous time-domain metrics of CVR and some aspect of the Lassen autoregulatory curve. All 15 articles found associated the evaluated continuous metrics to the lower limit of autoregulation curve whereas none looked at the upper limit. Most of the evaluated metrics showed the ability to discriminate the lower limit of autoregulation with various methods of perturbation. Further work is required to evaluate the utility of such surrogate measures against the upper limit of autoregulation, while also providing validation to the existing literature supporting specific indices and their ability to discriminate the lower limit.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Natique KR, Das Y, Maxey MN, Sepulveda P, Brown LS, Chalak LF. Early Use of Transcranial Doppler Ultrasonography to Stratify Neonatal Encephalopathy. Pediatr Neurol 2021; 124:33-39. [PMID: 34509001 DOI: 10.1016/j.pediatrneurol.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dynamic nature of neonatal hypoxic-ischemic encephalopathy (HIE) after birth necessitates reliable biomarkers to identify infants with evolving brain injury. This prospective cohort aims to use serial Doppler ultrasonography (US) to measure cerebral blood flow velocity and resistance index (RI) to help detect the time and evolution of the clinical encephalopathy. METHODS A total of 60 neonates were enrolled all ≥36 weeks' gestation with perinatal acidemia, defined as a blood gas pH ≤ 7.0 or base deficit ≥16 mmol/L and encephalopathy including a matched control group without encephalopathy. Each neonate received one to three serial Doppler recordings starting at six to 24 hours of life. Mean RI ≤ 0.55 was considered abnormal. RESULTS Mean RIs obtained shortly after birth were significantly lower with increasing severity of encephalopathy. On the first Doppler recordings, abnormal mean RIs were seen in 11 of 18 (61%) neonates with mild, 13 of 17 (76%) with moderate, and two of two (100%) with severe HIE. Of the neonates with mild HIE and abnormal mean RIs, congruity abnormal amplitude electroencephalography (45%), brain magnetic resonance imaging (45%), and abnormal head ultrasound (44%) are here reported. CONCLUSIONS Doppler measurements can provide bedside adjunct biomarkers indicating the time and severity of neonatal HIE.
Collapse
Affiliation(s)
- Kiran R Natique
- Neonatal-Perinatal Medicine, University of Texas Southwestern, Dallas, Texas
| | - Yudhajit Das
- Department of Biomedical Engineering, University of Texas, Arlington, Texas
| | | | | | | | - Lina F Chalak
- Neonatal-Perinatal Medicine, University of Texas Southwestern, Dallas, Texas.
| |
Collapse
|
17
|
Crippa IA, Vincent JL, Zama Cavicchi F, Pozzebon S, Annoni F, Cotoia A, Njimi H, Gaspard N, Creteur J, Taccone FS. Cerebral autoregulation in anoxic brain injury patients treated with targeted temperature management. J Intensive Care 2021; 9:67. [PMID: 34702372 PMCID: PMC8547304 DOI: 10.1186/s40560-021-00579-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background Little is known about the prevalence of altered CAR in anoxic brain injury and the association with patients’ outcome. We aimed at investigating CAR in cardiac arrest survivors treated by targeted temperature management and its association to outcome.
Methods Retrospective analysis of prospectively collected data. Inclusion criteria: adult cardiac arrest survivors treated by targeted temperature management (TTM). Exclusion criteria: trauma; sepsis, intoxication; acute intra-cranial disease; history of supra-aortic vascular disease; severe hemodynamic instability; cardiac output mechanical support; arterial carbon dioxide partial pressure (PaCO2) > 60 mmHg; arrhythmias; lack of acoustic window. Middle cerebral artery flow velocitiy (FV) was assessed by transcranial Doppler (TCD) once during hypothermia (HT) and once during normothermia (NT). FV and blood pressure (BP) were recorded simultaneously and Mxa calculated (MATLAB). Mxa is the Pearson correlation coefficient between FV and BP. Mxa > 0.3 defined altered CAR. Survival was assessed at hospital discharge. Cerebral Performance Category (CPC) 3–5 assessed 3 months after CA defined unfavorable neurological outcome (UO). Results We included 50 patients (Jan 2015–Dec 2018). All patients had out-of-hospital cardiac arrest, 24 (48%) had initial shockable rhythm. Time to return of spontaneous circulation was 20 [10–35] min. HT (core body temperature 33.7 [33.2–34] °C) lasted for 24 [23–28] h, followed by rewarming and NT (core body temperature: 36.9 [36.6–37.4] °C). Thirty-one (62%) patients did not survive at hospital discharge and 36 (72%) had UO. Mxa was lower during HT than during NT (0.33 [0.11–0.58] vs. 0.58 [0.30–0.83]; p = 0.03). During HT, Mxa did not differ between outcome groups. During NT, Mxa was higher in patients with UO than others (0.63 [0.43–0.83] vs. 0.31 [− 0.01–0.67]; p = 0.03). Mxa differed among CPC values at NT (p = 0.03). Specifically, CPC 2 group had lower Mxa than CPC 3 and 5 groups. At multivariate analysis, initial non-shockable rhythm, high Mxa during NT and highly malignant electroencephalography pattern (HMp) were associated with in-hospital mortality; high Mxa during NT and HMp were associated with UO. Conclusions CAR is frequently altered in cardiac arrest survivors treated by TTM. Altered CAR during normothermia was independently associated with poor outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-021-00579-z.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium.
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Federica Zama Cavicchi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Selene Pozzebon
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Antonella Cotoia
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium.,Department of Anesthesia and Intensive Care, University Hospital of Foggia, Viale Luigi Pinto 1, 71122, Foggia, Italy
| | - Hassane Njimi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Bruxelles, Belgium
| |
Collapse
|
18
|
Fong D, Gradon K, Barrett CJ, Guild SJ, Tzeng YC, Paton JFR, McBryde FD. A method to evaluate dynamic cerebral pressure-flow relationships in the conscious rat. J Appl Physiol (1985) 2021; 131:1361-1369. [PMID: 34498945 DOI: 10.1152/japplphysiol.00289.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The classic dogma of cerebral autoregulation is that cerebral blood flow is steadily maintained across a wide range of perfusion pressures. This has been challenged by recent studies suggesting little to no "autoregulatory plateau" in the relationship between cerebral blood flow and blood pressure (BP). Therefore, the mechanisms underlying the cerebral pressure-flow relationship still require further understanding. Here, we present a novel approach to examine dynamic cerebral autoregulation in conscious Wistar rats (n = 16) instrumented to measure BP and internal carotid blood flow (iCBF), as an indicator of cerebral blood flow. Transient reductions in BP were induced by occluding the vena cava via inflation of a chronically implanted intravascular silicone balloon. Falls in BP were paralleled by progressive decreases in iCBF, with no evidence of a steady-state plateau. No significant changes in internal carotid vascular resistance (iCVR) were observed. In contrast, intravenous infusions of the vasoactive drug sodium nitroprusside (SNP) produced a similar fall in BP but increases in iCBF and decreases in iCVR were observed. These data suggest a considerable confounding influence of vasodilatory drugs such as SNP on cerebrovascular tone in the rat, making them unsuitable to investigate cerebral autoregulation. We demonstrate that our technique of transient vena cava occlusion produced reliable and repeatable depressor responses, highlighting the potential for our approach to permit assessment of the dynamic cerebral pressure-flow relationship over time in conscious rats.NEW & NOTEWORTHY We present a novel technique to overcome the use of vasoactive agents when studying cerebrovascular dynamics in the conscious rat. Our method of vena cava occlusion to reduce BP was associated with decreased iCBF and no change in iCVR. In contrast, comparable BP falls with intravenous SNP increased iCBF and reduced iCVR. Thus, the dynamic cerebral pressure-flow relationship shows a narrower, less level autoregulatory plateau than conventionally thought. We confirm our method allows repeatable assessment of cerebrovascular dynamics in conscious rats.
