1
|
Hall HR, Mahung C, Dunn JLM, Kartchner LM, Seim RF, Cairns BA, Wallet SM, Maile R. Characterization of the Basal and mTOR-Dependent Acute Pulmonary and Systemic Immune Response in a Murine Model of Combined Burn and Inhalation Injury. Int J Mol Sci 2022; 23:8779. [PMID: 35955914 PMCID: PMC9368856 DOI: 10.3390/ijms23158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Severe burn injury leads to a cascade of local and systemic immune responses that trigger an extreme state of immune dysfunction, leaving the patient highly susceptible to acute and chronic infection. When combined with inhalation injury, burn patients have higher mortality and a greater chance of developing secondary respiratory complications including infection. No animal model of combined burn and inhalation injury (B+I) exists that accurately mirrors the human clinical picture, nor are there any effective immunotherapies or predictive models of the risk of immune dysfunction. Our earlier work showed that the mechanistic/mammalian target of rapamycin (mTOR) pathway is activated early after burn injury, and its chemical blockade at injury reduced subsequent chronic bacterial susceptibility. It is unclear if mTOR plays a role in the exacerbated immune dysfunction seen after B+I injury. We aimed to: (1) characterize a novel murine model of B+I injury, and (2) investigate the role of mTOR in the immune response after B+I injury. Pulmonary and systemic immune responses to B+I were characterized in the absence or presence of mTOR inhibition at the time of injury. Data describe a murine model of B+I with inhalation-specific immune phenotypes and implicate mTOR in the acute immune dysfunction observed.
Collapse
Affiliation(s)
- Hannah R. Hall
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cressida Mahung
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia L. M. Dunn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laurel M. Kartchner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roland F. Seim
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bruce A. Cairns
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shannon M. Wallet
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27599, USA
| | - Robert Maile
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
3
|
Ali ZA, Eladl HM, Abdelbasset WK, Eid MM, Mosa HE, Elsayeh SM. Inhalation Injury in Adult Males: Evaluation of the short-term efficacy of transcutaneous electrical acupoint stimulation on pulmonary functions and diaphragmatic mobility post-burn: A double-blind randomized controlled study. Burns 2022; 48:1933-1939. [DOI: 10.1016/j.burns.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
4
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Wieczfinska J, Sitarek P, Skała E, Kowalczyk T, Pawliczak R. Inhibition of NADPH Oxidase-Derived Reactive Oxygen Species Decreases Expression of Inflammatory Cytokines in A549 Cells. Inflammation 2020; 42:2205-2214. [PMID: 31612365 PMCID: PMC6856491 DOI: 10.1007/s10753-019-01084-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various experimental models strongly support the hypothesis that airway inflammation can be caused by oxidative stress. Inflammatory airway diseases like asthma and COPD are characterized by higher levels of ROS and inflammatory cytokines. One of the sources of ROS is NADPH oxidase. Therefore, the aim of the study was to investigate influence of NADPH oxidase inhibition on the expression of IL-6, IL-8, TNF, TSLP, CD59, and PPAR-γ in vitro. A549 cells were incubated with apocynin in three concentrations (0.5 mg/ml, 1 mg/ml, and 3 mg/ml). Cells were trypsinized and RNA isolated after 1 h, 2 h, and 4 h of apocynin incubation at each concentration. Afterwards, reverse transcription was performed to evaluate mRNA expression using real-time PCR. The time-response and dose-response study showed that apocynin significantly influenced the relative expression of chosen genes (IL-6, IL-8, TNF, PPAR-γ, TSLP, and CD59). Apocynin decreased the mRNA expression of TNF-α at all concentrations used, and of IL-6 at concentrations of 1 and 3 mg/ml (p < 0.05). TSLP mRNA expression was also reduced by apocynin after 1 h and 2 h, and CD59 mRNA after 1 h, but only at the highest concentration. The expression of PPAR-γ was reduced after apocynin in the highest concentrations only (p < 0.05). The results might suggest that proinflammatory agents’ expression levels are strongly connected to the presence of oxidative stress generated by NADPH oxidase and this might be at least partially eliminated by anti-oxidative action. Apocynin, as an effective inhibitor of NADPH oxidase, seems to be useful in potential anti-oxidative and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, 7/9 Zeligowskiego, Bldg 2, Rm 122, 90-752, Lodz, Poland
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Ewa Skała
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, 7/9 Zeligowskiego, Bldg 2, Rm 122, 90-752, Lodz, Poland.
