1
|
Hampe L, Daumoine S, Limagne E, Roussot N, Borsotti F, Vincent J, Ilie S, Truntzer C, Ghiringhelli F, Thibaudin M. Effect of radiochemotherapy on peripheral immune response in glioblastoma. Cancer Immunol Immunother 2024; 73:133. [PMID: 38753169 PMCID: PMC11098987 DOI: 10.1007/s00262-024-03722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a primary brain tumor with a dismal prognosis, often resistant to immunotherapy and associated with immune suppression. This study aimed to assess the impact of steroids and Stupp-regimen treatment on peripheral blood immune parameters in GBM patients and their association with outcomes. METHODS Using cytometry panels and bioplex assays, we analyzed the immune phenotype and serum cytokines of 54 GBM patients and 21 healthy volunteers. RESULTS GBM patients exhibited decreased lymphoid cell numbers (CD4, CD8 T cells, NKT cells) with heightened immune checkpoint expression and increased myeloid cell numbers (especially neutrophils), along with elevated pro-inflammatory cytokine levels. Steroid use decreased T and NK cell numbers, while radio-chemotherapy led to decreased lymphoid cell numbers, increased myeloid cell numbers, and heightened immune checkpoint expression. Certain immune cell subsets were identified as potential outcome predictors. CONCLUSION Overall, these findings shed light on the peripheral immune landscape in GBM, emphasizing the immunosuppressive effects of treatment. Baseline immune parameters may serve as prognostic indicators for treatment response.
Collapse
Affiliation(s)
- Léa Hampe
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Susy Daumoine
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Emeric Limagne
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Nicolas Roussot
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - François Borsotti
- Department of Neurosurgery, University Hospital François Mitterrand, Dijon, France
| | - Julie Vincent
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Sylvia Ilie
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- University Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - François Ghiringhelli
- University Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| | - Marion Thibaudin
- University Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, 1 rue Professeur Marion, 21000, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| |
Collapse
|
2
|
Luo X, Zeng M. Combination low-dose cyclophosphamide with check-point blockade and ionizing radiation promote an abscopal effect in mouse models of melanoma. J Cancer Res Ther 2024; 20:718-725. [PMID: 38687945 DOI: 10.4103/jcrt.jcrt_616_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024]
Abstract
PURPOSE The complex strategy of hypo-fractionated radiotherapy (HFRT) in combination with an immune checkpoint inhibitor (ICI) can stimulate a potential systemic antitumor response; however, the abscopal effect is always precluded by the tumor microenvironment, which may limit sufficient T-cell infiltration of distant nonirradiated tumors for certain kinds of inhibitory factors, such as regulatory T-cells (Tregs). Additionally, low-dose cyclophosphamide (LD-CYC) can specifically kill regulatory Tregs and strongly synergize antigen-specific immune responses, which could promote an abscopal effect. MATERIALS AND METHODS We explored whether a triple regimen consisting of HFRT, ICI, and LD-CYC could achieve a better systemic antitumor response in bilateral mouse tumor models. RESULT Our data demonstrate that LD-CYC combined with HFRT and antiprogrammed cell death ligand 1 (PDL-1) therapy could enhance the abscopal effect than only HFRT/antiPDL-1 or HFRT alone. Surprisingly, repeat CYC doses cannot further restrain tumor proliferation but can prolong murine overall survival, as revealed by the major pathologic responses. These results are associated with increased CD8 + effector T-cell infiltration, although LD-CYC did not upregulate PDL-1 expression in the tumor. CONCLUSIONS Compared with traditional strategies, for the first time, we demonstrated that a triple treatment strategy remarkably increased the number of radiation-induced tumor-infiltrating CD8 + T-cells, effectively decreasing infiltrating Tregs, and promoting an abscopal effect. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Cyclophosphamide/pharmacology
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/therapeutic use
- Mice
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/radiation effects
- Tumor Microenvironment/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/radiation effects
- Female
- Combined Modality Therapy
- Disease Models, Animal
- Melanoma, Experimental/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/radiotherapy
- Radiation, Ionizing
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Antineoplastic Agents, Alkylating/administration & dosage
- Mice, Inbred C57BL
- Humans
- Cell Line, Tumor
Collapse
Affiliation(s)
- Xing Luo
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Clinical Medical School, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Department of Oncology, Key Clinical Specialty of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS NANO 2022; 16:19691-19721. [PMID: 36378555 DOI: 10.1021/acsnano.2c07286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
Collapse
|
5
|
Tan S, Day D, Nicholls SJ, Segelov E. Immune Checkpoint Inhibitor Therapy in Oncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:579-597. [PMID: 36636451 PMCID: PMC9830229 DOI: 10.1016/j.jaccao.2022.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a major class of immuno-oncology therapeutics that have significantly improved the prognosis of various cancers, both in (neo)adjuvant and metastatic settings. Unlike other conventional therapies, ICIs elicit antitumor effects by enhancing host immune systems to eliminate cancer cells. There are 3 approved ICI classes by the U.S. Food and Drug Administration: inhibitors targeting cytotoxic T lymphocyte associated antigen 4, programmed death 1/programmed death-ligand 1, and lymphocyte-activation gene 3, with many more in development. ICIs are commonly associated with distinct toxicities, known as immune-related adverse events, which can arise during treatment or less frequently be of late onset, usually relating to excessive activation of the immune system. Acute cardiovascular immune-related adverse events such as myocarditis are rare; however, data suggesting chronic cardiovascular sequelae are emerging. This review presents the current landscape of ICIs in oncology, with a focus on important aspects relevant to cardiology.
Collapse
Affiliation(s)
- Sean Tan
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia,Monash Heart, Monash Health, Clayton, Victoria, Australia,Address for correspondence: Dr Sean Tan, Victorian Heart Institute, Monash University, Wellington Road, Victoria 3800, Australia. @_SeanXTan
| | - Daphne Day
- School of Clinical Sciences, Monash Health, Monash University, Melbourne, Victoria, Australia,Department of Oncology, Monash Health, Clayton, Victoria, Australia
| | - Stephen J. Nicholls
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia,Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Eva Segelov
- School of Clinical Sciences, Monash Health, Monash University, Melbourne, Victoria, Australia,Department of Oncology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
6
|
van der Woude LL, Gorris MAJ, Wortel IMN, Creemers JHA, Verrijp K, Monkhorst K, Grünberg K, van den Heuvel MM, Textor J, Figdor CG, Piet B, Theelen WSME, de Vries IJM. Tumor microenvironment shows an immunological abscopal effect in patients with NSCLC treated with pembrolizumab-radiotherapy combination. J Immunother Cancer 2022; 10:jitc-2022-005248. [PMID: 36252995 PMCID: PMC9577911 DOI: 10.1136/jitc-2022-005248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Immunotherapy is currently part of the standard of care for patients with advanced-stage non-small cell lung cancer (NSCLC). However, many patients do not respond to this treatment, therefore combination strategies are being explored to increase clinical benefit. The PEMBRO-RT trial combined the therapeutic programmed cell death 1 (PD-1) antibody pembrolizumab with stereotactic body radiation therapy (SBRT) to increase the overall response rate and study the effects on the tumor microenvironment (TME). Methods Here, immune infiltrates in the TME of patients included in the PEMBRO-RT trial were investigated. Tumor biopsies of patients treated with pembrolizumab alone or combined with SBRT (a biopsy of the non-irradiated site) at baseline and during treatment were stained with multiplex immunofluorescence for CD3, CD8, CD20, CD103 and FoxP3 for lymphocytes, pan-cytokeratin for tumors, and HLA-ABC expression was determined. Results The total number of lymphocytes increased significantly after 6 weeks of treatment in the anti-PD-1 group (fold change: 1.87, 95% CI: 1.06 to 3.29) and the anti-PD-1+SBRT group (fold change: 2.29, 95% CI: 1.46 to 3.60). The combination of SBRT and anti-PD-1 induced a 4.87-fold increase (95% CI: 2.45 to 9.68) in CD103+ cytotoxic T-cells 6 weeks on treatment and a 2.56-fold increase (95% CI: 1.03 to 6.36) after anti-PD-1 therapy alone. Responders had a significantly higher number of lymphocytes at baseline than non-responders (fold difference 1.85, 95% CI: 1.04 to 3.29 for anti-PD-1 and fold change 1.93, 95% CI: 1.08 to 3.44 for anti-PD-1+SBRT). Conclusion This explorative study shows that that lymphocyte infiltration in general, instead of the infiltration of a specific lymphocyte subset, is associated with response to therapy in patients with NSCLC. Furthermore, anti-PD-1+SBRT combination therapy induces an immunological abscopal effect in the TME represented by a superior infiltration of cytotoxic T cells as compared with anti-PD-1 monotherapy.