Collapse
Affiliation(s)
- Debra Fong
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kelly Gradon
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yu Chieh Tzeng
- Wellington Medical Technology Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Julian F R Paton
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Fiona D McBryde
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Chalak L, Hellstrom-Westas L, Bonifacio S, Tsuchida T, Chock V, El-Dib M, Massaro AN, Garcia-Alix A. Bedside and laboratory neuromonitoring in neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101273. [PMID: 34393094 PMCID: PMC8627431 DOI: 10.1016/j.siny.2021.101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several bedside and laboratory neuromonitoring tools are currently used in neonatal encephalopathy (NE) to assess 1) brain function [amplitude-integrated electroencephalogram (aEEG) and EEG], 2) cerebral oxygenation delivery and consumption [near-infrared spectroscopy (NIRS)] and 3) blood and cerebrospinal fluid biomarkers. The aim of the review is to provide the role of neuromonitoring in understanding the development of brain injury in these newborns and better predict their long-term outcome. Simultaneous use of these monitoring modalities may improve our ability to provide meaningful prognostic information regarding ongoing treatments. Evidence will be summarized in this review for each of these modalities, by describing (1) the methods, (2) the clinical evidence in context of NE both before and with hypothermia, and (3) the research and future directions.
Collapse
Affiliation(s)
- L Chalak
- University of Texas Southwestern Medical Center, Dallas, USA.
| | - L Hellstrom-Westas
- Department of Women's and Children's Health, Uppsala University, Division of Neonatology, Uppsala University Hospital, Sweden.
| | - S Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine; 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA.
| | - T Tsuchida
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences, Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, 111 Michigan Ave NW, West Wing, 4th Floor, Washington DC, 20010-2970, USA.
| | - V Chock
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine; 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA.
| | - M El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, CWN#418, Boston, MA, 02115, USA.
| | - AN Massaro
- Department of Pediatrics, The George Washington University School of Medicine and Division of Neonatology, Children’s National Hospital, Washington, USA
| | - A Garcia-Alix
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain; University of Barcelona, Barcelona, Spain; NeNe Foundation, Madrid, Spain; Passeig de Sant Joan de Déu, 2, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
20
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
21
|
Grand J, Hassager C, Skrifvars MB, Tiainen M, Grejs AM, Jeppesen AN, Duez CHV, Rasmussen BS, Laitio T, Nee J, Taccone F, Søreide E, Kirkegaard H. Haemodynamics and vasopressor support during prolonged targeted temperature management for 48 hours after out-of-hospital cardiac arrest: a post hoc substudy of a randomised clinical trial. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:132–141. [PMID: 32551835 DOI: 10.1177/2048872620934305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Comatose patients admitted after out-of-hospital cardiac arrest frequently experience haemodynamic instability and anoxic brain injury. Targeted temperature management is used for neuroprotection; however, targeted temperature management also affects patients' haemodynamic status. This study assessed the haemodynamic status of out-of-hospital cardiac arrest survivors during prolonged (48 hours) targeted temperature management at 33°C. METHODS Analysis of haemodynamic and vasopressor data from 311 patients included in a randomised, clinical trial conducted in 10 European hospitals (the TTH48 trial). Patients were randomly allocated to targeted temperature management at 33°C for 24 (TTM24) or 48 (TTM48) hours. Vasopressor and haemodynamic data were reported hourly for 72 hours after admission. Vasopressor load was calculated as norepinephrine (µg/kg/min) plus dopamine(µg/kg/min/100) plus epinephrine (µg/kg/min). RESULTS After 24 hours, mean arterial pressure (mean±SD) was 74±9 versus 75±9 mmHg (P=0.19), heart rate was 57±16 and 55±14 beats/min (P=0.18), vasopressor load was 0.06 (0.03-0.15) versus 0.08 (0.03-0.15) µg/kg/min (P=0.22) for the TTM24 and TTM48 groups, respectively. From 24 to 48 hours, there was no difference in mean arterial pressure (Pgroup=0.32) or lactate (Pgroup=0.20), while heart rate was significantly lower (average difference 5 (95% confidence interval 2-8) beats/min, Pgroup<0.0001) and vasopressor load was significantly higher in the TTM48 group (Pgroup=0.005). In a univariate Cox regression model, high vasopressor load was associated with mortality in univariate analysis (hazard ratio 1.59 (1.05-2.42) P=0.03), but not in multivariate analysis (hazard ratio 0.77 (0.46-1.29) P=0.33). CONCLUSIONS In this study, prolonged targeted temperature management at 33°C for 48 hours was associated with higher vasopressor requirement but no sign of any detrimental haemodynamic effects.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Markus B Skrifvars
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Marjaana Tiainen
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Anders M Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark
| | | | | | - Bodil S Rasmussen
- Anaesthesiology and Intensive Care, Aalborg University Hospital, Denmark
| | - Timo Laitio
- Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Finland
| | - Jens Nee
- Department of Intensive Care Medicine, Charité - Universitaetsmedizin Berlin, Germany
| | | | - Eldar Søreide
- Critical Care and Anesthesiology Research Group, Stavanger University Hospital, Norway
- Department of Clinical Medicine, University of Bergen, Norway
| | - Hans Kirkegaard
- Research Center for Emergency Medicine, Aarhus University Hospital and Aarhus University, Denmark
| |
Collapse
|
22
|
Liu X, Akiyoshi K, Nakano M, Brady K, Bush B, Nadkarni R, Venkataraman A, Koehler RC, Lee JK, Hogue CW, Czosnyka M, Smielewski P, Brown CH. Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery. Crit Care Med 2021; 49:650-660. [PMID: 33278074 PMCID: PMC7979429 DOI: 10.1097/ccm.0000000000004737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Monitoring cerebral autoregulation may help identify the lower limit of autoregulation in individual patients. Mean arterial blood pressure below lower limit of autoregulation appears to be a risk factor for postoperative acute kidney injury. Cerebral autoregulation can be monitored in real time using correlation approaches. However, the precise thresholds for different cerebral autoregulation indexes that identify the lower limit of autoregulation are unknown. We identified thresholds for intact autoregulation in patients during cardiopulmonary bypass surgery and examined the relevance of these thresholds to postoperative acute kidney injury. DESIGN A single-center retrospective analysis. SETTING Tertiary academic medical center. PATIENTS Data from 59 patients was used to determine precise cerebral autoregulation thresholds for identification of the lower limit of autoregulation. These thresholds were validated in a larger cohort of 226 patients. METHODS AND MAIN RESULTS Invasive mean arterial blood pressure, cerebral blood flow velocities, regional cortical oxygen saturation, and total hemoglobin were recorded simultaneously. Three cerebral autoregulation indices were calculated, including mean flow index, cerebral oximetry index, and hemoglobin volume index. Cerebral autoregulation curves for the three indices were plotted, and thresholds for each index were used to generate threshold- and index-specific lower limit of autoregulations. A reference lower limit of autoregulation could be identified in 59 patients by plotting cerebral blood flow velocity against mean arterial blood pressure to generate gold-standard Lassen curves. The lower limit of autoregulations defined at each threshold were compared with the gold-standard lower limit of autoregulation determined from Lassen curves. The results identified the following thresholds: mean flow index (0.45), cerebral oximetry index (0.35), and hemoglobin volume index (0.3). We then calculated the product of magnitude and duration of mean arterial blood pressure less than lower limit of autoregulation in a larger cohort of 226 patients. When using the lower limit of autoregulations identified by the optimal thresholds above, mean arterial blood pressure less than lower limit of autoregulation was greater in patients with acute kidney injury than in those without acute kidney injury. CONCLUSIONS This study identified thresholds of intact and impaired cerebral autoregulation for three indices and showed that mean arterial blood pressure below lower limit of autoregulation is a risk factor for acute kidney injury after cardiac surgery.
Collapse
Affiliation(s)
- Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kei Akiyoshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mitsunori Nakano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Saitama Medical Center, Jichi Medical University, Saitama, Japan 330-8503
| | - Ken Brady
- Northwestern University, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Anesthesiology, Chicago, Illinois, USA
| | - Brian Bush
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rohan Nadkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles W. Hogue
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
| | - Charles H. Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Brain monitoring using near-infrared spectroscopy to predict outcome after cardiac arrest: a novel phenotype in a rat model of cardiac arrest. J Intensive Care 2021; 9:4. [PMID: 33413628 PMCID: PMC7787927 DOI: 10.1186/s40560-020-00521-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
Improving neurological outcomes after cardiac arrest (CA) is the most important patient-oriented outcome for CA research. Near-infrared spectroscopy (NIRS) enables a non-invasive, real-time measurement of regional cerebral oxygen saturation. Here, we demonstrate a novel, non-invasive measurement using NIRS, termed modified cerebral oximetry index (mCOx), to distinguish the severity of brain injury after CA. We aimed to test the feasibility of this method to predict neurological outcome after asphyxial CA in rats. Our results suggest that mCOx is feasible shortly after resuscitation and can provide a surrogate measure for the severity of brain injury in a rat asphyxia CA model.
