1
|
Zhai C, Xu J, Yang Y, Xie F, Cao L, Wang K, Zhou Y, Ding X, Yin J, Ding X, Hu H, Yu H. Heterogeneous Analysis of Extracellular Vesicles for Osteosarcoma Diagnosis. Anal Chem 2024; 96:9486-9492. [PMID: 38814722 DOI: 10.1021/acs.analchem.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Osteosarcoma (OS) is the most prevalent primary tumor of bones, often diagnosed late with a poor prognosis. Currently, few effective biomarkers or diagnostic methods have been developed for early OS detection with high confidence, especially for metastatic OS. Tumor-derived extracellular vesicles (EVs) are emerging as promising biomarkers for early cancer diagnosis through liquid biopsy. Here, we report a plasmonic imaging-based biosensing technique, termed subpopulation protein analysis by single EV counting (SPASEC), for size-dependent EV subpopulation analysis. In our SPASEC platform, EVs are accurately sized and counted on plasmonic sensor chips coated with OS-specific antibodies. Subsequently, EVs are categorized into distinct subpopulations based on their sizes, and the membrane proteins of each size-dependent subpopulation are profiled. We measured the heterogeneous expression levels of the EV markers (CD63, BMP2, GD2, and N-cadherin) in each of the EV subsets from both OS cell lines and clinical plasma samples. Using the linear discriminant analysis (LDA) model, the combination of four markers is applied to classify the healthy donors (n = 37), nonmetastatic OS patients (n = 13), and metastatic patients (n = 12) with an area under the curve of 0.95, 0.92, and 0.99, respectively. SPASEC provides accurate EV sensing technology for early OS diagnosis.
Collapse
Affiliation(s)
- Chunhui Zhai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiaying Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Xie
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Cao
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kai Wang
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaomin Ding
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junyi Yin
- Oncology Department of Tongji Hospital of Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Xianting Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Alahdal M, Perera RA, Moschovas MC, Patel V, Perera RJ. Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics 2023; 30:27-38. [PMID: 37575217 PMCID: PMC10415624 DOI: 10.1016/j.omto.2023.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Prostate cancer (PCa) incidence is increasing and endangers men's lives. Early detection of PCa could improve overall survival (OS) by preventing metastasis. The prostate-specific antigen (PSA) test is a popular screening method. Several advisory groups, however, warn against using the PSA test due to its high false positive rate, unsupported outcome, and limited benefit. The number of disease-related biopsies performed annually far outweighs the number of diagnoses. Thus, there is an urgent need to develop accurate diagnostic biomarkers to detect PCa and distinguish between aggressive and indolent cancers. Recently, non-coding RNA (ncRNA), circulating tumor DNA (ctDNA)/ctRNA, exosomes, and metabolomic biomarkers in the liquid biopsies (LBs) of patients with PCa showed significant differences and clinical benefits in diagnosis, prognosis, and monitoring response to therapy. The analysis of urinary exosomal ncRNA presented a substantial correlation among Exos-miR-375 downregulation, clinical T stage, and bone metastases of PCa. Furthermore, the expression of miR-532-5p in urine samples was a vital predictive biomarker of PCa progression. Thus, this review focuses on promising molecular and metabolomic biomarkers in LBs from patients with PCa. We thoroughly addressed the most recent clinical findings of LB biomarker use in diagnosing and monitoring PCa in early and advanced stages.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| | - Roshane A. Perera
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | | | - Vipul Patel
- AdventHealth Celebration, 380 Celebration Place, Celebration, FL 34747, USA
| | - Ranjan J. Perera
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
- Department of Oncology, Sydney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Mazurek AM, Rutkowski TW. Practical Application of Circulating Tumor-Related DNA of Human Papillomavirus in Liquid Biopsy to Evaluate the Molecular Response in Patients with Oropharyngeal Cancer. Cancers (Basel) 2023; 15:1047. [PMID: 36831390 PMCID: PMC9953792 DOI: 10.3390/cancers15041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Recent findings have shown that human papillomavirus (HPV) DNA is present in the blood as a tumor-specific biomarker (circulating tumor-related HPV; ctHPV) in patients with HPV-related oropharyngeal cancer (HPV-related OPC). The molecular response (MR) in patients with HPV-related OPC can be defined as the change in the number of ctHPV copies in relation to its initial quantity. The optimal model for assessing the MR using a liquid biopsy (LB) should be based on the E6/E7 sequences of the viral genome. MR assessment can help to evaluate the intensity of ongoing treatments in relation to the tumor response. The evaluation of the residual disease at the end of therapy may also be performed by MR assessment. If a partial MR (pMR) is found, caution is indicated and a subsequent LB should be considered, due to the likelihood of disease progression. Complete radiological and clinical responses together with a complete MR (cMR) convincingly indicate a low risk of treatment failure. Moreover, molecular recurrence (Mrec) during a follow-up, confirmed in two consecutive assays, even despite the lack of any other clinical or radiological symptoms of progression, indicates patients at high risk of disease recurrence. In conclusion, MR by ctHPV assessment may hasten the early detection of disease progression, at any stage of the management of the patient with HPV-related OPC.