Collapse
Affiliation(s)
- Lieke L van der Woude
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands,Department of Pathology, Radboudumc, Nijmegen, The Netherlands,Division of Immunotherapy, Oncode Institute, Radboudumc, Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands,Division of Immunotherapy, Oncode Institute, Radboudumc, Nijmegen, the Netherlands
| | - Inge M N Wortel
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jeroen H A Creemers
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands,Division of Immunotherapy, Oncode Institute, Radboudumc, Nijmegen, the Netherlands
| | - Kiek Verrijp
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands,Department of Pathology, Radboudumc, Nijmegen, The Netherlands,Division of Immunotherapy, Oncode Institute, Radboudumc, Nijmegen, the Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Johannes Textor
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands,Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Berber Piet
- Department of Pulmonary Diseases, Radboudumc, Nijmegen, The Netherlands
| | | | | |
Collapse
|
7
|
Patil S, Reedy JL, Scroggins BT, White AO, Kwon S, Shankavaram U, López-Coral A, Chung EJ, Citrin DE. Senescence-associated tumor growth is promoted by 12-Lipoxygenase. Aging (Albany NY) 2022; 14:1068-1086. [PMID: 35158337 PMCID: PMC8876904 DOI: 10.18632/aging.203890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Radiation therapy is a commonly used treatment modality for cancer. Although effective in providing local tumor control, radiation causes oxidative stress, inflammation, immunomodulatory and mitogenic cytokine production, extracellular matrix production, and premature senescence in lung parenchyma. The senescence associated secretory phenotype (SASP) can promote inflammation and stimulate alterations in the surrounding tissue. Therefore, we hypothesized that radiation-induced senescent parenchymal cells in irradiated lung would enhance tumor growth. Using a murine syngeneic tumor model of melanoma and non-small cell lung cancer lung metastasis, we demonstrate that radiation causes a significant increase in markers of premature senescence in lung parenchyma within 4 to 8 weeks. Further, injection of B16F0 (melanoma) or Lewis Lung carcinoma (epidermoid lung cancer) cells at these time points after radiation results in an increase in the number and size of pulmonary tumor nodules relative to unirradiated mice. Treatment of irradiated mice with a senolytic agent (ABT-737) or agents that prevent senescence (rapamycin, INK-128) was sufficient to reduce radiation-induced lung parenchymal senescence and to mitigate radiation-enhanced tumor growth. These agents abrogated radiation-induced expression of 12-Lipoxygenase (12-LOX), a molecule implicated in several deleterious effects of senescence. Deficiency of 12-LOX prevented radiation-enhanced tumor growth. Together, these data demonstrate the pro-tumorigenic role of radiation-induced senescence, introduces the dual TORC inhibitor INK-128 as an effective agent for prevention of radiation-induced normal tissue senescence, and identifies senescence-associated 12-LOX activity as an important component of the pro-tumorigenic irradiated tissue microenvironment. These studies suggest that combining senotherapeutic agents with radiotherapy may decrease post-therapy tumor growth.
Collapse
Affiliation(s)
- Shilpa Patil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfonso López-Coral
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Ren J, Li L, Yu B, Xu E, Sun N, Li X, Xing Z, Han X, Cui Y, Wang X, Zhang X, Wang G. Extracellular vesicles mediated proinflammatory macrophage phenotype induced by radiotherapy in cervical cancer. BMC Cancer 2022; 22:88. [PMID: 35062905 PMCID: PMC8781113 DOI: 10.1186/s12885-022-09194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Background Radiotherapy is a highly effective treatment for cervical cancer. Recent studies focused on the radiotherapy induced anti-tumor immunity. Whether tumor-derived extracellular vesicles (EVs) play roles in radiotherapy induced tumor associated macrophage (TAM) polarization remains unclear. Materials and Methods This study analysed the phenotype of macrophages in cancer tissue and peripheral blood of cervical cancer patients using flow cytometry analysis. The role of EVs from plasma of post-irradiated patients on M2-like transformed macrophages was assessed. The M1- and M2-like macrophages were assessed by expression of cell surface markers (CCR7, CD163) and intracellular cytokines (IL-10, TNFα and iNOS). The capacity of phagocytosis was assessed by PD-1 expression and phagocytosis of pHrodo Red E. coli bioparticles. Results Our results demonstrated that radiotherapy of cervical cancer induced an increase in the number of TAMs and a change in their subtype from the M2-like to the M1-like phenotype (increased expression of CCR7 and decreased expression of CD163). The EVs from plasma of post-irradiated patients facilitated the M2-like to the M1-like phenotype transition (increased expression of CCR7, TNFα and iNOS, and decreased expression of CD163 and IL-10) and increased capacity of phagocytosis (decreased PD-1 expression and increased phagocytosis of pHrodo Red E. coli bioparticles). Conclusions Our data demonstrated that irradiation in cervical cancer patients facilitated a proinflammatory macrophage phenotype which could eventually able to mediate anti-tumor immune responses. Our findings highlight the importance of EV in the crosstalk of tumor cells and TAM upon irradiation, which potentially leading to an increased inflammatory response to cancer lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09194-z.
Collapse
|
9
|
Mollica V, Santoni M, Di Nunno V, Cimadamore A, Cheng L, Lopez-Beltran A, Battelli N, Montironi R, Massari F. Immunotherapy and Radiation Therapy in Renal Cell Carcinoma. Curr Drug Targets 2021; 21:1463-1475. [PMID: 32160846 DOI: 10.2174/1389450121666200311121540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The management of renal cell carcinoma is rapidly evolving and immunotherapy, mostly consisting of immune checkpoint inhibitors, is revolutionizing the treatment scenario of metastatic patients. Novel fractionation schedules of radiotherapy, consisting of high doses in few fractions, can overcome the radioresistance of this tumor. Localized radiotherapy is associated with a systemic effect, known as the abscopal effect. This effect mediated by the immune system can be enhanced associating radiotherapy with immunotherapy. OBJECTIVE In this review, we explore the role of radiotherapy and immunotherapy in RCC, the rationale of combining these strategies and the on-going clinical trials investigating combinations of these two treatment modalities. CONCLUSION Combining immunotherapy and radiotherapy has a strong rationale and pre-clinical studies support their association because it can overcome the immunosuppression of the tumor microenvironment and increase the anti-tumor immune response. More clinical evidence, deriving from onclinical trials, are needed to prove the efficacy and safety of these treatments combined.