Collapse
|
24
|
Kirschen MP, Morgan RW, Majmudar T, Landis WP, Ko T, Balu R, Balasubramanian S, Topjian A, Sutton RM, Berg RA, Kilbaugh TJ. The association between early impairment in cerebral autoregulation and outcome in a pediatric swine model of cardiac arrest. Resusc Plus 2020; 4:100051. [PMID: 34223325 PMCID: PMC8244245 DOI: 10.1016/j.resplu.2020.100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS Evaluate cerebral autoregulation (CAR) by intracranial pressure reactivity index (PRx) and cerebral blood flow reactivity index (CBFx) during the first four hours following return of spontaneous circulation (ROSC) in a porcine model of pediatric cardiac arrest. Determine whether impaired CAR is associated with neurologic outcome. METHODS Four-week-old swine underwent seven minutes of asphyxia followed by ventricular fibrillation induction and hemodynamic-directed CPR. Those achieving ROSC had arterial blood pressure, intracranial pressure (ICP), and microvascular cerebral blood flow (CBF) monitored for 4 h. Animals were assigned an 8 -h post-ROSC swine cerebral performance category score (1 = normal; 2-4=abnormal neurologic function). In this secondary analytic study, we calculated PRx and CBFx using a continuous, moving correlation coefficient between mean arterial pressure (MAP) and ICP, and between MAP and CBF, respectively. Burden of impaired CAR was the area under the PRx or CBFx curve using a threshold of 0.3 and normalized as percentage of monitoring duration. RESULTS Among 23 animals, median PRx was 0.14 [0.06,0.25] and CBFx was 0.36 [0.05,0.44]. Median burden of impaired CAR was 21% [18,27] with PRx and 30% [17,40] with CBFx. Neurologically abnormal animals (n = 10) did not differ from normal animals (n = 13) in post-ROSC MAP (63 vs. 61 mmHg, p = 0.74), ICP (15 vs. 14 mmHg, p = 0.78) or CBF (274 vs. 397 Perfusion Units, p = 0.12). CBFx burden was greater among abnormal than normal animals (45% vs. 24%, p = 0.001), but PRx burden was not (25% vs. 20%, p = 0.38). CONCLUSION CAR is impaired early after ROSC. A greater burden of CAR impairment measured by CBFx was associated with abnormal neurologic outcome.CHOP Institutional Animal Care and Use Committee protocol 19-001327.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, USA
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
| | - Tanmay Majmudar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, USA
| | - William P. Landis
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
| | - Tiffany Ko
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
| | - Ramani Balu
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, USA
| | | | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, USA
| |
Collapse
|
25
|
Massaro AN, Lee JK, Vezina G, Glass P, O'Kane A, Li R, Chang T, Brady K, Govindan R. Exploratory Assessment of the Relationship Between Hemoglobin Volume Phase Index, Magnetic Resonance Imaging, and Functional Outcome in Neonates with Hypoxic-Ischemic Encephalopathy. Neurocrit Care 2020; 35:121-129. [PMID: 33215394 DOI: 10.1007/s12028-020-01150-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND/OBJECTIVE Near-infrared spectroscopy (NIRS)-based measures of cerebral autoregulation (CAR) can potentially identify neonates with hypoxic-ischemic encephalopathy (HIE) who are at greatest risk of irreversible brain injury. However, modest predictive abilities have precluded previously described metrics from entering clinical care. We previously validated a novel autoregulation metric in a piglet model of induced hypotension called the hemoglobin volume phase index (HVP). The objective of this study was to evaluate the clinical ability of the HVP to predict adverse outcomes neonates with HIE. METHODS This is a prospective study of neonates with HIE who underwent therapeutic hypothermia (TH) at a level 4 neonatal intensive care unit (NICU). Continuous cerebral NIRS and mean arterial blood pressure (MAP) from indwelling arterial catheters were measured during TH and through rewarming. Multivariate autoregressive process was used to calculate the coherence between MAP and the sum total of the oxy- and deoxygenated Hb densities (HbT), a surrogate measure of cerebral blood volume (CBV). The HVP was calculated as the cosine-transformed phase shift at the frequency of maximal MAP-HbT coherence. Brain injury was assessed by neonatal magnetic resonance imaging (MRI), and developmental outcomes were assessed by the Bayley Scales of Infant Development (BSID-III) at 15-30 months. The ability of the HVP to predict (a) death or severe brain injury by MRI and (b) death or significant developmental delay was assessed using logistic regression analyses. RESULTS In total, 50 neonates with moderate or severe HIE were monitored. Median HVP was higher, representing more dysfunctional autoregulation, in infants who had adverse outcomes. After adjusting for sex and encephalopathy grade at presentation, HVP at 21-24 and 24-27 h of life predicted death or brain injury by MRI (21-24 h: OR 8.8, p = 0.037; 24-27 h: OR 31, p = 0.011) and death or developmental delay at 15-30 months (21-24 h: OR 11.8, p = 0.05; 24-27 h: OR 15, p = 0.035). CONCLUSIONS Based on this pilot study of neonates with HIE, HVP merits further study as an indicator of death or severe brain injury on neonatal MRI and neurodevelopmental delay in early childhood. Larger studies are warranted for further clinical validation of the HVP to evaluate cerebral autoregulation following HIE.
Collapse
Affiliation(s)
- An N Massaro
- Division of Neonatology, Children's National Hospital, Washington, DC, USA. .,The George Washington University School of Medicine, Washington, DC, USA.
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gilbert Vezina
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | - Penny Glass
- Psychology and Behavioral Health, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | | | - Ruoying Li
- Neurology, Children's National Hospital, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | - Kenneth Brady
- Department of Anesthesia, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rathinaswamy Govindan
- Fetal and Transitional Medicine, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
26
|
de-Lima-Oliveira M, Ferreira AA, Belon AR, Salinet AM, Nogueira RC, Ping BC, Paiva WS, Teixeira MJ, Bor-Seng-Shu E. The influence of intracranial hypertension on static cerebral autoregulation. Brain Inj 2020; 34:1270-1276. [DOI: 10.1080/02699052.2020.1797166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | | | - Brasil Chian Ping
- Neurology Department, Hospital Das Clinicas Da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
27
|
Ai HB, Jiang EL, Yu JH, Xiong LB, Yang Q, Jin QZ, Gong WY, Chen S, Zhang H. Mean arterial pressure is associated with the neurological function in patients who survived after cardiopulmonary resuscitation: A retrospective cohort study. Clin Cardiol 2020; 43:1286-1293. [PMID: 32737997 PMCID: PMC7661647 DOI: 10.1002/clc.23441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background About 18% to 40% of the survivors have moderate to severe neurological dysfunction. At present, studies on mean arterial pressure (MAP) and neurological function of patients survived after cardiopulmonary resuscitation (CPR) are limited and conflicted. Hypothesis The higher the MAP of the patient who survived after CPR, the better the neurological function. Method A retrospective cohort study was conducted to detect the relationship between MAP and the neurological function of patients who survived after CPR by univariate analysis, multivariate regression analysis, and subgroup analysis. Results From January 2007 to December 2015, a total of 290 cases met the inclusion criteria and were enrolled in this study. The univariate analysis showed that MAP was associated with the neurological function of patients who survived after CPR; its OR value was 1.03 (1.01, 1.04). The multi‐factor regression analysis also showed that MAP was associated with the neurological function of patients survived after CPR in the four models, the adjusted OR value of the four models were 1.021 (1.008, 1.035); 1.028 (1.013, 1.043); 1.027 (1.012, 1.043); and 1.029 (1.014, 1.044), respectively. The subgroups analyses showed that when 65 mm Hg ≤ MAP<100 mm Hg and when patients with targeted temperature management or without extracorporeal membrane oxygenation, with the increase of MAP, the better neurological function of patients survived after CPR. Conclusion This study found that the higher MAP, the better the neurological function of patients who survived after CPR. At the same time, the maintenance of MAP at 65 to 100 mm Hg would improve the neurological function of patients who survived after CPR.