Collapse
Affiliation(s)
- Agnieszka M. Mazurek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Tomasz W. Rutkowski
- I Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| |
Collapse
|
4
|
Ji Z, Chen L, Yang Q, Tian H, Wu J, Zheng D, Cai J, Chen Y, Li Z. Research trend of circulating tumor DNA associated with breast cancer from 2012 to 2021: A bibliometric analysis. Front Oncol 2023; 12:1090503. [PMID: 36713554 PMCID: PMC9880534 DOI: 10.3389/fonc.2022.1090503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Recently, ctDNA has become the focus for scientists with respect to personalized treatment, early screening, precise diagnosis, and prognosis of BC. This paper aims to use bibliometric analysis to investigate the research status and future trends in this field. Methods All the related literature in the field of ctDNA and breast cancer was gathered from the Web of Science Core Collection. Data analyses were performed with R package Bibliometrics, VOS viewer 1.6.18, and online analysis in WoS. IBM SPSS (version 26.0) was used for statistical analysis. Results A total of 739 publications, including 472 articles and 267 reviews, were retrieved. The overall number of articles published showed an upward trend. The United States has the largest number of published articles (266 papers) and citations (20,225 times). The most productive journal was Clinical Cancer Research. Cristofanilli M was the most prolific author, while Carlos C was the most cited one. The most frequent keywords excluding the search subject were "liquid biopsy", "plasma", "mutations", "metastatic breast cancer", "acquired resistance". Conclusion This article explored the application value of ctDNA in breast cancer with bibliometric analysis, offering an overall and intuitive understanding of this topic and revealing the study trends in the past ten years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yexi Chen
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| | - Zhiyang Li
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| |
Collapse
|
5
|
Hopkins DT, Waters D, Manecksha RP, Lynch TH. Isolated soft tissue mass of the finger as the first presentation of oligometastatic renal cell carcinoma. BMJ Case Rep 2022; 15:e248718. [PMID: 35580945 PMCID: PMC9114857 DOI: 10.1136/bcr-2021-248718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/04/2022] Open
Abstract
A man in his 70s was referred to plastic surgery with a suspected foreign body in the pulp of his right index finger. An excisional biopsy was performed for a presumed foreign body granuloma. Histology revealed metastatic renal cell carcinoma (mRCC). CT imaging demonstrated a 7.4 cm heterogeneous mass arising from the upper pole of the left kidney consistent with primary renal malignancy, in addition to a 9 mm lung nodule. He underwent an uncomplicated left laparoscopic cytoreductive nephrectomy and made a satisfactory recovery. To our knowledge, this is the first reported case of primary mRCC presenting with digital soft tissue metastasis. Cytoreductive nephrectomy with metastasectomy is the preferred management for mRCC where feasible. For unfavourable mRCC cases, first-line systemic therapy is indicated. Adjuvant systemic therapy in mRCC is currently limited to clinical trials, though promising data emerging on the use of pembrolizumab may herald a future shift in practice.
Collapse
Affiliation(s)
- David T Hopkins
- Department of Urology, Saint James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College Dublin School of Medicine, Dublin, Ireland
| | - Darragh Waters
- Department of Urology, Saint James's Hospital, Dublin, Ireland
| | - Rustom P Manecksha
- Department of Urology, Saint James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College Dublin School of Medicine, Dublin, Ireland
| | - Thomas H Lynch
- Department of Urology, Saint James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College Dublin School of Medicine, Dublin, Ireland
| |
Collapse
|
6
|
Song JW, Suh J, Lee SW, Yoo JK, Lee U, Han JH, Kwak C, Kang M, Kim YR, Jeong CW, Choi JW. Isolation and Genomic Analysis of Single Circulating Tumor Cell Using Human Telomerase Reverse Transcriptase and Desmoglein-2. SMALL METHODS 2022; 6:e2100938. [PMID: 35038250 DOI: 10.1002/smtd.202100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As epithelial cells in the circulation are considered to originate from the tumor, the epithelial cell adhesion molecule has been commonly used as a standard marker for circulating tumor cells (CTCs) isolation. However, it seems to disappear after the epithelial-mesenchymal transition that most cancer cells undergo for intravasation. Thus, more advanced techniques for CTC detection are needed to better understand the clinical significance of CTCs. A cancer cell-specifically-infecting or replicating virus that codes a fluorescent monitor gene can be a solution to efficiently detect CTCs. Thus, the authors designed an adenovirus to bind to desmoglein-2, which is highly expressed in most cancer cells. A cancer-specific human telomerase reverse transcriptase promoter is inserted to control a viral E1 region. The adenovirus is utilized to compare the number of CTCs from renal cell carcinoma and prostate cancer patients before and after surgery. The isolated two or three CTCs are eligible for whole genome sequencing. The genomic analysis proves the difference of variants between primary tumors and CTCs. Taken together, it is a fast and exact serial method for CTC isolation and the enriched genome sequencing may be used to determine the prognosis and as a point-of-care system for patients with cancer.
Collapse
Affiliation(s)
- Jae Won Song
- Department of Pharmacy and Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jungyo Suh
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seok Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Ki Yoo
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Research Center of Curigin Ltd., Seoul, 04778, Republic of Korea
| | - Uijeong Lee
- Artificial Intelligence Laboratory of Oncocross Ltd., Seoul, 04168, Republic of Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Health Sciences and Technology SAIHST Sungkyunkwan University
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yi Rang Kim
- Artificial Intelligence Laboratory of Oncocross Ltd., Seoul, 04168, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacy and Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
7
|
Personalized Therapy and Liquid Biopsy-A Focus on Colorectal Cancer. J Pers Med 2021; 11:jpm11070630. [PMID: 34357097 PMCID: PMC8305103 DOI: 10.3390/jpm11070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Resistance mechanisms represent a barrier to anti-cancer therapies. Liquid biopsies would allow obtaining additional information in order to develop targeted therapies to thwart the resistance phenomena but also to follow in time real response to treatment and be able to adapt it the most quickly possible way in case of resistance. (2) Methods: herein we summarize the different liquid biopsies which are currently under research; we then review the literature and focalize on one of their potential roles: the theranostic one and especially in the cases of colorectal cancers. (3) Results: few studies targeting liquid biopsy as a potential tool to adapt cancer treatments are present in the literature and encompass few patients. (4) Conclusions: further research is needed to prove the efficiency of LB. Indeed, it seems a promising tool to guide treatment by targeting actionable mutations with detection of resistant mutations.