Collapse
Affiliation(s)
- Veronica Mollica
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
10
|
Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of Radiotherapy-Induced Immunogenic Cell Death. Cells 2021; 10:cells10040930. [PMID: 33920544 PMCID: PMC8073519 DOI: 10.3390/cells10040930] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) can induce an immunogenic variant of regulated cell death that can initiate clinically relevant tumor-targeting immune responses. Immunogenic cell death (ICD) is accompanied by the exposure and release of damage-associated molecular patterns (DAMPs), chemokine release, and stimulation of type I interferon (IFN-I) responses. In recent years, intensive research has unraveled major mechanistic aspects of RT-induced ICD and has resulted in the identification of immunogenic factors that are released by irradiated tumor cells. However, so far, only a limited number of studies have searched for potential biomarkers that can be used to predict if irradiated tumor cells undergo ICD that can elicit an effective immunogenic anti-tumor response. In this article, we summarize the available literature on potential biomarkers of RT-induced ICD that have been evaluated in cancer patients. Additionally, we discuss the clinical relevance of these findings and important aspects that should be considered in future studies.
Collapse
Affiliation(s)
- Rianne D. W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
- Correspondence: ; Tel.: +31-(0)43-388-1585
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands;
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
| |
Collapse
|
11
|
Delafoy A, Uguen A, Lemasson G, Conan-Charlet V, Pradier O, Lucia F, Schick U. PD-L1 expression in recurrent head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:343-351. [PMID: 33796940 DOI: 10.1007/s00405-021-06777-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the Programmed Cell Death Ligand (PD-L1) expression at diagnosis and relapse in patients with head and neck carcinoma (HNSCC) treated with radio(chemo)therapy. METHODS PD-L1 immunohistochemistry was performed in tumor cells (TC) and immune cells (IC) in 44 patients and scored as 0 = 0%, 1 = < 5%, 2 = 6-49% or 3 = ≥ 50% cells. RESULTS PD-L1 expression on TC before RT was scored as 0, 1, 2 and 3 in 28, 4, 8 and 4 patients, respectively. In 10 patients, IC did not show any PD-L1 expression; while in 8, 16, and 10 patients, PD-L1 expression was scored 1, 2 and 3, respectively. At relapse, 7/36 patients had a PD-L1 expression positivation in TC, while the opposite was observed in 6 patients. Overall, survival at 2 years was higher in patients with PD-L1 expression (90% versus 62.5%, p = 0.032). CONCLUSION PD-L1 expression may vary throughout the course of the disease. A re-evaluation of PD-L1 expression on biopsies at the time of recurrence should be recommended.
Collapse
Affiliation(s)
- Alice Delafoy
- Radiation Oncology Department, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France
| | - Arnaud Uguen
- Department of Pathology, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France
| | - Gilles Lemasson
- Department of Pathology, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France
| | - Virginie Conan-Charlet
- Department of Pathology, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| | - François Lucia
- Radiation Oncology Department, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France. .,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France.
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital Morvan, 2 avenue Foch, 29200, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| |
Collapse
|
12
|
Ferrari C, Maggialetti N, Masi T, Nappi AG, Santo G, Niccoli Asabella A, Rubini G. Early Evaluation of Immunotherapy Response in Lymphoma Patients by 18F-FDG PET/CT: A Literature Overview. J Pers Med 2021; 11:217. [PMID: 33803667 PMCID: PMC8002936 DOI: 10.3390/jpm11030217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy is a promising therapeutic strategy both for solid and hematologic tumors, such as in Hodgkin (HL) and non-Hodgkin lymphoma (NHL). In particular, immune-checkpoint inhibitors, such as nivolumab and pembrolizumab, are increasingly used for the treatment of refractory/relapsed HL. At the same time, evidence of chimeric antigen receptor (CAR)-T-cell immunotherapy efficacy mostly in NHL is growing. In this setting, the challenge is to identify an appropriate imaging method to evaluate immunotherapy response. The role of 18F-Fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT), especially in early evaluation, is under investigation in order to guide therapeutic strategies, taking into account the possible atypical responses (hyperprogression and pseudoprogression) and immune-related adverse events that could appear on PET images. Herein, we aimed to present a critical overview about the role of 18F-FDG PET/CT in evaluating treatment response to immunotherapy in lymphoma patients.
Collapse
Affiliation(s)
- Cristina Ferrari
- Section of Nuclear Medicine, DIM, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; (T.M.); (A.G.N.); (G.S.); (G.R.)
| | - Nicola Maggialetti
- Section of Radiodiagnostic, DSMBNOS, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Tamara Masi
- Section of Nuclear Medicine, DIM, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; (T.M.); (A.G.N.); (G.S.); (G.R.)
| | - Anna Giulia Nappi
- Section of Nuclear Medicine, DIM, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; (T.M.); (A.G.N.); (G.S.); (G.R.)
| | - Giulia Santo
- Section of Nuclear Medicine, DIM, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; (T.M.); (A.G.N.); (G.S.); (G.R.)
| | | | - Giuseppe Rubini
- Section of Nuclear Medicine, DIM, University Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; (T.M.); (A.G.N.); (G.S.); (G.R.)
| |
Collapse
|
13
|
Lei H, Shi M, Xu H, Bai S, Xiong X, Wei Q, Yang L. Combined Treatment of Radiotherapy and Immunotherapy for Urological Malignancies: Current Evidence and Clinical Considerations. Cancer Manag Res 2021; 13:1719-1731. [PMID: 33658847 PMCID: PMC7917304 DOI: 10.2147/cmar.s288337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023] Open
Abstract
Although it has always been believed that radiation has immunosuppressive effects, more and more preclinical and clinical trials have shown that the combination of radiotherapy and immunotherapy has a potential synergistic effect to treat cancers including urological malignancies. When radiotherapy is combined with immunotherapy, improved prognosis has been observed in different urinary tumors. However, there is no standard treatment, such as the optimal dose/fractionation and the sequence of immunotherapy and radiotherapy. In this review, we discussed the effects of radiotherapy on the cancer immune system and emphasized the synergy of radiotherapy combined with immunotherapy. Although it has significantly improved the prognosis of tumors, there are still some unresolved questions about how to best use this combination in clinical practice. Ongoing trials will provide further information on the interaction of radiotherapy combined with immunotherapy, and are expected to guide clinical practice and improve clinical outcomes.