Collapse
Affiliation(s)
- Hai-Bo Ai
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - En-Li Jiang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ji-Hua Yu
- Rehabilitation Medicine Department, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin-Bo Xiong
- Rehabilitation Medicine Department, Mianyang Central Hospital, Mianyang, China
| | - Qi Yang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Qi-Zu Jin
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Wen-Yan Gong
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Shuai Chen
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hong Zhang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
28
|
Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest. Sci Rep 2020; 10:5926. [PMID: 32245979 PMCID: PMC7125097 DOI: 10.1038/s41598-020-62435-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Existing cerebrovascular blood pressure autoregulation metrics have not been translated to clinical care for pediatric cardiac arrest, in part because signal noise causes high index time-variability. We tested whether a wavelet method that uses near-infrared spectroscopy (NIRS) or intracranial pressure (ICP) decreases index variability compared to that of commonly used correlation indices. We also compared whether the methods identify the optimal arterial blood pressure (ABPopt) and lower limit of autoregulation (LLA). 68 piglets were randomized to cardiac arrest or sham procedure with continuous monitoring of cerebral blood flow using laser Doppler, NIRS and ICP. The arterial blood pressure (ABP) was gradually reduced until it dropped to below the LLA. Several autoregulation indices were calculated using correlation and wavelet methods, including the pressure reactivity index (PRx and wPRx), cerebral oximetry index (COx and wCOx), and hemoglobin volume index (HVx and wHVx). Wavelet methodology had less index variability with smaller standard deviations. Both wavelet and correlation methods distinguished functional autoregulation (ABP above LLA) from dysfunctional autoregulation (ABP below the LLA). Both wavelet and correlation methods also identified ABPopt with high agreement. Thus, wavelet methodology using NIRS may offer an accurate vasoreactivity monitoring method with reduced signal noise after pediatric cardiac arrest.
Collapse
|
29
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
30
|
Wu C, Xu J, Jin X, Chen Q, Lu X, Qian A, Wang M, Li Z, Zhang M. Effects of therapeutic hypothermia on cerebral tissue oxygen saturation in a swine model of post-cardiac arrest. Exp Ther Med 2020; 19:1189-1196. [PMID: 32010288 PMCID: PMC6966162 DOI: 10.3892/etm.2019.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022] Open
Abstract
Since the introduction of therapeutic hypothermia (TH), trends have changed in the monitoring indicators used during and after cardiac arrest. During hypothermia, the cerebral metabolic rate of oxygen is reduced, which leads to uncertainty in regional cerebral tissue oxygen saturation (SctO2). The aim of the present study was to evaluate the effect of TH on changes in SctO2 using near-infrared spectroscopy. A total of 23 male domestic pigs were randomized into three groups: TH (n=9), normothermia (NT; n=9) and control (n=5). Animals in the control group underwent surgical preparation only. The animal models were established using 8 min of ventricular fibrillation and 5 min of cardiopulmonary resuscitation. In the TH group, at 5 min after resuscitation, the animals were cooled with a cooling blanket and ice packs for 24 h. SctO2 was recorded throughout the experiment. In all groups, The mean arterial pressure, arterial carbon dioxide partial pressure, arterial oxygen partial pressure, lactate, neuron-specific enolase (NSE) and S100B were measured at baseline and at 1, 3, 6, 12, 24 and 30 h after resuscitation. SctO2 significantly decreased after ventricular fibrillation, compared with the baseline. Following resuscitation, the SctO2 values gradually increased to 55.6±3.8% of baseline in the TH group and 51.2±3.5% in the NT group (P=0.039). Significant differences between the two groups were observed, starting at 6 h after cardiac arrest. Throughout the hypothermic period, NSE and S100B showed an increasing trend, then decreased during rewarming in the TH and NT groups. NSE and S100B showed greater improvement in the TH group compared with the NT group at 6 and 24 h after resuscitation. Following cardiac arrest, therapeutic hypothermia could increase SctO2 after resuscitation and could improve neurological outcome. In conclusion, SctO2 may be a feasible marker for use in the early assessment of brain damage during and after cardiac arrest.
Collapse
Affiliation(s)
- Chunshuang Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Department of Emergency Medicine, Yuyao People's Hospital, Ningbo, Zhejiang 315400, P.R. China
| | - Xiaohong Jin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Department of Emergency Medicine, Wenling People's Hospital, Taizhou, Zhejiang 317500, P.R. China
| | - Qijiang Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.,Department of Emergency Medicine, Ninghai People's Hospital, Ningbo, Zhejiang 315500, P.R. China
| | - Xiao Lu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Anyu Qian
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Moli Wang
- Department of Emergency Medicine, Yuyao People's Hospital, Ningbo, Zhejiang 315400, P.R. China
| | - Zilong Li
- Department of Emergency Medicine, Yuyao People's Hospital, Ningbo, Zhejiang 315400, P.R. China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
31
|
Crouzet C, Wilson RH, Lee D, Bazrafkan A, Tromberg BJ, Akbari Y, Choi B. Dissociation of Cerebral Blood Flow and Femoral Artery Blood Pressure Pulsatility After Cardiac Arrest and Resuscitation in a Rodent Model: Implications for Neurological Recovery. J Am Heart Assoc 2020; 9:e012691. [PMID: 31902319 PMCID: PMC6988151 DOI: 10.1161/jaha.119.012691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Impaired neurological function affects 85% to 90% of cardiac arrest (CA) survivors. Pulsatile blood flow may play an important role in neurological recovery after CA. Cerebral blood flow (CBF) pulsatility immediately, during, and after CA and resuscitation has not been investigated. We characterized the effects of asphyxial CA on short‐term (<2 hours after CA) CBF and femoral arterial blood pressure (ABP) pulsatility and studied their relationship to cerebrovascular resistance (CVR) and short‐term neuroelectrical recovery. Methods and Results Male rats underwent asphyxial CA followed by cardiopulmonary resuscitation. A multimodal platform combining laser speckle imaging, ABP, and electroencephalography to monitor CBF, peripheral blood pressure, and brain electrophysiology, respectively, was used. CBF and ABP pulsatility and CVR were assessed during baseline, CA, and multiple time points after resuscitation. Neuroelectrical recovery, a surrogate for neurological outcome, was assessed using quantitative electroencephalography 90 minutes after resuscitation. We found that CBF pulsatility differs significantly from baseline at all experimental time points with sustained deficits during the 2 hours of postresuscitation monitoring, whereas ABP pulsatility was relatively unaffected. Alterations in CBF pulsatility were inversely correlated with changes in CVR, but ABP pulsatility had no association to CVR. Interestingly, despite small changes in ABP pulsatility, higher ABP pulsatility was associated with worse neuroelectrical recovery, whereas CBF pulsatility had no association. Conclusions Our results reveal, for the first time, that CBF pulsatility and CVR are significantly altered in the short‐term postresuscitation period after CA. Nevertheless, higher ABP pulsatility appears to be inversely associated with neuroelectrical recovery, possibly caused by impaired cerebral autoregulation and/or more severe global cerebral ischemia.