Collapse
|
8
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Dawid Baranowski
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
9
|
Clinical significance of phenotyping and karyotyping of detecting circulating tumor cells in renal cell carcinoma using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH). Int Urol Nephrol 2020; 52:2281-2287. [PMID: 32748196 DOI: 10.1007/s11255-020-02587-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Circulating tumor cells (CTCs) as a noninvasive detection technology have become a research hotspot in the field of precision medicine. However, CTC detection faces great challenges with respect to specificity and sensitivity. METHODS We divided 39 subjects into three groups: renal carcinoma, renal stones and healthy persons. Using subtraction enrichment (SE) combined with immunostaining-fluorescence in situ hybridization technology, we identified and characterized CTCs. CTCs were identified as DAPI +/CD45-/PanCK + (-). We explored whether the number of CTCs was related to clinicopathological factors and their clinical application. RESULTS The CTC count in the renal carcinoma group (29/39) was 86.20% using a cut-off value of 1 CTC, which was significantly higher than that of other technologies in detecting CTCs, demonstrating that SE-iFISH technology can be used for CTC detection. The CTC count was much higher in the renal carcinoma group than that in the other control groups, with an area under the ROC curve of 0.931 (95% confidence interval 0.851 to 1.000, P < 0.01). In addition, the tetraploid count on chromosome 8 of T4 stage renal carcinoma was much higher than that of other stages (T1-T3), which may suggest that tetraploid count could be a marker of renal carcinoma prognosis and influence treatment decisions for better clinical management. CONCLUSIONS Our study showed that SE-iFISH technology can be used to detect CTCs in renal carcinoma with high sensitivity and specificity. Therefore, the analysis of CTCs with SE-iFISH has clear potential to improve the management of patients with renal carcinoma.
Collapse
|
10
|
Grasso A, Navarro R, Balaguer N, Moreno I, Alama P, Jimenez J, Simón C, Vilella F. Endometrial Liquid Biopsy Provides a miRNA Roadmap of the Secretory Phase of the Human Endometrium. J Clin Endocrinol Metab 2020; 105:5609155. [PMID: 31665361 DOI: 10.1210/clinem/dgz146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
CONTEXT Endometrial liquid biopsy (ELB) is a minimally invasive alternative for research and diagnosis in endometrial biology. OBJECTIVE We sought to establish an endometrial micro ribonucleic acid (miRNA) roadmap based on ELB during the secretory phase of the menstrual cycle in both natural and hormonal replacement therapy (HRT) cycles. DESIGN Human ELB samples (n = 58) were obtained from healthy ovum donors undergoing a natural and an HRT cycle consecutively. miRNA profiles were identified using next-generation sequencing (NGS). For functional analysis, messenger ribonucleic acid targets were chosen among those reported in the endometrial receptivity analysis. RESULTS The human endometrial secretory phase is characterized by a dynamic miRNA secretion pattern that varies from the prereceptive to the receptive stages. No differences in miRNA profiles were found among natural versus HRT cycles in the same women, reinforcing the similarities in functional and clinical outcomes in natural versus medicated cycles. Bioinformatic analysis revealed 62 validated interactions and 81 predicted interactions of miRNAs differentially expressed in the HRT cycle. Annotation of these genes linked them to 51 different pathways involved in endometrial receptivity. CONCLUSION This NGS-based study describes the miRNA signature in human ELB during the secretory phase of natural and HRT cycles. A consistent endometrial miRNA signature was observed in the acquisition of endometrial receptivity. Interestingly, no significant differences in miRNA expression were found in natural versus HRT cycles reinforcing the functional clinical similarities between both approaches.