Collapse
Affiliation(s)
- Haoran Lei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Shi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengjiang Bai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xingyu Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun 2021; 12:145. [PMID: 33420008 PMCID: PMC7794559 DOI: 10.1038/s41467-020-20243-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Radiation therapy can potentially induce immunogenic cell death, thereby priming anti-tumor adaptive immune responses. However, radiation-induced systemic immune responses are very rare and insufficient to meet clinical needs. Here, we demonstrate a synergetic strategy for boosting radiation-induced immunogenic cell death by constructing gadolinium-hemin based nanoscale coordination polymers to simultaneously perform X-ray deposition and glutathione depletion. Subsequently, immunogenic cell death is induced by sensitized radiation to potentiate checkpoint blockade immunotherapies against primary and metastatic tumors. In conclusion, nanoscale coordination polymers-sensitized radiation therapy exhibits biocompatibility and therapeutic efficacy in preclinical cancer models, and has the potential for further application in cancer radio-immunotherapy.
Collapse
|
15
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
16
|
Huo M, Zhang Y, Chen Z, Zhang S, Bao Y, Li T. Tumor microenvironment characterization in head and neck cancer identifies prognostic and immunotherapeutically relevant gene signatures. Sci Rep 2020; 10:11163. [PMID: 32636465 PMCID: PMC7341839 DOI: 10.1038/s41598-020-68074-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
The tumor microenvironment (TME) is of great clinical significance for predicting the therapeutic effect of tumors. Nonetheless, there was no systematic analysis of cellular interactions in the TME of head and neck cancer (HNSC). This study used gene expression data from 816 patients with HNSC to analyze the scores of 22 immune cells. On this basis, we have established a novel TMEscore-based prognostic risk model. The relationship between TMEscore and clinical and genomic characteristics was analyzed. The sample was divided into risk-H and risk-L groups based on the prognosis risk model of TMEscore, with significant differences in overall survival between the two groups (log rank p < 0.001). In terms of clinical features, the TMEscore is closely related to the T staging, Grade, and HPV. As for genomic characteristics, the genomic features of the Risk-H samples are a low expression of immune-related genes and high-frequency mutations of TP53 and CEP152. This model was validated in an external test set, in which the prognosis for Risk-H group and Risk-L group was also significantly different (log rank p = 0.017). A quantitative method of TME infiltration pattern is established, which may be a potential predictor of HNSC prognosis.
Collapse
Affiliation(s)
- Mengqi Huo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Zhang
- Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050011, China
| | - Zhong Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Suxin Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Tianke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
17
|
Marinkovic T, Marinkovic D. Biological mechanisms of ectopic lymphoid structure formation and their pathophysiological significance. Int Rev Immunol 2020; 40:255-267. [PMID: 32631119 DOI: 10.1080/08830185.2020.1789620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ectopic lymphoid structures (ELS) or tertiary lymphoid organs are structures with the organization similar to the one of secondary lymphoid organs, formed in non-lymphoid tissues. They are considered to be an important site for the lymphocytic physiological and pathological role in conditions such are chronic infections, autoimmune diseases, cancer, and allograft rejection. Although similar to the secondary lymphoid tissues, the initiation of ELS formation is not preprogramed and requires chronic inflammation, expression of homeostatic chemokines, and lymphotoxin beta receptor activation. Importantly, while ELS formation may be considered beneficiary in antimicrobial and antitumor immunity, the persistence of these active lymphoid structures within the tissue increase the chance for development of autoimmunity and lymphoma. This paper is providing an overview of biological mechanisms involved in ELS formation, as well as the overview of the pathophysiological role of these structures. In addition, the paper discusses the possibility to therapeutically target ELS formation, bearing in mind their bivalent nature and role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Department of Medical Sciences, Western Serbia Academy of Applied Sciences, Uzice, Serbia
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
19
|
Dutoit V, Philippin G, Widmer V, Marinari E, Vuilleumier A, Migliorini D, Schaller K, Dietrich PY. Impact of Radiochemotherapy on Immune Cell Subtypes in High-Grade Glioma Patients. Front Oncol 2020; 10:89. [PMID: 32117743 PMCID: PMC7034105 DOI: 10.3389/fonc.2020.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/17/2020] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is a dreadful disease with very poor prognosis, median overall survival being <2 years despite standard-of-care treatment. This has led to the development of alternative strategies, among which immunotherapy is being actively tested. In particular, many clinical trials of therapeutic vaccination using peptides or tumor cells are ongoing. A major issue in implementing therapeutic vaccines in patients with high-grade glioma is that immune responses have to be elicited in the context of immunosuppressive treatments. Indeed, radiotherapy, chemotherapy, and steroids, which are part of the standard of care for patients with glioblastoma, are known to deplete leukocytes. Whether lymphopenia is beneficial or detrimental to elicitation of efficient immune responses is still debated. Here, in order to determine the impact of standard radiochemotherapy on immune cell subsets, we analyzed the phenotype and function of immune populations in 25 patients with high-grade glioma along concomitant radiochemotherapy and adjuvant chemotherapy with temozolomide. Thirteen healthy individuals were studied along the same period. We show that absolute T and B cell counts are reduced upon concomitant radiochemotherapy. Importantly, T cell counts were not restored long-term after discontinuation of treatment. In addition, the percentage of T regulatory cells among CD4 T cells was increased during the same period and was not decreased upon treatment discontinuation. Finally, we show that the ability of T cells to proliferate is transiently reduced after concomitant radiochemotherapy but is restored at the time of adjuvant TMZ cycles. Although not experimentally validated, transient reduction in proliferation associated with strong lymphopenia during radiochemotherapy may suggest that vaccine-induced T cell stimulation would be suboptimal in that period and that therapeutic vaccination should be performed outside radiochemotherapy administration. In addition, strategies aiming at depleting Treg cells should be implemented in future trials.
Collapse
Affiliation(s)
- Valérie Dutoit
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | - Géraldine Philippin
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | - Valérie Widmer
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | - Eliana Marinari
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | | | - Denis Migliorini
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Department of Clinical Neurosciences, Division of Neurosurgery, Geneva University Hospital, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Laboratory of Tumor Immunology and Center of Oncology, Geneva University Hospital, Geneva, Switzerland.,Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
20
|
Long B, Qin L, Zhang B, Li Q, Wang L, Jiang X, Ye H, Zhang G, Yu Z, Jiao Z. CAR T‑cell therapy for gastric cancer: Potential and perspective (Review). Int J Oncol 2020; 56:889-899. [PMID: 32319561 DOI: 10.3892/ijo.2020.4982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed digestive malignancies and is the third leading cause of cancer‑associated death worldwide. Delayed diagnosis and poor prognosis indicate the urgent need for new therapeutic strategies. The success of chimeric antigen receptor (CAR) T‑cell therapy for chemotherapy‑refractory hematological malignancies has inspired the development of a similar strategy for GC treatment. Although using CAR T‑cells against GC is not without difficulty, results from preclinical studies remain encouraging. The current review summarizes relevant preclinical studies and ongoing clinical trials for the use of CAR T‑cells for GC treatment and investigates possible toxicities, as well as current clinical experiences and emerging approaches. With a deeper understanding of the tumor microenvironment, novel target epitopes and scientific‑technical progress, the potential of CAR T‑cell therapy for GC is anticipated in the near future.