Collapse
Affiliation(s)
- Christian Crouzet
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Robert H Wilson
- Beckman Laser Institute and Medical Clinic Irvine CA.,University of California, Irvine Irvine CA
| | - Donald Lee
- Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Afsheen Bazrafkan
- Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,Department of Surgery University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Yama Akbari
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,Department of Surgery University of California Irvine CA.,Edwards Lifesciences Center for Advanced Cardiovascular Technology Irvine CA.,University of California, Irvine Irvine CA
| |
Collapse
|
32
|
Developing a Model to Simulate the Effect of Hypothermia on Cerebral Blood Flow and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:299-306. [DOI: 10.1007/978-3-030-34461-0_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Effect of Mild Hypothermia on the Diaphragmatic Microcirculation and Function in A Murine Cardiopulmonary Resuscitated Model. Shock 2019; 54:555-562. [DOI: 10.1097/shk.0000000000001501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Effect of Body Temperature on Cerebral Autoregulation in Acutely Comatose Neurocritically Ill Patients. Crit Care Med 2019; 46:e733-e741. [PMID: 29727362 DOI: 10.1097/ccm.0000000000003181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Impaired cerebral autoregulation following neurologic injury is a predictor of poor clinical outcome. We aimed to assess the relationship between body temperature and cerebral autoregulation in comatose patients. DESIGN Retrospective analysis of prospectively collected data. SETTING Neurocritical care unit of the Johns Hopkins Hospital. PATIENTS Eighty-five acutely comatose patients (Glasgow Coma Scale score of ≤ 8) admitted between 2013 and 2017. INTERVENTIONS None. MEASUREMENT AND MAIN RESULTS Cerebral autoregulation was monitored using multimodal monitoring with near-infrared spectroscopy-derived cerebral oximetry index. Cerebral oximetry index was calculated as a Pearson correlation coefficient between low-frequency changes in regional cerebral oxygenation saturation and mean arterial pressure. Patients were initially analyzed together, then stratified by temperature pattern over the monitoring period: no change (< 1°C difference between highest and lowest temperatures; n = 11), increasing (≥ 1°C; n = 9), decreasing (≥ 1°C; n = 9), and fluctuating (≥ 1°C difference but no sustained direction of change; n = 56). Mixed random effects models with random intercept and multivariable logistic regression analysis were used to assess the association between hourly temperature and cerebral oximetry index, as well as between temperature and clinical outcomes. Cerebral oximetry index showed a positive linear relationship with temperature (β = 0.04 ± 0.10; p = 0.29). In patients where a continual increase or decrease in temperature was seen during the monitoring period, every 1°C change in temperature resulted in a cerebral oximetry index change in the same direction by 0.04 ± 0.01 (p < 0.001) and 0.02 ± 0.01 (p = 0.12), respectively, after adjusting for PaCO2, hemoglobin, mean arterial pressure, vasopressor and sedation use, and temperature probe location. There was no significant difference in mortality or poor outcome (modified Rankin Scale score of 4-6) between temperature pattern groups at discharge, 3, or 6 months. CONCLUSIONS In acute coma patients, increasing body temperature is associated with worsening cerebral autoregulation as measured by cerebral oximetry index. More studies are needed to clarify the impact of increasing temperature on cerebral autoregulation in patients with acute brain injury.
Collapse
|
35
|
Chen YC, Wei XE, Lu J, Qiao RH, Shen XF, Li YH. Correlation Between the Number of Lenticulostriate Arteries and Imaging of Cerebral Small Vessel Disease. Front Neurol 2019; 10:882. [PMID: 31456742 PMCID: PMC6699475 DOI: 10.3389/fneur.2019.00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background and purpose: Hypoperfusion plays an important role in the pathophysiology of cerebral small vessel disease (SVD). Lenticulostriate arteries (LSAs) are some of the most important cerebral arterial small vessels. This study aimed to investigate whether the number of LSAs was associated with the cerebral perfusion in SVD patients and determine the correlation between the number of LSAs and SVD severity. Methods: Five hundred and ninety-four consecutive patients who underwent digital subtraction angiography were enrolled in this study. The number of LSAs was determined. Computed tomography perfusion (CTP) was used to calculate the cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). Magnetic resonance imaging (MRI) was performed to assess cerebral infarct, cerebral microbleeds (CMBs), white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVSs), and lacunes. An SVD compound score was calculated to express the level of cerebral SVD load. Results: The SVD scores were negatively correlated with the number of the LSAs (P < 0.001, rs = −0.44). The number of LSAs was inversely associated with the presence of any type of SVD (P < 0.001). The adjusted ORs of the SVD severity were 0.31 for LSA group 1 (LSA > 20) vs. group 2 (LSA = 10–20) and 0.47 for LSA group 2 (LSA = 10–20) vs. group 3 (LSA < 10). MTT and TTP were significantly higher and CBF was significantly lower when the number of LSAs was between 5 and 10 on each side of the basal ganglia (P < 0.001, <0.001, and <0.001, respectively). The CBV was slightly lower when the number of LSAs was between 5 and 10, while it was significantly lower when the number was <5 on each side of the basal ganglia (P < 0.05, <0.0001, respectively). Conclusion: LSA count was lower in SVD patients than the non-SVD participants and there was a positive correlation between the cerebral perfusion and the number of LSAs. The LSA number was negatively associated with SVD severity, hypoperfusion might play an important role. This finding may have potentially important clinical implications for monitoring LSA in SVD patients.
Collapse
Affiliation(s)
- Yuan-Chang Chen
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Er Wei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Lu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui-Hua Qiao
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue-Feng Shen
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
36
|
Grand J, Lilja G, Kjaergaard J, Bro-Jeppesen J, Friberg H, Wanscher M, Cronberg T, Nielsen N, Hassager C. Arterial blood pressure during targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and long-term cognitive function. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2019; 9:S122-S130. [PMID: 31246109 DOI: 10.1177/2048872619860804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES During targeted temperature management after out-of-hospital cardiac arrest infusion of vasoactive drugs is often needed to ensure cerebral perfusion pressure. This study investigated mean arterial pressure after out-of-hospital cardiac arrest and the association with brain injury and long-term cognitive function. METHODS Post-hoc analysis of patients surviving at least 48 hours in the biobank substudy of the targeted temperature management trial with available blood pressure data. Patients were stratified in three groups according to mean arterial pressure during targeted temperature management (4-28 hours after admission; <70 mmHg, 70-80 mmHg, >80 mmHg). A biomarker of brain injury, neuron-specific enolase, was measured and impaired cognitive function was defined as a mini-mental state examination score below 27 in 6-month survivors. RESULTS Of the 657 patients included in the present analysis, 154 (23%) had mean arterial pressure less than 70 mmHg, 288 (44%) had mean arterial pressure between 70 and 80 mmHg and 215 (33%) had mean arterial pressure greater than 80 mmHg. There were no statistically significant differences in survival (P=0.35) or neuron-specific enolase levels (P=0.12) between the groups. The level of target temperature did not statistically significantly interact with mean arterial pressure regarding neuron-specific enolase (Pinteraction_MAP*TTM=0.58). In the subgroup of survivors with impaired cognitive function (n=132) (35%) mean arterial pressure during targeted temperature management was significantly higher (Pgroup=0.03). CONCLUSIONS In a large cohort of comatose out-of-hospital cardiac arrest patients, low mean arterial pressure during targeted temperature management was not associated with higher neuron-specific enolase regardless of the level of target temperature (33°C or 36°C for 24 hours). In survivors with impaired cognitive function, mean arterial pressure during targeted temperature management was significantly higher.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Gisela Lilja
- Skane University Hospital, Lund University, Sweden
| | | | | | - Hans Friberg
- Department of Intensive and Perioperative Care, Lund University, Sweden
| | - Michael Wanscher
- Department of Cardiothoracic Anesthesia, University of Copenhagen, Denmark
| | | | - Niklas Nielsen
- Department of Anaesthesia and Intensive Care, Helsingborg Hospital, Sweden
| | | |
Collapse
|
37
|
Govindan RB, Brady KM, Massaro AN, Perin J, Jennings JM, DuPlessis AJ, Koehler RC, Lee JK. Comparison of Frequency- and Time-Domain Autoregulation and Vasoreactivity Indices in a Piglet Model of Hypoxia-Ischemia and Hypothermia. Dev Neurosci 2019; 40:1-13. [PMID: 31048593 PMCID: PMC6824917 DOI: 10.1159/000499425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The optimal method to detect impairments in cerebrovascular pressure autoregulation in neonates with hypoxic-ischemic encephalopathy (HIE) is unclear. Improving autoregulation monitoring methods would significantly advance neonatal neurocritical care. METHODS We tested several mathematical algorithms from the frequency and time domains in a piglet model of HIE, hypothermia, and hypotension. We used laser Doppler flowmetry and induced hypotension to delineate the gold standard lower limit of autoregulation (LLA). Receiver operating characteristics curve analyses were used to determine which indices could distinguish blood pressure above the LLA from that below the LLA in each piglet. RESULTS Phase calculation in the frequency band with maximum coherence, as well as the correlation between mean arterial pressure (MAP) and near-infrared spectroscopy relative total tissue hemoglobin (HbT) or regional oxygen saturation (rSO2), accurately discriminated functional from dysfunctional autoregulation. Neither hypoxia-ischemia nor hypothermia affected the accuracy of these indices. Coherence alone and gain had low diagnostic value relative to phase and correlation. CONCLUSION Our findings indicate that phase shift is the most accurate component of autoregulation monitoring in the developing brain, and it can be measured using correlation or by calculating phase when coherence is maximal. Phase and correlation autoregulation indices from MAP and rSO2 and vasoreactivity indices from MAP and HbT are accurate metrics that are suitable for clinical HIE studies.