Collapse
Affiliation(s)
- Alessia Grasso
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Roser Navarro
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Inmaculada Moreno
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | | | - Jorge Jimenez
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - C Simón
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- IVI Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - F Vilella
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| |
Collapse
|
11
|
Tada H, Takahashi H, Kuwabara-Yokobori Y, Shino M, Chikamatsu K. Molecular profiling of circulating tumor cells predicts clinical outcome in head and neck squamous cell carcinoma. Oral Oncol 2020; 102:104558. [DOI: 10.1016/j.oraloncology.2019.104558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
|
12
|
Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, Duan C, Jin M, Zhang D, Qiu L, Cheng X, Xu Z, Ma X. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. BMC Cancer 2020; 20:102. [PMID: 32028911 PMCID: PMC7006086 DOI: 10.1186/s12885-020-6562-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor of childhood. The high rate of recurrence is associated with a low survival rate for patients with high-risk neuroblastoma. There is thus an urgent need to identify effective predictive biomarkers of disease recurrence. Methods A total of 116 patients with high-risk neuroblastoma were recruited at Beijing Children’s Hospital between February 2015 and December 2017. All patients received multidisciplinary treatment, were evaluated for the therapeutic response, and then initiated on maintenance treatment. Blood samples were collected at the beginning of maintenance treatment, every 3 months thereafter, and at the time of disease recurrence. Plasma levels of cell-free DNA (cfDNA) were quantified by qPCR. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the ability of plasma cfDNA concentration to predict recurrence. Results Of the 116 patients, 36 (31.0%) developed recurrence during maintenance treatment. The median time to recurrence was 19.00, 9.00, and 8.00 months for patients who had achieved complete response (n = 6), partial response (n = 25), and stable disease (n = 5), respectively, after multidisciplinary treatment. The median plasma cfDNA concentration at the time of recurrence was significantly higher than the concentration in recurrence-free patients throughout maintenance treatment (29.34 ng/mL vs 10.32 ng/mL). Patients recorded a plasma cfDNA level ≥ 29 ng/mL an average of 0.55 months before diagnosis of disease recurrence. ROC analysis of the power of plasma cfDNA to distinguish between patients with or without recurrence yielded an area under the curve of 0.825, with optimal sensitivity and specificity of 80.6 and 71.3%, respectively, at a cfDNA level of 12.93 ng/mL. Conclusions High plasma cfDNA concentration is a potential molecular marker to signal disease recurrence in patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Yan Su
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lijun Wang
- Beijing Keyin Technology Company Limited, Beijing Keyin Evergreen Institutes for Medical Research Company Limited, Eastern Block of Jianwai SOHO, Chaoyang District, Beijing, 100022, China
| | - Chiyi Jiang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhixia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hongjun Fan
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Huimin Hong
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chao Duan
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dawei Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lihua Qiu
- Beijing Keyin Technology Company Limited, Beijing Keyin Evergreen Institutes for Medical Research Company Limited, Eastern Block of Jianwai SOHO, Chaoyang District, Beijing, 100022, China
| | - Xianfeng Cheng
- Beijing Keyin Technology Company Limited, Beijing Keyin Evergreen Institutes for Medical Research Company Limited, Eastern Block of Jianwai SOHO, Chaoyang District, Beijing, 100022, China
| | - Zhong Xu
- Beijing Keyin Technology Company Limited, Beijing Keyin Evergreen Institutes for Medical Research Company Limited, Eastern Block of Jianwai SOHO, Chaoyang District, Beijing, 100022, China.
| | - Xiaoli Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
13
|
Sforzi J, Ferrauto G, Aime S, Geninatti Crich S. A Simple and Fast Assay Based on Carboxyfluorescein-Loaded Liposome for Quantitative DNA Detection. ACS OMEGA 2020; 5:1764-1772. [PMID: 32039311 PMCID: PMC7003241 DOI: 10.1021/acsomega.9b01457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
The development of an innovative and easy way to run assays for the quantitative detection of DNA present in biological fluids (i.e., blood, urine, and saliva) is of great interest for early diagnosis (e.g., tumors) and personalized medicine. Herein, a new quantitative assay based on the use of highly sensitive carboxyfluorescein-loaded liposomes as signal amplification systems is reported. The method has been tested for the detection of low amounts of DNA sequences. The reported proof of concept exploits a target DNA molecule as a linker between two complementary oligonucleotides. One oligonucleotide is biotinylated at its 3' end and binds to streptavidin-coupled magnetic beads, whereas the other one is conjugated to a cholesterol molecule incorporated in the phospholipidic bilayer of the fluorescent liposomes. In the presence of the target fragment, the correct formation of a construct takes place as witnessed by a strong fluorescence signal, amplified by dissolving lipidic nanoparticles with Triton X-100. The system is able to detect specific nucleotide sequences with a very low detection threshold of target DNA (tens of picomolar). The assay allows the detection of both single- and double-stranded DNA. Studies performed in human blood serum show the correct assembling of the probe but with a reduction of limit of detection (up to ∼1 nM). This liposome signal amplification strategy could be used not only for the detection of DNA but also for other nucleic acids (mRNA; microRNA) that are difficult to be quantified by currently available protocols.
Collapse
Affiliation(s)
- Jacopo Sforzi
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Giuseppe Ferrauto
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
- E-mail:
| | - Silvio Aime
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
14
|
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers 2019; 5:66. [PMID: 31548545 DOI: 10.1038/s41572-019-0111-2] [Citation(s) in RCA: 1615] [Impact Index Per Article: 269.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most frequent malignancy in women worldwide and is curable in ~70-80% of patients with early-stage, non-metastatic disease. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. On the molecular level, breast cancer is a heterogeneous disease; molecular features include activation of human epidermal growth factor receptor 2 (HER2, encoded by ERBB2), activation of hormone receptors (oestrogen receptor and progesterone receptor) and/or BRCA mutations. Treatment strategies differ according to molecular subtype. Management of breast cancer is multidisciplinary; it includes locoregional (surgery and radiation therapy) and systemic therapy approaches. Systemic therapies include endocrine therapy for hormone receptor-positive disease, chemotherapy, anti-HER2 therapy for HER2-positive disease, bone stabilizing agents, poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and, quite recently, immunotherapy. Future therapeutic concepts in breast cancer aim at individualization of therapy as well as at treatment de-escalation and escalation based on tumour biology and early therapy response. Next to further treatment innovations, equal worldwide access to therapeutic advances remains the global challenge in breast cancer care for the future.