Collapse
Affiliation(s)
- Bo Long
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Boya Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiong Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Long Wang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiangyan Jiang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Genyuan Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zeyuan Yu
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zuoyi Jiao
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
21
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
22
|
Iijima K, Oozeki M, Ikeda K, Honda H, Ishibashi H, Yamaoka M, Fujieda S, Saitoh H, Goto M, Araki M, Amagai K. A case of small bowel adenocarcinoma wherein nivolumab conferred temporary benefit in disease control. Clin J Gastroenterol 2019; 13:372-376. [PMID: 31701367 DOI: 10.1007/s12328-019-01064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Small bowel adenocarcinomas are rare. There is no definite consensus as to whether they should be treated in a manner similar to gastric or to colon cancer. We report the case of a young woman with a primary jejunal adenocarcinoma, bilateral ovary metastases, and peritoneal dissemination. First- and second-line chemotherapy for the gastric cancer failed. She was then treated with the immune checkpoint inhibitor nivolumab and had temporary improvement in her condition. To the best of our knowledge, this is the first case wherein nivolumab has been used to treat small bowel adenocarcinoma.
Collapse
Affiliation(s)
- Kazutaka Iijima
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan.
- Department of Gastroenterology, Rumoi Municipal Hospital, Hokkaido, Japan.
| | - Mitsuharu Oozeki
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Kaori Ikeda
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Hiroyuki Honda
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Hajime Ishibashi
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Masaharu Yamaoka
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Shinji Fujieda
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Hitoaki Saitoh
- Department of Diagnostic Pathology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Mitsuhide Goto
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Masahiro Araki
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| | - Kenji Amagai
- Department of Gastroenterology, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama-City, Ibaraki, 309-1793, Japan
| |
Collapse
|
23
|
Ni K, Lan G, Chan C, Duan X, Guo N, Veroneau SS, Weichselbaum RR, Lin W. Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers. MATTER 2019; 1:1331-1353. [PMID: 32832885 DOI: 10.1016/j.matt.2019.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Checkpoint blockade immunotherapy (CBI) is effective in promoting a systemic immune response against some metastatic tumors. The reliance on the pre-existing immune environment of the tumor, however, limits the efficacy of CBI on a broad spectrum of cancers. Herein, we report the design of a novel nanoscale metal-organic layer (nMOL), Hf-MOL, for effective treatment of local tumors by enabling radiotherapy-radiodynamic therapy (RT-RDT) with low-dose X-rays and, when in combination with an immune checkpoint inhibitor, regression of metastatic tumors by re-activating anti-tumor immunity and inhibiting myeloid-derived suppressor cells. Owing to the reduced dimensionality, nMOLs allow facile diffusion of reactive oxygen species and exhibit superior RT-RDT effects. The synergy of Hf-MOL-enabled RT-RDT immune activation and anti-programmed death ligand 1 (anti-PD-L1) CBI led to robust abscopal effects on a series of bilateral models of colon, head and neck, and breast cancers and significant anti-metastatic effects on an orthotopic model of breast cancer.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel S Veroneau
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Karam SD, Raben D. Radioimmunotherapy for the treatment of head and neck cancer. Lancet Oncol 2019; 20:e404-e416. [DOI: 10.1016/s1470-2045(19)30306-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
|
25
|
Shen H, Yang ESH, Conry M, Fiveash J, Contreras C, Bonner JA, Shi LZ. Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies. Genes Dis 2019; 6:232-246. [PMID: 32042863 PMCID: PMC6997608 DOI: 10.1016/j.gendis.2019.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint blockade therapies (ICBs) are a prominent breakthrough in cancer immunotherapy in recent years (named the 2013 “Breakthrough of the Year” by the Science magazine). Thus far, FDA-approved ICBs primarily target immune checkpoints CTLA-4, PD-1, and PD-L1. Notwithstanding their impressive long-term therapeutic benefits, their efficacy is limited to a small subset of cancer patients. In addition, ICBs induce inadvertent immune-related adverse events (irAEs) and can be costly for long-term use. To overcome these limitations, two strategies are actively being pursued: identification of predictive biomarkers for clinical response to ICBs and multi-pronged combination therapies. Biomarkers will allow clinicians to practice a precision medicine approach in ICBs (biomarker-based patient selection) such as treating triple-negative breast cancer patients that exhibit PD-L1 staining of tumor-infiltrating immune cells in ≥1% of the tumor area with nanoparticle albumin-bound (nab)–paclitaxel plus anti-PD-L1 and treating patients of MSI-H or MMR deficient unresectable or metastatic solid tumors with pembrolizumab (anti-PD-1). Importantly, the insights gained from these biomarker studies can guide rational combinatorial strategies such as CDK4/6 inhibitor/fractionated radiotherapy/HDACi in conjunction with ICBs to maximize therapeutic benefits. Further, with the rapid technological advents (e.g., ATCT-Seq), we predict more reliable biomarkers will be identified, which in turn will inspire more promising combination therapies.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Eddy Shih-Hsin Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Marty Conry
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Medical Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - John Fiveash
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Carlo Contreras
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Surgical Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - James A Bonner
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Department of Microbiology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.,Program in Immunology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| |
Collapse
|
26
|
Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, Derangere V, Laurent PA, Thibaudin M, Fumet JD, Crehange G, Ghiringhelli F, Mirjolet C. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer 2019; 7:160. [PMID: 31238970 PMCID: PMC6593525 DOI: 10.1186/s40425-019-0634-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE/OBJECTIVE Radiotherapy (RT) induces an immunogenic antitumor response, but also some immunosuppressive barriers. It remains unclear how different fractionation protocols can modulate the immune microenvironment. Clinical studies are ongoing to evaluate immune checkpoint inhibitors (ICI) in association with RT. However, only few trials aim to optimize the RT fractionation to improve efficacy of these associations. Here we sought to characterize the effect of different fractionation protocols on immune response with a view to associating them with ICI. MATERIALS/METHODS Mice bearing subcutaneous CT26 colon tumors were irradiated using a SARRP device according to different radiation schemes with a same biologically effective dose. Mice were monitored for tumor growth. The radiation immune response (lymphoid, myeloid cells, lymphoid cytokines and immune checkpoint targets) was monitored by flow cytometry at different timepoints after treatment and by RNA sequencing analysis (RNAseq). The same radiation protocols were performed with and without inhibitors of immune checkpoints modulated by RT. RESULTS In the absence of ICI, we showed that 18x2Gy and 3x8Gy induced the longest tumor growth delay compared to 1×16.4Gy. While 3x8Gy and 1×16.4Gy induced a lymphoid response (CD8+ T-cells, Regulators T-cells), 18x2Gy induced a myeloid response (myeloid-derived suppressor cells, tumor-associated macrophages 2). The secretion of granzyme B by CD8+ T cells was increased to a greater extent with 3x8Gy. The expression of PD-L1 by tumor cells was moderately increased by RT, but most durably with 18x2Gy. T cell immunoreceptor with Ig and ITIM domains (TIGIT) expression by CD8+ T-cells was increased with 3x8Gy, but decreased with 18x2Gy. These results were also observed with RNAseq. RT was dramatically more effective with 3x8Gy compared to all the other treatments schemes when associated with anti-TIGIT and anti-PD-L1 (9/10 mice in complete response). The association of anti-PD-L1 and RT was also effective in the 18x2Gy group (8/12 mice in complete response). CONCLUSION Each fractionation scheme induced different lymphoid and myeloid responses as well as various modulations of PD-L1 and TIGIT expression. Furthermore, 3x8Gy was the most effective protocol when associated with anti-PD-L1 and anti-TIGIT. This is the first study combining RT and anti-TIGIT with promising results; further studies are warranted.