Collapse
Affiliation(s)
- Rathinaswamy B Govindan
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - An N Massaro
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
- Neonatology, Children's National Health System, Washington, District of Columbia, USA
| | - Jamie Perin
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacky M Jennings
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adre J DuPlessis
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
38
|
Li L, Poloyac SM, Watkins SC, St. Croix CM, Alexander H, Gibson GA, Loughran PA, Kirisci L, Clark RSB, Kochanek PM, Vazquez AL, Manole MD. Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest. J Cereb Blood Flow Metab 2019; 39:913-925. [PMID: 29192562 PMCID: PMC6501505 DOI: 10.1177/0271678x17744717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
Decreased cerebral blood flow (CBF) after cardiac arrest (CA) contributes to secondary ischemic injury in infants and children. We previously reported cortical hypoperfusion with tissue hypoxia early in a pediatric rat model of asphyxial CA. In order to identify specific alterations as potential therapeutic targets to improve cortical hypoperfusion post-CA, we characterize the CBF alterations at the cortical microvascular level in vivo using multiphoton microscopy. We hypothesize that microvascular constriction and disturbances of capillary red blood cell (RBC) flow contribute to cortical hypoperfusion post-CA. After resuscitation from 9 min asphyxial CA, transient dilation of capillaries and venules at 5 min was followed by pial arteriolar constriction at 30 and 60 min (19.6 ± 1.3, 19.3 ± 1.2 µm at 30, 60 min vs. 22.0 ± 1.2 µm at baseline, p < 0.05). At the capillary level, microcirculatory disturbances were highly heterogeneous, with RBC stasis observed in 25.4% of capillaries at 30 min post-CA. Overall, the capillary plasma mean transit time was increased post-CA by 139.7 ± 51.5%, p < 0.05. In conclusion, pial arteriolar constriction, the no-reflow phenomenon and increased plasma transit time were observed post-CA. Our results detail the microvascular disturbances in a pediatric asphyxial CA model and provide a powerful platform for assessing specific vascular-targeted therapies.
Collapse
Affiliation(s)
- Lingjue Li
- Center of Clinical Pharmaceutical
Sciences,
University
of Pittsburgh, PA, USA
- School of Pharmacy,
University
of Pittsburgh, PA, USA
| | - Samuel M Poloyac
- Center of Clinical Pharmaceutical
Sciences,
University
of Pittsburgh, PA, USA
- School of Pharmacy,
University
of Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging,
University
of Pittsburgh, PA, USA
| | | | - Henry Alexander
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
| | | | | | | | - Robert SB Clark
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
- Department of Pediatrics,
University
of Pittsburgh, PA, USA
| | | | - Mioara D Manole
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
- Department of Pediatrics,
University
of Pittsburgh, PA, USA
| |
Collapse
|
39
|
Spatial T-maze identifies cognitive deficits in piglets 1 month after hypoxia-ischemia in a model of hippocampal pyramidal neuron loss and interneuron attrition. Behav Brain Res 2019; 369:111921. [PMID: 31009645 DOI: 10.1016/j.bbr.2019.111921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Neonatal brain injury from hypoxia-ischemia (HI) causes major morbidity. Piglet HI is an established method for testing neuroprotective treatments in large, gyrencephalic brain. Though many neurobehavior tests exist for rodents, such tests and their associations with neuropathologic injury remain underdeveloped and underutilized in large, neonatal HI animal models. We examined whether spatial T-maze and inclined beam tests distinguish cognitive and motor differences between HI and sham piglets and correlate with neuropathologic injury. Neonatal piglets were randomized to whole-body HI or sham procedure, and they began T-maze and inclined beam testing 17 days later. HI piglets had more incorrect T-maze turns than did shams. Beam walking time did not differ between groups. Neuropathologic evaluations at 33 days validated the injury with putamen neuron loss after HI to below that of sham procedure. HI decreased the numbers of CA3 pyramidal neurons but not CA1 pyramidal neurons or dentate gyrus granule neurons. Though the number of hippocampal parvalbumin-positive interneurons did not differ between groups, HI reduced the number of CA1 interneuron dendrites. Piglets with more incorrect turns had greater CA3 neuron loss, and piglets that took longer in the maze had fewer CA3 interneurons. The number of putamen neurons was unrelated to T-maze or beam performance. We conclude that neonatal HI causes hippocampal CA3 neuron loss, CA1 interneuron dendritic attrition, and putamen neuron loss at 1-month recovery. The spatial T-maze identifies learning and memory deficits that are related to loss of CA3 pyramidal neurons and fewer parvalbumin-positive interneurons independent of putamen injury.
Collapse
|
40
|
Liu X, Xiao R, Gadhoumi K, Tran N, Smielewski P, Czosnykan M, Hetts SW, Ko N, Hu X. Continuous monitoring of cerebrovascular reactivity through pulse transit time and intracranial pressure. Physiol Meas 2019; 40:01LT01. [PMID: 30577032 PMCID: PMC7197410 DOI: 10.1088/1361-6579/aafab1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cerebrovascular reactivity (CR) is a mechanism that maintains stable blood flow supply to the brain. Pressure reactivity index (PRx), the correlation coefficient between slow waves of invasive arterial blood pressure (ABP) and intracranial pressure (ICP) has been validated for CR assessment. However, in clinical ward, not every subarachnoid hemorrhage (SAH) patient has invasive ABP monitoring. Pulse transit time (PTT), the propagation time of a pulse wave travelling from the heart to peripheral arteries, has been suggested as a surrogate measure of ABP. In this study, we proposed to use PTT instead of invasive ABP to monitor CR. APPROACH Forty-five SAH patients with simultaneous recordings of invasive ABP, ICP, oxygen saturation level (SpO2) and electrocardiograph (ECG) were included. PTT was calculated as the time from the ECG R-wave peak to the onset of SpO2. PTT based pressure reactivity index (tPRx) was calculated as the correlation coefficient between slow waves of PTT and ICP. Wavelet tPRx (wtRx) was calculated as the cosine of wavelet phase shift between PTT and ICP. Meanwhile, PRx and wPRx were also calculated using invasive ABP and ICP as input. MAIN RESULTS The result showed a negative relationship between PTT and ABP (r = -0.58, p < 0.001). tPRx negatively correlated with PRx (r = -0.51, p = 0.003). Wavelet method correlated well with correlation method demonstrated through positive relationship between wPRx and PRx (r = 0.82, p < 0.001) as well as wtPRx and tPRx (r = 0.84, p < 0.001). SIGNIFICANCE PTT demonstrates great potential as a useful tool for CR assessment when invasive ABP is unavailable. Key points • Pulse transit time (PTT), defined as the propagation time of a pulse wave travelling from the heart to the peripheral arteries, has been proposed as a surrogate measure of ABP. The relationship between PTT and ABP in SAH patients remains unknown. • Cerebrovascular reactivity (CR) assessment through PTT has advantages over invasive ABP, as it avoids bleeding and infection risk, and can be used outside of the ICU. • We introduced a new method to assess CR using PTT and ICP through correlation based method and wavelet based method. • We found that beat-to-beat PTT was negatively related with invasive ABP in SAH patients. A significant linear relationship exists between PTT-based CR parameter and a well validated method, PRx. PTT demonstrates great potential as a useful tool for CR assessment when invasive ABP is unavailable in SAH patients.
Collapse
Affiliation(s)
- Xiuyun Liu
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Ran Xiao
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Kais Gadhoumi
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Nate Tran
- Department of Physiological Nursing, University of California, San Francisco, USA
| | - Peter Smielewski
- Brain Physics Laboratory, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnykan
- Brain Physics Laboratory, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Steve W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Nerissa Ko
- Department of Neurology, University of California, San Francisco, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, USA
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, USA
- Department of Neurological Surgery, University of California, San Francisco, USA
- Institute of Computational Health Sciences, University of California, San Francisco, USA
| |
Collapse
|
41
|
Rhee CJ, da Costa CS, Austin T, Brady KM, Czosnyka M, Lee JK. Neonatal cerebrovascular autoregulation. Pediatr Res 2018; 84:602-610. [PMID: 30196311 PMCID: PMC6422675 DOI: 10.1038/s41390-018-0141-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/04/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes.