Collapse
Affiliation(s)
- Nadia Harbeck
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Breast Center and Comprehensive Cancer Center (CCLMU), Munich, Germany.
| | - Frédérique Penault-Llorca
- Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, UMR INSERM 1240, University Clermont Auvergne, Clermont-Ferrand, France
| | - Javier Cortes
- IOB Institute of Oncology, Quironsalud Group, Madrid and Barcelona, Spain.,Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nehmat Houssami
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Philip Poortmans
- Department of Radiation Oncology, Institut Curie, Paris, France.,Université PSL, Paris, France
| | - Kathryn Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Janice Tsang
- Hong Kong Breast Oncology Group, The University of Hong Kong, Hong Kong, China
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
15
|
Chen Z, Zhang S, Li C, Xu C, Zhao J, Miao L. Comprehensive Evaluation of the Factors Affecting Plasma Circulating Cell-Free DNA Levels and Their Application in Diagnosing Nonsmall Cell Lung Cancer. Genet Test Mol Biomarkers 2019; 23:270-276. [PMID: 30986099 DOI: 10.1089/gtmb.2018.0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Circulating cell-free DNA (ccfDNA) is a valuable biomarker, but the ccfDNA levels are influenced by variations that occur during sample processing. The feasibility of using ccfDNA as a diagnostic biomarker requires further examination. MATERIALS AND METHODS We established a real-time PCR assay with an external standard to comprehensively evaluate the factors affecting ccfDNA levels, including the extraction kit used, freeze-thaw stability, and stability of delayed extraction. Then we compared the ccfDNA levels between benign controls (64 cases, including 23 sarcoidosis patients, 19 pneumonia patients, and 22 other lung disease patients) and nonsmall cell lung cancer (NSCLC) patients (74 patients). RESULTS The different kits showed different recovery rates. Moreover, the ccfDNA present in plasma or stored in extraction buffer was stable after freeze-thawing, and the ccfDNA concentration remained consistent for 24 h at 4°C and for 12 h at room temperature. The patients with NSCLC-III/IV exhibited significantly higher ccfDNA levels than the patients with NSCLC-I/II (293 copies/μL vs. 190 copies/μL, p = 0.0339). However, no significant differences in the plasma ccfDNA levels were observed between the benign controls and NSCLC patients (241 copies/μL vs. 233 copies/μL, p > 0.05). CONCLUSIONS Variations in sample processing procedures led to variable results. The lack of differences between the NSCLC patients and benign controls indicates that further research is necessary to better characterize ccfDNA as a biomarker for diagnosing NSCLC.
Collapse
Affiliation(s)
- Zhiyao Chen
- 1 Department of Clinical Pharmacology Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Shichao Zhang
- 1 Department of Clinical Pharmacology Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,2 College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Chang Li
- 3 Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Chun Xu
- 3 Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Jun Zhao
- 3 Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Liyan Miao
- 1 Department of Clinical Pharmacology Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,2 College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| |
Collapse
|
16
|
Chen J, Chen J, He F, Huang Y, Lu S, Fan H, Wang M, Xu R. Design of a Targeted Sequencing Assay to Detect Rare Mutations in Circulating Tumor DNA. Genet Test Mol Biomarkers 2019; 23:264-269. [PMID: 30986100 DOI: 10.1089/gtmb.2018.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Qualitative and quantitative detection of circulating tumor DNA (ctDNA) is a liquid biopsy technology used for early cancer diagnosis. However, the plasma ctDNA content is extremely low, so it is difficult to detect somatic mutations of tumors using conventional sequencing methods. Target region sequencing (TRS) technology, through enrichment of the target genomic region followed by next generation sequencing, overcomes this challenge and has been widely used in ctDNA sequencing. METHODS We designed a ctDNA sequencing panel to capture 128 tumor genes, and tested the performance of the panel by running TRS for ctDNA of a clear cell renal cell carcinoma (ccRCC) patient and 12 breast cancer patients. RESULTS TRS using the new ctDNA panel at more than 500 × coverage depth achieved almost the same accuracy as traditional whole-exome sequencing (WES). PBRM1 p.L641V was detected in the plasma sample of the ccRCC patient with an allele frequency of 0.2%. The ctDNA of 12 breast cancer patients was sequenced at a depth of 500-fold, achieving 99.89% coverage; 34 genes were detected with mutations, including the drug target genes BRCA2, PTEN, TP53, APC, KDR, and NOTCH2. CONCLUSIONS This TRS new ctDNA panel can be used to detect mutations in cell-free DNA from multiple types of cancer.
Collapse
Affiliation(s)
- Jianxia Chen
- 1 Clinical Laboratory, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Jun Chen
- 2 Imunobio, Shenzhen, Shenzhen, China
| | | | - Yiqiong Huang
- 3 Department of Breast Thyroid Vascular Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Shan Lu
- 3 Department of Breast Thyroid Vascular Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Haibo Fan
- 4 Division of ultrasonography, Shenzhen People's Hospital, Shenzhen, China
| | - Mingbang Wang
- 5 Xiamen Branch, Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Ruihuan Xu
- 1 Clinical Laboratory, Longgang Central Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
17
|
Krivitsky V, Zverzhinetsky M, Krivitsky A, Hsiung LC, Naddaka V, Gabriel I, Lefler S, Conroy J, Burstein L, Patolsky F. Cellular Metabolomics by a Universal Redox-Reactive Nanosensors Array: From the Cell Level to Tumor-on-a-Chip Analysis. NANO LETTERS 2019; 19:2478-2488. [PMID: 30884235 DOI: 10.1021/acs.nanolett.9b00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Although biosensors based on nanowires-field effect transistor were proved extraordinarily efficient in fundamental applications, screening of charges due to the high-ionic strength of most physiological solutions imposes severe limitations in the design of smart, "real-time" sensors, as the biosample solution has to be previously desalted. This work describes the development of a novel nanowire biosensor that performs extracellular real-time multiplex sensing of small molecular metabolites, the true indicators of the body's chemistry machinery, without any preprocessing of the biosample. Unlike other nanoFET devices that follow direct binding of analytes to their surfaces, our nanodevice acts by sensing the oxidation state of redox-reactive chemical species bound to its surface. The device's surface array is chemically modified with a reversible redox molecular system that is sensitive to H2O2 down to 100 nM, coupled with a suite of corresponding oxidase enzymes that convert target metabolites to H2O2, enabling the direct prompt analysis of complex biosamples. This modality was successfully demonstrated for the real-time monitoring of cancer cell samples' metabolic activity and evaluating chemotherapeutic treatment options for cancer. This distinctive system displays ultrasensitive, selective, noninvasive, multiplex, real-time, label-free, and low-cost sensing of small molecular metabolites in ultrasmall volumes of complex biosamples, in the single-microliter scale, placing our technology at the forefront of this cutting-edge field.