Collapse
Affiliation(s)
- Mathieu Grapin
- Department of Radiation Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, 1 rue Professeur Marion 77 980, 21079, Dijon Cedex, BP, France
| | - Corentin Richard
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Emeric Limagne
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Romain Boidot
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France.,INSERM UMR 1231, Dijon, France
| | - Véronique Morgand
- Department of Radiation Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, 1 rue Professeur Marion 77 980, 21079, Dijon Cedex, BP, France
| | - Aurélie Bertaut
- Methodology, data-management and biostatistics unit, Unicancer - Georges-Francois Leclerc Cancer Center , Dijon, France
| | - Valentin Derangere
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Pierre-Antoine Laurent
- Department of Radiation Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, 1 rue Professeur Marion 77 980, 21079, Dijon Cedex, BP, France
| | - Marion Thibaudin
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Jean David Fumet
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France.,Methodology, data-management and biostatistics unit, Unicancer - Georges-Francois Leclerc Cancer Center , Dijon, France
| | - Gilles Crehange
- Department of Radiation Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, 1 rue Professeur Marion 77 980, 21079, Dijon Cedex, BP, France
| | - François Ghiringhelli
- Cancer Biology Research Platform, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France.,INSERM UMR 1231, Dijon, France.,Department of Medical Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Céline Mirjolet
- Department of Radiation Oncology, Unicancer - Georges-Francois Leclerc Cancer Center, 1 rue Professeur Marion 77 980, 21079, Dijon Cedex, BP, France. .,INSERM UMR 1231, Dijon, France.
| |
Collapse
|
27
|
Giannicola R, D'Arrigo G, Botta C, Agostino R, Del Medico P, Falzea AC, Barbieri V, Staropoli N, Del Giudice T, Pastina P, Nardone V, Monoriti M, Calabrese G, Tripepi G, Pirtoli L, Tassone P, Tagliaferri P, Correale P. Early blood rise in auto-antibodies to nuclear and smooth muscle antigens is predictive of prolonged survival and autoimmunity in metastatic-non-small cell lung cancer patients treated with PD-1 immune-check point blockade by nivolumab. Mol Clin Oncol 2019; 11:81-90. [PMID: 31289683 DOI: 10.3892/mco.2019.1859] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immune-checkpoint blockade by Nivolumab, a human monoclonal antibody to programmed cell death receptor-1, is an emerging treatment for metastatic non-small cell lung cancer (mNSCLC). In order to prolong patient survival, this treatment requires a continuous cross-priming of tumor derived-antigens to supply fresh tumor-specific immune-effectors; a phenomenon that may also trigger auto-immune-related adverse events (irAEs). The present study therefore investigated the prognostic value of multiple autoimmunity-associated parameters in patients with mNSCLC who were undergoing Nivolumab treatment. This retrospective study included 92 mNSCLC patients who received salvage therapy with Nivolumab (3 mg/kg, biweekly) between September 2015 and June 2018. Log-rank test, Mantel-Cox and McPherson analyses were conducted to correlate patient progression-free survival (PFS) and overall survival (OS) with different parameters including blood cell counts, serum inflammatory markers and auto-antibodies (AAbs). A median PFS and OS of 10 [inter-quartile range (IQR): 5.8-14.2] and 16 [IQR: 6.2-25.8] months, respectively, were recorded, which did not correlated with age, histology or the number of previous chemotherapy lines. Male gender, the type of therapeutic regimens received prior to Nivolumab, and the occurrence of irAEs were revealed to be positive predictors of prolonged survival (P<0.05). Early detection (within 30 days) of >1AAbs among anti-nuclear antigens (ANAs), extractable nuclear antigens (ENAs) and anti-smooth cell antigens (ASMAs) correlated with prolonged PFS [hazard ratio (HR)=0.23; 95% confidence interval (CI): 0.08-0.62; P=0.004] and OS [HR=0.28 (95% CI: 0.09-0.88), P=0.03], with the type of treatment received prior to nivolumab (P=0.007) and with the risk of irAEs (P=0.002). In conclusion, increased serum levels of ANA, ENA and/or ASMA are consequential to Nivolumab administration and are predictive of a positive outcome in mNSCLC patients.
Collapse
Affiliation(s)
- Rocco Giannicola
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella D'Arrigo
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Cirino Botta
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Rita Agostino
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Pietro Del Medico
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Vito Barbieri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Teresa Del Giudice
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Pastina
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Valerio Nardone
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Marika Monoriti
- Autoimmunity Laboratory, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella Calabrese
- Radiology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Giovanni Tripepi
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Luigi Pirtoli
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Pierfrancesco Tassone
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| |
Collapse
|
28
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Qiu J, Liu D, Yan Z, Jiang W, Zhang Q, Li N, Deng W, Ding K. Therapeutic effect and adverse reaction of sorafenib in the treatment of advanced renal cancer. Oncol Lett 2019; 17:1547-1550. [PMID: 30675211 PMCID: PMC6341818 DOI: 10.3892/ol.2018.9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
Efficacy and safety of sorafenib in patients with advanced renal cancer were evaluated. Seventy-four patients with advanced renal cancer treated with sorafenib + interferon from January 2010 to August 2013 were included as the observation group. Another 53 renal cancer patients treated with interferon alone were included in the control group. Clinical data of those patients were retrospectively analyzed. Treatment plan: initial dose was 400 mg, twice a day. Additionally, patients in the interferon group were treated with another 300 MU every other day. Efficacy was evaluated according to RECIST criteria, and progression-free survival (PFS), overall survival (OS), and incidence of adverse reactions were recorded. In the observation group, a median OS was 15.3 months (range, 9–60 months), and a median PFS was 8.2 months (range, 2–36 months). There were 4 cases of complete remission (CR) (5.41%), 16 cases of partial remission (PR) (21.62%), 42 cases of stable disease (SD) (56.76%), 12 cases of disease progression (16.22%), and disease control rate (DCR) was 83.78% (62 cases). In the control group, median OS time was 12.5 months (range, 8–60 months), and the median PFS time was 9.3 months (range, 2–40 months). There were 2 cases of CR (3.77%), 11 cases of PR (20.75%), 20 cases of SD (37.74%), 20 cases of disease progression (37.74%), and DCR was 62.26% (33 cases). Disease control rate in the observation group was significantly higher than that in the control group (P<0.05). Main adverse events in the groups were skin reaction, fever, diarrhea, fatigue, rash, loss of appetite, hypertension, hair loss and liver function abnormality. Sorafenib-based targeted therapy for the treatment of advanced renal cancer has a higher rate of disease control, and the adverse reactions are controllable and tolerable.