Collapse
Affiliation(s)
- Christopher J. Rhee
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Section of Neonatology, Houston, TX, USA
| | | | - Topun Austin
- Neonatal Unit, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ken M. Brady
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Critical Care Medicine and Anesthesiology, Houston, TX, USA
| | - Marek Czosnyka
- Department of Academic Neurosurgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
42
|
Effects of moderate and severe arterial hypotension on intracerebral perfusion and brain tissue oxygenation in piglets. Br J Anaesth 2018; 121:1308-1315. [PMID: 30442258 DOI: 10.1016/j.bja.2018.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypotension is common in anaesthetised children, and its impact on cerebral oxygenation is unknown. The goal of the present study was to investigate the effects of moderate systemic arterial hypotension (mHT) and severe hypotension (sHT) on cerebral perfusion and brain tissue oxygenation in piglets. METHODS Twenty-seven anaesthetised piglets were randomly allocated to a control group, mHT group, or sHT group. Cerebral monitoring comprised a tissue oxygen partial pressure ( [Formula: see text] ) and laser Doppler (LD) perfusion probe advanced into the brain tissue, and a near-infrared spectroscopy sensor placed over the skin measuring regional oxygen saturation (rSO2). Arterial hypotension was induced by blood withdrawal and i.v. nitroprusside infusion [target MAP: 35-38 (mHT) and 27-30 (sHT) mm Hg]. Data were analysed at baseline, and every 20 min during and after treatment. RESULTS Compared with control, [Formula: see text] decreased equally with mHT and sHT [mean (SD) after 60 min: control: 17.1 (6.4); mHT: 6.4 (3.6); sHT: 7.2 (4.3) mm Hg]. No differences between groups were detected for rSO2 and LD during treatment. However, in the sHT group, rSO2 increased after restoring normotension [from 49.3 (9.5) to 58.9 (8.9)% Post60]. sHT was associated with an increase in blood lactate [from 1.5 (0.4) to 2.4 (0.9) mmol L-1], and a decrease in bicarbonate [28 (2.4) to 25.8 (2.6) mmol L-1] and base excess [4.7 (1.9) to 2.0 (2.7) mmol L-1] between baseline and 60 min after the start of the experiment. CONCLUSIONS Induction of mHT and sHT by hypovolaemia and nitroprusside infusion caused alterations in brain tissue oxygenation in a piglet model, but without detectable changes in brain tissue perfusion and regional oxygen saturation.
Collapse
|
43
|
Zeiler FA, Lee JK, Smielewski P, Czosnyka M, Brady K. Validation of Intracranial Pressure-Derived Cerebrovascular Reactivity Indices against the Lower Limit of Autoregulation, Part II: Experimental Model of Arterial Hypotension. J Neurotrauma 2018; 35:2812-2819. [PMID: 29808745 DOI: 10.1089/neu.2017.5604] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this work was to explore the relationship between intracranial pressure (ICP)-derived indices of cerebrovascular reactivity and the lower limit of autoregulation (LLA) during arterial hypotension. We retrospectively reviewed recorded physiological data from piglets that underwent controlled hypotension. Hypotension was induced by inflation of a balloon catheter in the inferior vena cava. ICP, cortical laser Doppler flowmetry (LDF), and arterial blood pressure (ABP) monitoring was conducted. ICP-derived indices were calculated: pressure reactivity index (PRx; correlation between ICP and mean arterial pressure [MAP]); pulse amplitude index (PAx; correlation between pulse amplitude of ICP [AMP] and MAP); and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). LLA was estimated by piece-wise linear regression of CPP versus LDF. We produced error bar plots for PRx, PAx, and RAC against 5-mm Hg bins of CPP, displaying the relationship with the LLA. We compared CPP values at clinically relevant thresholds of PRx, PAx, and RAC to CPP measured at the LLA. Receiver operating curve (ROC) analysis was performed for each index across the LLA using 5-mm Hg bins for CPP. Mean LLA was 36.2 ± 10.5 mm Hg. Error bar plots demonstrated that PRx, PAx, and RAC increased, with CPP decreasing below the LLA. CPP at clinically relevant thresholds for PRx, PAx, and RAC displayed weak associations with the LLA, indicating that thresholds defined in TBI may not apply to a model of arterial hypotension. ROC analysis indicated that PRx, PAx, and RAC predicted the LLA, with AUCs of: 0.806 (95% confidence interval [CI], 0.750-0.863; p < 0.0001), 0.726 (95% CI, 0.664-0.789; p < 0.0001), and 0.710 (95% CI, 0.646-0.775; p < 0.0001), respectively. Three ICP-derived continuous indices of cerebrovascular reactivity, PRx, PAx, and RAC, were validated against the LLA within this experimental model of arterial hypotension, with PRx being superior.
Collapse
Affiliation(s)
- Frederick A Zeiler
- 2 Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom .,3 Section of Surgery, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba, Canada .,4 Clinician Investigator Program, Rady Faculty of Health Science, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Peter Smielewski
- 5 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom
| | - Marek Czosnyka
- 5 Section of Brain Physics, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom .,6 Institute of Electronic Systems, Warsaw University of Technology , Warsaw, Poland
| | - Ken Brady
- 7 Pediatric Cardiology, Texas Children's Hospital , Baylor College of Medicine, Houston, Texas
| |
Collapse
|
44
|
The Effects of Induction and Treatment of Intracranial Hypertension on Cerebral Autoregulation: An Experimental Study. Neurol Res Int 2018; 2018:7053932. [PMID: 30046492 PMCID: PMC6036802 DOI: 10.1155/2018/7053932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/16/2018] [Indexed: 02/04/2023] Open
Abstract
Background This study aimed to analyse cerebral autoregulation (CA) during induction and treatment of intracranial hypertension (ICH) in an experimental model. Materials and Methods Landrace and Duroc piglets were divided into mild and severe ICH groups. Four or seven millilitres of saline solution was infused into paediatric bladder catheter inserted in the parietal lobe (balloon inflation). After 1.5 h, a 3% saline solution was infused via venous catheter, and 30 min later, the bladder catheter balloon was deflated (surgery). The cerebral static autoregulation (sCA) index was evaluated using cerebral blood flow velocities (CBFV) obtained with Doppler ultrasound. Results Balloon inflation increased ICP in both groups. The severe ICH group showed significantly lower sCA index values (p=0.001, ANOVA) after balloon inflation (ICH induction) and a higher sCA index after saline injection (p=0.02) and after surgery (p=0.04). ICP and the sCA index were inversely correlated (r=-0.68 and p<0.05). CPP and the sCA index were directly correlated (r=0.74 and p<0.05). Conclusion ICH was associated with local balloon expansion, which triggered CA impairment, particularly in the severe ICH group. Moreover, ICP-reducing treatments were associated with improved CA in subjects with severe ICH.
Collapse
|
45
|
de-Lima-Oliveira M, Salinet ASM, Nogueira RC, de Azevedo DS, Paiva WS, Teixeira MJ, Bor-Seng-Shu E. Intracranial Hypertension and Cerebral Autoregulation: A Systematic Review and Meta-Analysis. World Neurosurg 2018; 113:110-124. [PMID: 29421451 DOI: 10.1016/j.wneu.2018.01.194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To present a systematic review and meta-analysis to establish the relation between cerebral autoregulation (CA) and intracranial hypertension. METHODS An electronic search using the term "Cerebral autoregulation and intracranial hypertension" was designed to identify studies that analyzed cerebral blood flow autoregulation in patients undergoing intracranial pressure (ICP) monitoring. The data were used in meta-analyses and sensitivity analyses. RESULTS A static CA technique was applied in 10 studies (26.3%), a dynamic technique was applied in 25 studies (65.8%), and both techniques were used in 3 studies (7.9%). Static CA studies using the cerebral blood flow technique revealed impaired CA in patients with an ICP ≥20 (standardized mean difference [SMD] 5.44%, 95% confidence interval [CI] 0.25-10.65, P = 0.04); static CA studies with transcranial Doppler revealed a tendency toward impaired CA in patients with ICP ≥20 (SMD -7.83%, 95% CI -17.52 to 1.85, P = 0.11). Moving correlation studies reported impaired CA in patients with ICP ≥20 (SMD 0.06, 95% CI 0.07-0.14, P < 0.00001). A comparison of CA values and mean ICP revealed a correlation between greater ICP and impaired CA (SMD 5.47, 95% CI 1.39-10.1, P = 0.01). Patients with ICP ≥20 had an elevated risk of impaired CA (OR 2.27, 95% CI 1.20-4.31, P = 0.01). CONCLUSIONS A clear tendency toward CA impairment was observed in patients with increased ICP.