| |
Collapse
|
6
|
Rebuli ME, Speen AM, Martin EM, Addo KA, Pawlak EA, Glista-Baker E, Robinette C, Zhou H, Noah TL, Jaspers I. Wood Smoke Exposure Alters Human Inflammatory Responses to Viral Infection in a Sex-Specific Manner. A Randomized, Placebo-controlled Study. Am J Respir Crit Care Med 2020; 199:996-1007. [PMID: 30360637 DOI: 10.1164/rccm.201807-1287oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to particulates from burning biomass is an increasing global health issue. Burning biomass, including wood smoke, is associated with increased lower respiratory infections. OBJECTIVES To determine whether acute exposure to wood smoke modifies nasal inflammatory responses to influenza. METHODS Healthy young adults (n = 39) were randomized to a 2-hour controlled chamber exposure to wood smoke, where exposure levels were controlled to particulate number (wood smoke particles [WSP]; 500 μg/cm3) or filtered air, followed by nasal inoculation with a vaccine dose of live attenuated influenza virus (LAIV). Nasal lavage was performed before exposure (Day 0) and on Days 1 and 2 after exposure. Nasal lavage fluid cells were analyzed for inflammatory gene expression profiles, and cell-free fluid was assayed for cytokines. MEASUREMENTS AND MAIN RESULTS Only IP-10 protein levels were affected, suppressed, by WSP exposure in aggregate analysis. Subsequent analysis indicated an exposure × sex interaction, prompting additional analyses of WSP- and LAIV-induced changes in males and females. Inflammation-related gene expression profiles differed between the sexes, at baseline (males greater than females), after LAIV inoculation (females greater than males), and after WSP exposure (increase in males and decrease in females), demonstrating that WSP- and LAIV-induced changes in antiviral defense responses in the nasal mucosa occur in a sex-specific manner. CONCLUSIONS WSP exposure resulted in minimal modification of LAIV-induced responses in aggregate analysis. In contrast, analyzing WSP-induced modification of LAIV responses in the sexes separately unmasked sex-specific differences in response to exposure. These data highlight the need for additional studies to understand sex-specific pollutant-induced effects. Clinical trial registered with www.clinicaltrials.gov (NCT02183753).
Collapse
Affiliation(s)
| | - Adam M Speen
- 1 Curriculum in Toxicology & Environmental Medicine
| | - Elizabeth M Martin
- 1 Curriculum in Toxicology & Environmental Medicine.,2 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health
| | - Kezia A Addo
- 1 Curriculum in Toxicology & Environmental Medicine
| | - Erica A Pawlak
- 3 Center for Environmental Medicine, Asthma, and Lung Biology
| | | | | | | | - Terry L Noah
- 1 Curriculum in Toxicology & Environmental Medicine.,3 Center for Environmental Medicine, Asthma, and Lung Biology.,5 Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- 1 Curriculum in Toxicology & Environmental Medicine.,3 Center for Environmental Medicine, Asthma, and Lung Biology.,5 Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
McCarthy CE, Duffney PF, Wyatt JD, Thatcher TH, Phipps RP, Sime PJ. Comparison of in vitro toxicological effects of biomass smoke from different sources of animal dung. Toxicol In Vitro 2017; 43:76-86. [PMID: 28572013 DOI: 10.1016/j.tiv.2017.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
Abstract
Worldwide, over 4 million premature deaths each year are attributed to the burning of biomass fuels for cooking and heating. Epidemiological studies associate household air pollution with lung diseases, including chronic obstructive pulmonary disease, lung cancer, and respiratory infections. Animal dung, a biomass fuel used by economically vulnerable populations, generates more toxic compounds per mass burned than other biomass fuels. The type of animal dung used varies widely depending on local agro-geography. There are currently neither standardized experimental systems for dung biomass smoke research nor studies assessing the health impacts of different types of dung smoke. Here, we used a novel reproducible exposure system to assess outcomes related to inflammation and respiratory infections in human airway cells exposed to six different types of dung biomass smoke. We report that dung biomass smoke, regardless of species, is pro-inflammatory and activates the aryl hydrocarbon receptor and JNK transcription factors; however, dung smoke also suppresses interferon responses after a challenge with a viral mimetic. These effects are consistent with epidemiological data, and suggest a mechanism by which the combustion of animal dung can directly cause lung diseases, promote increased susceptibility to infection, and contribute to the global health problem of household air pollution.