Collapse
Affiliation(s)
- Juhui Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongjian Liu
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Zaichun Yan
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Wei Jiang
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Qinglei Zhang
- Department of Urology, Tengzhou Central People's Hospital, Zaozhuang, Shandong 277500, P.R. China
| | - Ning Li
- Department of Urology, Guangrao County Hospital of TCM, Dongying, Shandong 257300, P.R. China
| | - Wentao Deng
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Kejia Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
30
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
31
|
Dalgleish AG, Stern PL. The failure of radical treatments to cure cancer: can less deliver more? Ther Adv Vaccines Immunother 2018; 6:69-76. [PMID: 30623172 PMCID: PMC6304701 DOI: 10.1177/2515135518815393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
All too often attempts to deliver improved cancer cure rates by increasing the dose of a particular treatment are not successful enough to justify the accompanying increase in toxicity and reduction in quality of life suffered by a significant number of patients. In part, this drive for using higher levels of treatment derives from the nature of the process for testing and incorporation of new protocols. Indeed, new treatment regimens must now consider the key role of immunity in cancer control, a component that has been largely ignored until very recently. The recognition that some drugs developed for cytotoxicity at higher doses can display alternative anticancer activities at lower doses including through modulation of immune responses is prompting a significant re-evaluation of treatment protocol development. Given that tumours are remarkably heterogeneous and with inherent genetic instability it is probably only the adaptive immune response with its flexibility and extensive repertoire that can rise to the challenge of effecting significant control and ultimately elimination of a patient's cancer. This article discusses some of the elements that have limited higher levels of treatment outcomes and where too much proved less effective. We explore observations that less can often be as effective, if not more effective especially with some chemotherapy regimens, and discuss how this can be exploited in combination with immunotherapies to deliver nontoxic improved tumour responses.
Collapse
Affiliation(s)
- Angus G Dalgleish
- Infection and Immunity Centre, St George's, University of London, Cranmer Terrace, London, UK
| | - Peter L Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
32
|
Nardone V, Pastina P, Giannicola R, Agostino R, Croci S, Tini P, Pirtoli L, Giordano A, Tagliaferri P, Correale P. How to Increase the Efficacy of Immunotherapy in NSCLC and HNSCC: Role of Radiation Therapy, Chemotherapy, and Other Strategies. Front Immunol 2018; 9:2941. [PMID: 30619301 PMCID: PMC6299115 DOI: 10.3389/fimmu.2018.02941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Valerio Nardone
- Radiation Oncology Unit, University Hospital of Siena, Siena, Italy
| | | | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi Melacrino Morelli", Reggio Calabria, Italy
| | - Rita Agostino
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi Melacrino Morelli", Reggio Calabria, Italy
| | - Stefania Croci
- Radiation Oncology Unit, University Hospital of Siena, Siena, Italy
| | - Paolo Tini
- Radiation Oncology Unit, University Hospital of Siena, Siena, Italy.,Sbarro Health Research Organization, Temple University, Philadelphia, PA, United States
| | - Luigi Pirtoli
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medicine, Surgery and Neurosciences University of Siena, Siena, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Medical Oncology Unit, Azienda Ospedaliero - Universitaria "Mater Domini", Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi Melacrino Morelli", Reggio Calabria, Italy
| |
Collapse
|
33
|
Eckert F, Schaedle P, Zips D, Schmid-Horch B, Rammensee HG, Gani C, Gouttefangeas C. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. Oncoimmunology 2018; 7:e1496881. [PMID: 30393582 PMCID: PMC6208674 DOI: 10.1080/2162402x.2018.1496881] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Combination of radiotherapy with immunotherapy has become an attractive concept for the treatment of cancer. The objective of this study was to assess the effect of curative, normofractionated radiotherapy on peripheral immune lymphocytes in prostate cancer patients, in order to propose a rationale for scheduling of normofractionated radiotherapy with T-cell based immunotherapy. In a prospective study (clinicaltrials.gov: NCT01376674), eighteen patients with localized prostate cancer were treated with radiotherapy with or without hormonal therapy. Irradiation volumes encompassed prostate and, in select cases, elective pelvic nodal regions. Blood samples were collected from all patients before, during, and after radiotherapy, as well as from 6 healthy individuals as control. Normofractionated radiotherapy of prostate cancer over eight weeks had a significant influence on the systemic immune status of patients compared to healthy controls. Absolute leukocyte and lymphocyte counts decreased during treatment as did peripheral blood immune subsets (T cells, CD8+ and naïve CD4+ T cells, B cells). Regulatory T cells and NK cells increased. Proliferation of all immune cells except regulatory T cells increased during RT. Most of these changes were transient. Importantly, the functionality of T lymphocytes and the frequency of antigen-specific CD8+ T cells were not affected during therapy. Our data indicate that combination of normofractionated radiotherapy with immunotherapy might be feasible for patients with prostate cancer. Conceptually, beginning with immunotherapy early during the course of radiotherapy could be beneficial, as the percentage of T cells is highest, the percentage of regulatory T cells is lowest, and as the effects of radiotherapy did not completely subside 3 months after end of radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Philipp Schaedle
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Department for Internal Medicine I, Marienhospital Stuttgart, Stuttgart, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Barbara Schmid-Horch
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tuebingen, Eberhard-Karls-University, Tuebingen, Germany
| | - Hans-Georg Rammensee
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
34
|
Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018; 16:4105-4113. [PMID: 30214551 DOI: 10.3892/ol.2018.9219] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Modulation of the tumor microenvironment is becoming an increasingly popular research topic in the field of immunotherapy, and studies regarding immune checkpoint blockades and cancer immunotherapy have pushed cancer immunotherapy to a climax. Simultaneously, the manipulation of the immune regulatory pathway can create an effective immunotherapy strategy; however, the tumor microenvironment serves an important role in suppressing the antitumor immunity by its significant heterogeneity. A number of patients with cancer do not have a good response to monotherapy approaches; therefore, combination strategies are required to achieve optimal therapeutic benefits. Targeting the tumor microenvironment may provide a novel strategy for immunotherapy, break down the resistance of conventional cancer therapy and produce the foundation for personalized precision medicine. The present review summarized the research regarding cancer immunotherapy from the perspective of how the tumor microenvironment affects the immune response, with the aim of proposing a novel strategy for cancer immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Yu Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Ni K, Lan G, Chan C, Quigley B, Lu K, Aung T, Guo N, La Riviere P, Weichselbaum RR, Lin W. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 2018; 9:2351. [PMID: 29907739 PMCID: PMC6003951 DOI: 10.1038/s41467-018-04703-w] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Checkpoint blockade immunotherapy enhances systemic antitumor immune response by targeting T cell inhibitory pathways; however, inadequate T cell infiltration has limited its anticancer efficacy. Radiotherapy (RT) has local immunomodulatory effects that can alter the microenvironment of irradiated tumors to synergize with immune checkpoint blockade. However, even with high doses of radiation, RT has rarely elicited systemic immune responses. Herein, we report the design of two porous Hf-based nanoscale metal-organic frameworks (nMOFs) as highly effective radioenhancers that significantly outperform HfO2, a clinically investigated radioenhancer in vitro and in vivo. Importantly, the combination of nMOF-mediated low-dose RT with an anti-programmed death-ligand 1 antibody effectively extends the local therapeutic effects of RT to distant tumors via abscopal effects. Our work establishes the feasibility of combining nMOF-mediated RT with immune checkpoint blockade to elicit systemic antitumor immunity in non-T cell-inflamed tumor phenotypes without normal tissue toxicity, promising to broaden the application of checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bryan Quigley
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kuangda Lu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Theint Aung
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Patrick La Riviere
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Radiotherapy has the potential to augment the host's immune response to cancer. Urological malignancies are highly immunogenic and the combination of radiotherapy and immunotherapy shows promise. In this review, we discuss the effects of radiotherapy on the cancer immune system and highlight the rationale for using the combined approach in prostate, urothelial and renal cancers. Current clinical studies are summarized emphasising the synergistic effects of the combination and the possibility of improved clinical outcomes. RECENT FINDINGS Local and abscopal effects have been observed in different urological cancers when using a combined approach. Large fraction size is associated with an increased immune response. Multiple radiotherapy/immunotherapy combinations are being studied in several clinical trials although no combination has yet been introduced in to standard practice. SUMMARY Although our knowledge of immunomodulation by radiotherapy has improved significantly in recent times, there remain several unanswered questions regarding how to best use the combination in clinical practice. Ongoing trials will provide further insight into complex mechanisms governing radiotherapy-immunotherapy interactions, with potential to improve clinical outcomes.