Collapse
Affiliation(s)
- Marcelo de-Lima-Oliveira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Angela S M Salinet
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo C Nogueira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel S de Azevedo
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Manoel J Teixeira
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Edson Bor-Seng-Shu
- Division of Neurosurgery, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
46
|
Sekhon MS, Griesdale DE. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:259. [PMID: 29061152 PMCID: PMC5653990 DOI: 10.1186/s13054-017-1832-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Secondary injury is a major determinant of outcome in hypoxic ischemic brain injury (HIBI) after cardiac arrest and may be mitigated by optimizing cerebral oxygen delivery (CDO2). CDO2 is determined by cerebral blood flow (CBF), which is dependent upon mean arterial pressure (MAP). In health, CBF remains constant over the MAP range through cerebral autoregulation. In HIBI, the zone of intact cerebral autoregulation is narrowed and varies for each patient. Maintaining MAP within the intact autoregulation zone may mitigate ischemia, hyperemia and secondary injury. The optimal MAP in individual patients can be determined using real time autoregulation monitoring techniques.
Collapse
Affiliation(s)
- Mypinder S Sekhon
- Department of Medicine, Division of Critical Care Medicine, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Critical Care Medicine, Vancouver General Hospital, Room 2438, Jim Pattison Pavilion, 2nd Floor, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| | - Donald E Griesdale
- Department of Medicine, Division of Critical Care Medicine, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, 899 West 12th Avenue, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
47
|
Tian F, Morriss MC, Chalak L, Venkataraman R, Ahn C, Liu H, Raman L. Impairment of cerebral autoregulation in pediatric extracorporeal membrane oxygenation associated with neuroimaging abnormalities. NEUROPHOTONICS 2017; 4:041410. [PMID: 28840161 PMCID: PMC5562949 DOI: 10.1117/1.nph.4.4.041410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-supporting therapy for critically ill patients with severe respiratory and/or cardiovascular failure. Cerebrovascular impairment can result in hemorrhagic and ischemic complications commonly seen in the patients supported on ECMO. We investigated the degree of cerebral autoregulation impairment during ECMO as well as whether it is predictive of neuroimaging abnormalities. Spontaneous fluctuations of mean arterial pressure (MAP) and cerebral tissue oxygen saturation ([Formula: see text]) were continuously measured during the ECMO run. The dynamic relationship between the MAP and [Formula: see text] fluctuations was assessed based on wavelet transform coherence (WTC). Neuroimaging was conducted during and/or after ECMO as standard of care, and the abnormalities were evaluated based on a scoring system that had been previously validated among ECMO patients. Of the 25 patients, 8 (32%) had normal neuroimaging, 7 (28%) had mild to moderate neuroimaging abnormalities, and the other 10 (40%) had severe neuroimaging abnormalities. The degrees of cerebral autoregulation impairment quantified based on WTC showed significant correlations with the neuroimaging scores ([Formula: see text]; [Formula: see text]). Evidence that cerebral autoregulation impairment during ECMO was related to the patients' neurological outcomes was provided.
Collapse
Affiliation(s)
- Fenghua Tian
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Michael Craig Morriss
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| | - Lina Chalak
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| | - Ramgopal Venkataraman
- University of Texas at Arlington, Department of Accounting, Arlington, Texas, United States
| | - Chul Ahn
- University of Texas Southwestern Medical Center, Department of Clinical Science, Dallas, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Lakshmi Raman
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| |
Collapse
|
48
|
Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 2017; 8:e2919. [PMID: 28703794 DOI: 10.1038/cddis.2017.318] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 01/21/2023]
Abstract
To examine the temporal relationship of cortical autophagic flux with delayed neuronal cell death after hypoxia-ischemia (HI) in neonatal piglets. HI was produced with 45-min hypoxia and 7-min airway occlusion in 3-5-day-old piglets. Markers of autophagic, lysosomal and cell death signaling were studied via immunohistochemistry, immunoblotting, and histochemistry in piglet brains. In vitro, autophagy was impaired in cultured mouse cortical neurons treated with chloroquine with or without rapamycin for 1 d in the presence of Z-VAD-fmk, cyclosporine A, or vehicle control, and cell viability was assessed with the MTT assay. In vivo, neuronal cell death of sensorimotor cortex was delayed by 1-2 days after HI, whereas LC3-II, Beclin-1, PI3KC3, ATG12-ATG-5, and p-ULK1 increased by 1.5-6 h. Autophagosomes accumulated in cortical neurons by 1 d owing to enhanced autophagy and later to decreased autophagosome clearance, as indicated by LC3, Beclin-1, and p62 accumulation. Autophagy flux impairment was attributable to lysosomal dysfunction, as indicated by low lysosomal-associated membrane protein 2, cathepsin B, and cathepsin D levels at 1 d. Ubiquitin levels increased at 1 d. Autophagosome and p62 accumulated predominantly in neurons at 1 d, with p62 puncta occurring in affected cells. Beclin-1 colocalized with markers of caspase-dependent and caspase-independent apoptosis and necrosis in neurons. In vitro, mouse neonatal cortical neurons treated with rapamycin and chloroquine showed increased autophagosomes, but not autolysosomes, and increased cell death that was attenuated by cyclosporine A. Neonatal HI initially increases autophagy but later impairs autophagosome clearance, coinciding with delayed cortical neuronal death.
Collapse
|
49
|
Lee JK, Brady KM, Deutsch N. The Anesthesiologist's Role in Treating Abusive Head Trauma. Anesth Analg 2017; 122:1971-82. [PMID: 27195639 DOI: 10.1213/ane.0000000000001298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abusive head trauma (AHT) is the most common cause of severe traumatic brain injury (TBI) in infants and the leading cause of child abuse-related deaths. For reasons that remain unclear, mortality rates after moderate AHT rival those of severe nonintentional TBI. The vulnerability of the developing brain to injury may be partially responsible for the poor outcomes observed after AHT. AHT is mechanistically more complex than nonintentional TBI. The acute-on-chronic nature of the trauma along with synergistic injury mechanisms that include rapid rotation of the brain, diffuse axonal injury, blunt force trauma, and hypoxia-ischemia make AHT challenging to treat. The anesthesiologist must understand the complex injury mechanisms inherent to AHT, as well as the pediatric TBI treatment guidelines, to decrease the risk of persistent neurologic disability and death. In this review, we discuss the epidemiology of AHT, differences between AHT and nonintentional TBI, the severe pediatric TBI treatment guidelines in the context of AHT, anesthetic considerations, and ethical and legal reporting requirements.
Collapse
Affiliation(s)
- Jennifer K Lee
- From the *Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology, Johns Hopkins University, Baltimore, Maryland; †Department of Pediatrics, Anesthesia, and Critical Care, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas; and ‡Departments of Anesthesiology and Pediatrics, Children's National Health System, Washington DC
| | | | | |
Collapse
|
50
|
Chalak LF, Zhang R. New Wavelet Neurovascular Bundle for Bedside Evaluation of Cerebral Autoregulation and Neurovascular Coupling in Newborns with Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2017; 39:89-96. [PMID: 28355608 DOI: 10.1159/000457833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Neonatal encephalopathy (NE) resulting from birth asphyxia constitutes a major global public health burden for millions of infants every year, and despite therapeutic hypothermia, half of these neonates have poor neurological outcomes. As new neuroprotective interventions are being studied in clinical trials, there is a critical need to establish physiological surrogate markers of therapeutic efficacy, to guide patient selection and/or to modify the therapeutic intervention. The challenge in the field of neonatal brain injury has been the difficulty of clinically discerning NE severity within the short therapeutic window after birth or of analyzing the dynamic aspects of the cerebral circulation in sick NE newborns. To address this roadblock, we have recently developed a new "wavelet neurovascular bundle" analytical system that can measure cerebral autoregulation (CA) and neurovascular coupling (NVC) at multiple time scales under dynamic, nonstationary clinical conditions. This wavelet analysis may allow noninvasive quantification at the bedside of (1) CA (combining metrics of blood pressure and cerebral near-infrared spectroscopy, NIRS) and (2) NVC (combining metrics obtained from NIRS and EEG) in newborns with encephalopathy without mathematical assumptions of linear and stationary systems. In this concept paper, we present case examples of NE using the proposed physiological wavelet metrics of CA and NVC. The new approach, once validated in large NE studies, has the potential to optimize the selection of candidates for therapeutic decision-making, and the prediction of neurocognitive outcomes.
Collapse
Affiliation(s)
- Lina F Chalak
- Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|