Collapse
Affiliation(s)
- Claire E McCarthy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Parker F Duffney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Jeffrey D Wyatt
- Division of Comparative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
8
|
Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 2016; 28:95-139. [PMID: 26915822 DOI: 10.3109/08958378.2016.1145771] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as incidences of disease-caused mortality, hospital admissions, emergency room visits and symptoms in asthma and chronic obstructive pulmonary disease patients are the health effects that are most commonly associated with community level exposure to wildland fire smoke. A few recent studies have also determined associations between acute wildland fire smoke exposure and cardiovascular health end-points. These cardiopulmonary effects were mostly observed in association with ambient air concentrations of fine particulate matter (PM2.5). However, research on the health effects of this mixture is currently limited. The health effects of acute exposures beyond susceptible populations and the effects of chronic exposures experienced by the wildland firefighter are largely unknown. Longitudinal studies of wildland firefighters during and/or after the firefighting career could help elucidate some of the unknown health impacts of cumulative exposure to wildland fire smoke, establish occupational exposure limits and help determine the types of exposure controls that may be applicable to the occupation.
Collapse
Affiliation(s)
- Olorunfemi Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA .,b Division of Environmental Health Sciences , College of Public Health, the Ohio State University , Columbus , OH , USA
| | - Timothy E Reinhardt
- c AMEC Foster Wheeler Environment & Infrastructure, Inc , Seattle , WA , USA
| | - Joe Domitrovich
- d USDA Forest Service, Missoula Technology and Development Center , Missoula , MT , USA
| | - George Broyles
- e SDA Forest Service, San Dimas Technology and Development Center , San Dimas , CA , USA
| | - Anna M Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| | - Michael T Kleinman
- f Center for Occupational and Environmental Health, University of California , Irvine , CA , USA , and
| | - Roger D Ottmar
- g USDA Forest Service, Pacific Northwest Research Station , Seattle , WA , USA
| | - Luke P Naeher
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| |
Collapse
|
9
|
Yang CH, Shen YJ, Lai CJ, Kou YR. Inflammatory Role of ROS-Sensitive AMP-Activated Protein Kinase in the Hypersensitivity of Lung Vagal C Fibers Induced by Intermittent Hypoxia in Rats. Front Physiol 2016; 7:263. [PMID: 27445853 PMCID: PMC4922301 DOI: 10.3389/fphys.2016.00263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA), manifested by airway exposure to intermittent hypoxia (IH), is associated with excess reactive oxygen species (ROS) production in airways, airway inflammation, and hyperreactive airway diseases. The cause-effect relationship for these events remains unclear. We investigated the inflammatory role of ROS-sensitive AMP-activated protein kinase (AMPK) in IH-induced airway hypersensitivity mediated by lung vagal C fibers (LVCFs) in rats. Conscious rats were exposed to room air (RA) or IH with or without treatment with N-acetyl-L-cysteine (NAC, an antioxidant), Compound C (an AMPK inhibitor), ibuprofen (a cyclooxygenase inhibitor), or their vehicles. Immediately after exposure (24 h), we found that intravenous capsaicin, phenylbiguanide, or α,β-methylene-ATP evoked augmented LVCF-mediated apneic responses and LVCF afferent responses in rats subjected to IH exposure in comparison with those in RA rats. The potentiating effect of IH on LVCF responses decreased at 6 h after and vanished at 12 h after the termination of IH exposure. The potentiating effect of IH on LVCF-mediated apneic and LVCF afferent responses was significantly attenuated by treatment with NAC, compound C, or ibuprofen, but not by their vehicles. Further biochemical analysis revealed that rats exposed to IH displayed increased lung levels of lipid peroxidation (an index of oxidative stress), AMPK phosphorylation (an index of AMPK activation), and prostaglandin E2 (a cyclooxygenase metabolite), compared with those exposed to RA. IH-induced increase in lipid peroxidation was considerably suppressed by treatment with NAC but not by compound C or ibuprofen. IH-induced increase in AMPK phosphorylation was totally abolished by NAC or compound C but not by ibuprofen. IH-induced increase in prostaglandin E2 was considerably prevented by any of these three inhibitor treatments. The vehicles of these inhibitors exerted no significant effect on the three IH-induced responses. These results suggest that 24-h IH exposure sensitizes LVCFs, leading to an exaggerated reflex and afferent responses to chemical stimulants in rats. Moreover, this IH-induced LVCF sensitization is mediated through a cascade of inflammatory responses in the airways involving increases in ROS, AMPK activation, and cyclooxygenase metabolite release.
Collapse
Affiliation(s)
- Chang-Huan Yang
- Institute of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Yan-Jhih Shen
- Department of Pharmacology and Toxicology, School of Medicine, Tzu Chi University Hualien, Taiwan
| | - Ching Jung Lai
- Department of Physiology, Tzu Chi University Hualien, Taiwan
| | - Yu Ru Kou
- Institute of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| |
Collapse
|
10
|
Air pollution particles and iron homeostasis. Biochim Biophys Acta Gen Subj 2016; 1860:2816-25. [PMID: 27217087 DOI: 10.1016/j.bbagen.2016.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND The mechanism underlying biological effects, including pro-inflammatory outcomes, of particles deposited in the lung has not been defined. MAJOR CONCLUSIONS A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects. GENERAL SIGNIFICANCE Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation following exposure to disparate particles. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
|
11
|
Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, Cancio LC, Chung KK. Diagnosis and management of inhalation injury: an updated review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:351. [PMID: 26507130 PMCID: PMC4624587 DOI: 10.1186/s13054-015-1077-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article we review recent advances made in the pathophysiology, diagnosis, and treatment of inhalation injury. Historically, the diagnosis of inhalation injury has relied on nonspecific clinical exam findings and bronchoscopic evidence. The development of a grading system and the use of modalities such as chest computed tomography may allow for a more nuanced evaluation of inhalation injury and enhanced ability to prognosticate. Supportive respiratory care remains essential in managing inhalation injury. Adjuncts still lacking definitive evidence of efficacy include bronchodilators, mucolytic agents, inhaled anticoagulants, nonconventional ventilator modes, prone positioning, and extracorporeal membrane oxygenation. Recent research focusing on molecular mechanisms involved in inhalation injury has increased the number of potential therapies.
Collapse
Affiliation(s)
- Patrick F Walker
- Department of Surgery, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20889, USA
| | - Michelle F Buehner
- Department of General Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA.
| | - Leslie A Wood
- Department of Medicine, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA
| | - Nathan L Boyer
- Department of Medicine, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA
| | - Ian R Driscoll
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Jonathan B Lundy
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Kevin K Chung
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Building A, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| |
Collapse
|
12
|
Ghio AJ, Soukup JM, Dailey LA, Tong H, Kesic MJ, Budinger GRS, Mutlu GM. Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect. Chem Res Toxicol 2015; 28:2104-11. [PMID: 26462088 DOI: 10.1021/acs.chemrestox.5b00270] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 μg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 μg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response.