Collapse
Affiliation(s)
- Vadim Krivitsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Marina Zverzhinetsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Lo-Chang Hsiung
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Vladimir Naddaka
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Itay Gabriel
- Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Sharon Lefler
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Jennifer Conroy
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
| | - Larisa Burstein
- Wolfson Applied Materials Research Center , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Fernando Patolsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences , Tel-Aviv University , Tel Aviv 69978 , Israel
- Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| |
Collapse
|
18
|
Santoni M, Cimadamore A, Cheng L, Lopez-Beltran A, Battelli N, Massari F, Scarpelli M, Galosi AB, Bracarda S, Montironi R. Circulating Tumor Cells in Renal Cell Carcinoma: Recent Findings and Future Challenges. Front Oncol 2019; 9:228. [PMID: 31024837 PMCID: PMC6460373 DOI: 10.3389/fonc.2019.00228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | | | | | - Andrea Benedetto Galosi
- Department of Urology, School of Medicine, United Hospitals, Marche Polytechnic University, Ancona, Italy
| | - Sergio Bracarda
- Medical Oncology, Department of Oncology, Azienda Ospedaliera S. Maria, Terni, Italy
| | | |
Collapse
|
19
|
Abstract
OBJECTIVE To introduce genetic testing as it relates to oncology and nursing. DATA SOURCES Peer-reviewed journals, government web sites and resources, published recommendations, and professional experience as a genetic counselor. CONCLUSION Genetic testing is a major component of oncology health care and with the continued expansion of the application of genetic testing, many patients will have genetic testing throughout their cancer journey. IMPLICATIONS FOR NURSING PRACTICE To provide supportive care for patients with cancer or at risk for cancer, oncology nurses need to appreciate the many and varied genetic testing platforms and testing strategies. Oncology nurses can be a resource for patients and family members regarding testing options, insurance coverage, and understanding medical management decisions.
Collapse
|
20
|
Tan W, Yang M, Yang H, Zhou F, Shen W. Predicting the response to neoadjuvant therapy for early-stage breast cancer: tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res 2018; 10:4333-4347. [PMID: 30349367 PMCID: PMC6188192 DOI: 10.2147/cmar.s174435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neoadjuvant therapy (NAT) has been used increasingly in patients with locally advanced or early-stage breast cancer. However, the accurate evaluation and prediction of response to NAT remain the great challenge. Biomarkers could prove useful to identify responders or nonresponders, or even to distinguish between early and delayed responses. These biomarkers could include markers from the tumor itself, such as versatile proteins, genes, and ribonucleic acids, various biological factors or peripheral blood cells, and clinical and pathological features. Possible predictive markers could also include multiple features from functional imaging, such as standard uptake values in positron emission tomography, apparent diffusion coefficient in magnetic resonance, or radiomics imaging biomarkers. In addition, cells that indirectly present the immune status of tumor cells and/or their host could also potentially be used as biomarkers, eg, tumor-infiltrating lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. Though numerous biomarkers have been widely investigated, only estrogen and/or progesterone receptors and human epidermal growth factor receptor have been proven to be reliable biomarkers to predict the response to NAT. They are the only biomarkers recommended in several international guidelines. The other aforementioned biomarkers warrant further validation studies. Some multigene profiling assays that are commercially available, eg, Oncotype DX and MammaPrint, should be used with caution when extrapolated to NAT settings. A panel of combined multilevel biomarkers might be able to predict the response to NAT more robustly than individual biomarkers. To establish such a panel and its prediction model, reliable methods and extensive clinical validation are warranted.
Collapse
Affiliation(s)
- Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Ming Yang
- Shenzhen Jingmai Medical Scientific and Technique Company, Shenzhen, People's Republic of China
| | - Hongli Yang
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
| |
Collapse
|
21
|
Rampazzo E, Del Bianco P, Bertorelle R, Boso C, Perin A, Spiro G, Bergamo F, Belluco C, Buonadonna A, Palazzari E, Leonardi S, De Paoli A, Pucciarelli S, De Rossi A. The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients. Br J Cancer 2018; 118:878-886. [PMID: 29449673 PMCID: PMC5877438 DOI: 10.1038/bjc.2017.492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. METHODS 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT=T0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4-8 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. RESULTS Plasma levels of TERT were significantly lower at T2 (P<0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73-0.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10-4.11)-fold and 4.55 (95% CI 1.48-13.95)-fold higher, respectively, than those with undetectable plasma TERT levels. CONCLUSIONS Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy.