Collapse
Affiliation(s)
- Andrew J Ghio
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Joleen M Soukup
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Lisa A Dailey
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Haiyan Tong
- US Environmental Protection Agency , Chapel Hill, North Carolina 27599, United States
| | - Matthew J Kesic
- Physician Assistant Program, Methodist University , Fayetteville, North Carolina 28311, United States
| | - G R Scott Budinger
- The Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care and Lung Injury Center , Department of Medicine, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Ko HK, Lee HF, Lin AH, Liu MH, Liu CI, Lee TS, Kou YR. Regulation of Cigarette Smoke Induction of IL-8 in Macrophages by AMP-activated Protein Kinase Signaling. J Cell Physiol 2015; 230:1781-93. [PMID: 25503516 DOI: 10.1002/jcp.24881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Inhaled cigarette smoke (CS) causes persistent lung inflammation in smokers. Interleukin 8 (IL-8) released from macrophages is a key chemokine during initiation and progression of CS-induced lung inflammation, yet its regulation is largely unknown. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, may modulate inflammation. Here we report that CS extract (CSE) increased the level of intracellular reactive oxygen species (ROS), activating AMPK, mitogen-activated protein kinases (MAPKs), and NF-κB, as well as inducing IL-8, in human macrophages. N-acetyl-cysteine (ROS scavenger) or hexamethonium [nicotinic acetylcholine receptor (nAChR) antagonist] attenuated the CSE-induced increase in intracellular ROS, activation of AMPK and NF-κB, as well as IL-8 induction, which suggests that nAChRs and ROS are important. Prevention of AMPK activation by compound C or AMPK siRNA reduced CSE-induced IL-8 production, confirming the role of AMPK. Compound C or AMPK siRNA also inhibited the activation of MAPKs and NF-κB by CSE, which suggests that these molecules are downstream of AMPK. Additionally, exposure of human macrophages to nicotine activated AMPK and induced IL-8 and that these effects were lessened by hexamethonium or compound C, implying that nicotine in CS may be causative. Furthermore, chronic CS exposure in mice promoted AMPK phosphorylation and expression of MIP-2 (an IL-8 homolog) in infiltrated macrophages and in lung tissues, as well as induced lung inflammation, all of which were reduced by compound C treatment. Thus, we identified a novel nAChRs-dependent, ROS-sensitive, AMPK/MAPKs/NF-κB signaling pathway, which seems to be important to CS-induced macrophage IL-8 production and possibly to lung inflammation.
Collapse
Affiliation(s)
- Hsin-Kuo Ko
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Respiratory Therapy, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Carlos SPD, Dias AS, Forgiarini Júnior LA, Patricio PD, Graciano T, Nesi RT, Valença S, Chiappa AMG, Cipriano G, Souza CTD, Chiappa GRDS. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle. J Bras Pneumol 2015; 40:411-20. [PMID: 25210964 PMCID: PMC4201172 DOI: 10.1590/s1806-37132014000400009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/02/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.
Collapse
Affiliation(s)
| | | | | | | | - Thaise Graciano
- Department of Physical Therapy, University of Southern Santa Catarina, Criciúma, Brazil
| | - Renata Tiscoski Nesi
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Valença
- Department of Cardiology, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil
| | | | - Gerson Cipriano
- Department of Physical Therapy, University of Brasília, Brasília, Brazil
| | | | | |
Collapse
|
15
|
Kilic T, Parlakpinar H, Taslidere E, Yildiz S, Polat A, Vardi N, Colak C, Ermis H. Protective and Therapeutic Effect of Apocynin on Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2014; 38:1166-80. [DOI: 10.1007/s10753-014-0081-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Nadon AM, Perez MJ, Hernandez-Saavedra D, Smith LP, Yang Y, Sanders LA, Gandjeva A, Chabon J, Koyanagi DE, Graham BB, Tuder RM, Schmidt EP. Rtp801 suppression of epithelial mTORC1 augments endotoxin-induced lung inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2382-9. [PMID: 25016184 DOI: 10.1016/j.ajpath.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of cellular responses to environmental stress. mTOR (and its primary complex mTORC1) is, therefore, ideally positioned to regulate lung inflammatory responses to an environmental insult, a function directly relevant to disease states such as the acute respiratory distress syndrome. Our previous work in cigarette smoke-induced emphysema identified a novel protective role of pulmonary mTORC1 signaling. However, studies of the impact of mTORC1 on the development of acute lung injury are conflicting. We hypothesized that Rtp801, an endogenous inhibitor of mTORC1, which is predominantly expressed in alveolar type II epithelial cells, is activated during endotoxin-induced lung injury and functions to suppress anti-inflammatory epithelial mTORC1 responses. We administered intratracheal lipopolysaccharide to wild-type mice and observed a significant increase in lung Rtp801 mRNA. In lipopolysaccharide-treated Rtp801(-/-) mice, epithelial mTORC1 activation significantly increased and was associated with an attenuation of lung inflammation. We reversed the anti-inflammatory phenotype of Rtp801(-/-) mice with the mTORC1 inhibitor, rapamycin, reassuring against mTORC1-independent effects of Rtp801. We confirmed the proinflammatory effects of Rtp801 by generating a transgenic Rtp801 overexpressing mouse, which displayed augmented inflammatory responses to intratracheal endotoxin. These data suggest that epithelial mTORC1 activity plays a protective role against lung injury, and its inhibition by Rtp801 exacerbates alveolar injury caused by endotoxin.
Collapse
Affiliation(s)
- Aaron M Nadon
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Mario J Perez
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel Hernandez-Saavedra
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Lynelle P Smith
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Yimu Yang
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Linda A Sanders
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jacob Chabon
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel E Koyanagi
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian B Graham
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Eric P Schmidt
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
17
|
Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 2014; 120:683-93. [PMID: 24051392 DOI: 10.1097/01.anes.0000435742.04859.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48-72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. METHODS In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [N]nitrogen in saline to measure shunt and ventilation-perfusion distributions separately in the smoke-exposed and control lungs. RESULTS The pulmonary [F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation-perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). CONCLUSION Using noninvasive imaging, the authors demonstrated that increased pulmonary [F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch occur early after smoke inhalation.
Collapse
|
18
|
Wu YL, Lin AH, Chen CH, Huang WC, Wang HY, Liu MH, Lee TS, Ru Kou Y. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radic Biol Med 2014; 69:208-18. [PMID: 24486342 DOI: 10.1016/j.freeradbiomed.2014.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/18/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022]
Abstract
Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have reported that cigarette smoke (CS) activates a NADPH oxidase-dependent reactive oxygen species (ROS)-sensitive AMP-activated protein kinase (AMPK) signaling pathway leading to induction of lung inflammation. Glucosamine, a dietary supplement used to treat osteoarthritis, has antioxidant and anti-inflammatory properties. However, whether glucosamine has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model we show that chronic CS exposure for 4 weeks increased lung levels of 4-hydroxynonenal (an oxidative stress biomarker), phospho-AMPK, and macrophage inflammatory protein 2 and induced lung inflammation; all of these CS-induced events were suppressed by chronic treatment with glucosamine. Using human bronchial epithelial cells, we demonstrate that cigarette smoke extract (CSE) sequentially activated NADPH oxidase; increased intracellular levels of ROS; activated AMPK, mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducer and activator of transcription proteins 3 (STAT3); and induced interleukin-8 (IL-8). Additionally, using a ROS scavenger, a siRNA that targets AMPK, and various pharmacological inhibitors, we identified the signaling cascade that leads to induction of IL-8 by CSE. All these CSE-induced events were inhibited by glucosamine pretreatment. Our findings suggest a novel role for glucosamine in alleviating the oxidative stress and lung inflammation induced by chronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro by inhibiting both the ROS-sensitive NADPH oxidase/AMPK/MAPK signaling pathway and the downstream transcriptional factors NF-κB and STAT3.
Collapse
Affiliation(s)
- Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chao-Hung Chen
- Division of Thoracic Surgery, Mackay Memorial Hospital, Taipei, Taiwan; Department of Cosmetic Applications and Management, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Yi Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
19
|
AMP-activated protein kinase signaling pathway in toxic smoke inhalation injury: nice to demonstrate, nice to know, but is there a therapeutic relevance? Crit Care Med 2013; 41:349-50. [PMID: 23269146 DOI: 10.1097/ccm.0b013e318270e246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|