Collapse
Affiliation(s)
- Enrica Rampazzo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, Padova 35128, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistic Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Roberta Bertorelle
- Immunology and Molecular Oncology Unit, IOV- IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Caterina Boso
- Radiotherapy and Nuclear Medicine Unit, IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Alessandro Perin
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Giovanna Spiro
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Francesca Bergamo
- Medical Oncology Unit 1, IOV-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | - Claudio Belluco
- Department of Surgical Oncology, Centro di Riferimento Oncologico (CRO)-IRCCS, Aviano, Italy
| | | | | | - Sara Leonardi
- Medical Oncology Unit 1, IOV-IRCCS, Via Gattamelata 64, Padova 35128, Italy
| | | | - Salvatore Pucciarelli
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, Padova 35128, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, Padova 35128, Italy
- Immunology and Molecular Oncology Unit, IOV- IRCCS, Via Gattamelata 64, Padova 35128, Italy
| |
Collapse
|
22
|
Liu C, Yang Y, Wu Y. Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0201-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Guan Y, Mayba O, Sandmann T, Lu S, Choi Y, Darbonne WC, Leveque V, Ryner L, Humke E, Tam NW, Sujathasarma S, Cheung A, Bourgon R, Lackner MR, Wang Y. High-Throughput and Sensitive Quantification of Circulating Tumor DNA by Microfluidic-Based Multiplex PCR and Next-Generation Sequencing. J Mol Diagn 2017; 19:921-932. [DOI: 10.1016/j.jmoldx.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
|
24
|
Zarkavelis G, Boussios S, Papadaki A, Katsanos KH, Christodoulou DK, Pentheroudakis G. Current and future biomarkers in colorectal cancer. Ann Gastroenterol 2017; 30:613-621. [PMID: 29118555 PMCID: PMC5670280 DOI: 10.20524/aog.2017.0191] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), one of the leading causes of death among cancer patients, is a heterogeneous disease and is characterized by diversions in multiple molecular pathways throughout its evolutionary process. To date, specific mutations in RAS and RAF genes are tested in everyday clinical practice along with mismatch repair gene deficiency, serving either as prognostic or predictive biomarkers, providing information for patient risk stratification and the choice of appropriate therapy. However, ongoing studies are focusing on the potential role of recently discovered genetic and epigenetic alterations in the management of CRC patients and their potential prognostic or predictive value. To overcome the problem of tumor heterogeneity as well as the practical obstacles of access to tumor tissue, and to achieve real-time monitoring of disease and therapy efficacy, liquid biopsies constitute a novel technology worth exploring. CRC screening and management is entering a new era where molecular testing will be applied to genomic material extracted from easily accessible bodily fluids.
Collapse
Affiliation(s)
- George Zarkavelis
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Stergios Boussios
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Alexandra Papadaki
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Konstantinos H Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina (Konstantinos H. Katsanos, Dimitrios K. Christodoulou), Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina (Konstantinos H. Katsanos, Dimitrios K. Christodoulou), Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| |
Collapse
|
25
|
Bivona TG, Doebele RC. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 2017; 22:472-8. [PMID: 27149220 DOI: 10.1038/nm.4091] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy has the potential to dramatically improve survival in patients with cancer. However, complete and durable responses to targeted therapy are rare in individuals with advanced-stage solid cancers. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing therapeutic strategies to minimize or eliminate residual disease so that we can move from temporary to chronic control of disease, or a cure, for patients with advanced-stage solid cancers. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms that result in residual disease, to target and limit this disease reservoir.
Collapse
Affiliation(s)
- Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Robert C Doebele
- Department of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Kawada T, Takahashi H, Sakakura K, Ida S, Mito I, Toyoda M, Chikamatsu K. Circulating tumor cells in patients with head and neck squamous cell carcinoma: Feasibility of detection and quantitation. Head Neck 2017; 39:2180-2186. [DOI: 10.1002/hed.24893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/11/2016] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tomoyuki Kawada
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
- Department of Otolaryngology; Isesaki Municipal Hospital; Isesaki Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Koichi Sakakura
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Shota Ida
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Ikko Mito
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Minoru Toyoda
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology - Head and Neck Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| |
Collapse
|
27
|
Denis JA, Patroni A, Guillerm E, Pépin D, Benali-Furet N, Wechsler J, Manceau G, Bernard M, Coulet F, Larsen AK, Karoui M, Lacorte JM. Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery. Mol Oncol 2016; 10:1221-31. [PMID: 27311775 PMCID: PMC5423194 DOI: 10.1016/j.molonc.2016.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/13/2016] [Accepted: 05/29/2016] [Indexed: 01/24/2023] Open
Abstract
In colorectal cancer (CRC), KRAS mutations are a strong negative predictor for treatment with the EGFR-targeted antibodies cetuximab and panitumumab. Since it can be difficult to obtain appropriate tumor tissues for KRAS genotyping, alternative methods are required. Circulating tumor cells (CTCs) are believed to be representative of the tumor in real time. In this study we explored the capacity of a size-based device for capturing CTCs coupled with a multiplex KRAS screening assay using droplet digital PCR (ddPCR). We showed that it is possible to detect a mutant ratio of 0.05% and less than one KRAS mutant cell per mL total blood with ddPCR compared to about 0.5% and 50-75 cells for TaqMeltPCR and HRM. Next, CTCs were isolated from the blood of 35 patients with CRC at various stage of the disease. KRAS genotyping was successful for 86% (30/35) of samples with a KRAS codon 12/13 mutant ratio of 57% (17/30). In contrast, only one patient was identified as KRAS mutant when size-based isolation was combined with HRM or TaqMeltPCR. KRAS status was then determined for the 26 available formalin-fixed paraffin-embedded tumors using standard procedures. The concordance between the CTCs and the corresponding tumor tissues was 77% with a sensitivity of 83%. Taken together, the data presented here suggest that is feasible to detect KRAS mutations in CTCs from blood samples of CRC patients which are predictive for those found in the tumor. The minimal invasive nature of this procedure in combination with the high sensitivity of ddPCR might provide in the future an opportunity to monitor patients throughout the course of disease on multiple levels including early detection, prognosis, treatment and relapse as well as to obtain mechanistic insight with respect to tumor invasion and metastasis.
Collapse
Affiliation(s)
- Jérôme Alexandre Denis
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncology and Endocrine Biochemistry, Paris, France; Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Institut Universitaire de Cancérologie (IUC), Université Pierre et Marie Curie (UPMC), Sorbonne Universities, Paris, France.
| | - Alexia Patroni
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Digestive and Hepato-Pancreato-Biliary Surgery, Paris, France
| | - Erell Guillerm
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncogenetics and Molecular Angiogenetics, Paris, France
| | - Dominique Pépin
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncology and Endocrine Biochemistry, Paris, France
| | | | | | - Gilles Manceau
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Digestive and Hepato-Pancreato-Biliary Surgery, Paris, France
| | - Maguy Bernard
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncology and Endocrine Biochemistry, Paris, France
| | - Florence Coulet
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncogenetics and Molecular Angiogenetics, Paris, France
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Institut Universitaire de Cancérologie (IUC), Université Pierre et Marie Curie (UPMC), Sorbonne Universities, Paris, France
| | - Mehdi Karoui
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Digestive and Hepato-Pancreato-Biliary Surgery, Paris, France
| | - Jean-Marc Lacorte
- Sorbonne Universités, UPMC Univ. Paris 06, F-75005, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Oncology and Endocrine Biochemistry, Paris, France; INSERM, UMR_S 1166, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France
| |
Collapse
|
28
|
Vu BT, Tan Le D, Van Pham P. Liquid biopsies: tumour diagnosis and treatment monitoring. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Zhao H, Nolley R, Chan AMW, Rankin EB, Peehl DM. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation. Cancer Biol Ther 2016; 18:863-871. [PMID: 27715452 DOI: 10.1080/15384047.2016.1219816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MET plays an important role in the development and progression of papillary renal cell carcinoma (pRCC). Evaluation of efficacy of MET inhibitors against pRCC has been hampered by limited preclinical models depicting MET abnormalities. We established a new patient-derived xenograft (PDX) model of pRCC carrying an activating mutation of MET and tested the ability of cabozantinib, an inhibitor of receptor tyrosine kinases including MET, to inhibit tumor growth and metastasis. Precision-cut, thin tissue slices from a pRCC specimen obtained by nephrectomy were implanted under the renal capsule of RAG2-/-γC-/- mice to establish first generation TSG-RCC-030. Histologic and genetic fidelity and metastatic potential of this model were characterized by immunohistochemistry, direct DNA sequencing and quantitative polymerase chain reaction (qPCR). The effect of cabozantinib on tumor growth and metastasis was evaluated. Whether measurements of circulating tumor DNA (ctDNA) by allele-specific qPCR could be used as a biomarker of tumor growth and response to therapy was determined. Subrenal and subcutaneous tumor grafts showed high take rates and metastasized to the lung. Both primary tumors and metastases expressed typical markers of pRCC and carried the same activating MET mutation as the parental tumor. Cabozantinib treatment caused striking tumor regression and inhibited lung metastasis in TSG-RCC-030. Plasma ctDNA levels correlated with tumor volume in control mice and changed in response to cabozantinib treatment. TSG-RCC-030 provides a realistic preclinical model to better understand the development and progression of pRCC with MET mutation and accelerate the development of new therapies for pRCC.
Collapse
Affiliation(s)
- Hongjuan Zhao
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| | - Rosalie Nolley
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| | - Andy M W Chan
- b Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA
| | - Erinn B Rankin
- b Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA
| | - Donna M Peehl
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
30
|
Ewaisha R, Gawryletz CD, Anderson KS. Crucial considerations for pipelines to validate circulating biomarkers for breast cancer. Expert Rev Proteomics 2016; 13:201-11. [PMID: 26653344 DOI: 10.1586/14789450.2016.1132170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite decades of progress in breast imaging, breast cancer remains the second most common cause of cancer mortality in women. The rapidly proliferative breast cancers that are associated with high relapse rates and mortality frequently present in younger women, in unscreened individuals, or in the intervals between screening mammography. Biomarkers exist for monitoring metastatic disease, such as CEA, CA27.29 and CA15-3, but there are no circulating biomarkers clinically available for early detection, prognosis, or monitoring for clinical relapse. There has been significant progress in the discovery of potential circulating biomarkers, including proteins, autoantibodies, nucleic acids, exosomes, and circulating tumor cells, but the vast majority of these biomarkers have not progressed beyond initial research discovery, and none have yet been approved for clinical use in early stage disease. Here, the authors review the crucial considerations of developing pipelines for the rapid evaluation of circulating biomarkers for breast cancer.
Collapse
Affiliation(s)
- Radwa Ewaisha
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Chelsea D Gawryletz
- b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| | - Karen S Anderson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA.,b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| |
Collapse
|