Collapse
|
37
|
Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng 2018; 2:600-610. [DOI: 10.1038/s41551-018-0203-4] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
|
38
|
Roxburgh CS, Shia J, Vakiani E, Daniel T, Weiser MR. Potential immune priming of the tumor microenvironment with FOLFOX chemotherapy in locally advanced rectal cancer. Oncoimmunology 2018; 7:e1435227. [PMID: 29872576 DOI: 10.1080/2162402x.2018.1435227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Strategies to enhance tumor immunogenicity may expand the role of immunotherapy beyond the mismatch repair-deficient subtype. In this pilot study, biopsies were performed at baseline and after four cycles of FOLFOX in eight patients receiving neoadjuvant chemotherapy for stage II/III locally advanced rectal cancer. Immunostaining was performed for T cell subsets (CD3+, CD8+, CD45RO+); macrophages (CD163+); T regulatory cells (FOXP3+); and expression of MHC class I, PD-1 and PD-L1. Changes in cell number or intensity were quantified and correlated with treatment response. Pretreatment patterns of immune infiltrates were mixed and did not correlate with treatment response. Posttreatment increases in T cell infiltrates (CD3+, CD8+ and CD45RO+) and MHC-I expression were observed in five patients. CD163+ cell numbers increased in four patients. FOXP3+ cell numbers increased in two patients, decreased in two other patients and remained unchanged in three patients. PD-1 scores increased in seven patients, and PD-L1 scores increased in four patients. Changes in tumor T cell responses did not correlate with treatment response. Changes in FOXP3+ cells were associated with treatment response in some patients: two patients with increases in FOXP3+ cells had poor responses, whereas the patient with the greatest reduction in FOXP3+ cells had a complete response. The patient with a complete clinical response had a much higher increase in MHC-I expression than other patients. These results suggest that chemotherapy can increase immune activity in the tumor microenvironment and could potentially be utilized to prime immune responses prior to immunomodulatory treatments.
Collapse
Affiliation(s)
- Campbell S Roxburgh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.,Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, UK
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanisha Daniel
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, UK
| | - Martin R Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
39
|
Posselt R, Erlenbach-Wünsch K, Haas M, Jeßberger J, Büttner-Herold M, Haderlein M, Hecht M, Hartmann A, Fietkau R, Distel LV. Spatial distribution of FoxP3+ and CD8+ tumour infiltrating T cells reflects their functional activity. Oncotarget 2018; 7:60383-60394. [PMID: 27494875 PMCID: PMC5312390 DOI: 10.18632/oncotarget.11039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Regulatory and cytotoxic T cells are key players in the host's anticancer immune response. We studied the spatial distribution of FoxP+ and CD8+ cells to identify potential interactions. METHODS In 202 patients 103 pre-radiochemotherapy biopsies and 153 post-radiochemotherapy tumour specimens of advanced rectal cancer were available and an immunohistochemical double staining of FoxP3+ and CD8+ tumour-infiltrating lymphocytes was performed to investigate cell density and cell-to-cell distances. RESULTS FoxP3+ cells decreased after radiochemotherapy by a factor of 3 while CD8+ cells remained nearly unchanged. High epithelial (p=0.033) and stromal (p=0.009) FoxP3+ cell density was associated with an improved overall survival. Cell-to-cell distances of randomly distributed cells were simulated and compared to observed cell-to-cell distances. Observed distances shorter than the simulated, random distances were hypothesized to represent FoxP3+ cells actively interacting with CD8+ cells. Epithelial short distances were associated with a favourable prognosis while the opposite was true for the stromal compartment. CONCLUSION The analysis of cell-to-cell distances may offer a tool to predict outcome, maybe by identifying functionally active, interacting infiltrating inflammatory cells in different tumour compartments.
Collapse
Affiliation(s)
- Rebecca Posselt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wünsch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Haas
- Department of Radiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jonas Jeßberger
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Deparment of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Chan L, He L, Zhou B, Guan S, Bo M, Yang Y, Liu Y, Liu X, Zhang Y, Xie Q, Chen T. Cancer-Targeted Selenium Nanoparticles Sensitize Cancer Cells to Continuous γ Radiation to Achieve Synergetic Chemo-Radiotherapy. Chem Asian J 2017; 12:3053-3060. [PMID: 28892302 DOI: 10.1002/asia.201701227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/09/2017] [Indexed: 12/23/2022]
Abstract
Cancer radiotherapy with 125 I seeds demonstrates higher long-term efficacy and fewer side effects than traditional X-ray radiotherapy owing to its low-dose and continuous radiation but is still limited by radioresistance in clinical applications. Therefore, the design and synthesis of sensitizers that could enhance the sensitivity of cancer cells to 125 I seeds is of great importance for future radiotherapy. Selenium nanoparticles (SeNPs) have been found to exhibit high potential in cancer chemotherapy and as drug carriers. In this study, we found that, based on the Auger-electron effect and Compton effect of Se atoms, cancer-targeted SeNPs in combination with 125 I seeds achieve synergetic effects to inhibit cancer-cell growth and colony formation through the induction of cell apoptosis and cell cycle arrest. Detailed studies on the action mechanisms reveal that the combined treatments effectively activate intracellular reactive oxygen species (ROS) overproduction to regulate p53-mediated DNA damage apoptotic signaling pathways and mitogen-activated protein kinase (MAPK) phosphorylation and to prevent the self-repair of cancer cells simultaneously. Taken together, the combination of SeNPs with 125 I seeds could be further exploited as a safe and effective strategy for next-generation cancer chemo-radiotherapy in clinical applications.
Collapse
Affiliation(s)
- Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shouhai Guan
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mingjun Bo
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yahui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Xiao Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Yanyang Zhang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiang Xie
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
41
|
Feng L, Qin L, Guo D, Deng D, Lu F, Li H, Bao N, Yang X, Ding H, Li J. Immunological mechanism of low-dose priming radiation resistance in walker-256 tumor model mice. Exp Ther Med 2017; 14:3868-3873. [PMID: 29042994 DOI: 10.3892/etm.2017.4975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/08/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate whether low-dose priming radiation induces antitumor immunity that can be augmented by the modulation of natural killer (NK) cell and cytokine activity using a mouse tumor model. Walker-256 cells were injected into the right flank of male BALB/c mice. At 7 days after inoculation, mice were divided into three groups, including group 1,2,3. In group 1 the mice were without radiation, in group 2 the mice were received 2 Gy radiation only, and in group 3 the mice were radiated with a priming dose of 75 mGy followed by 2 Gy radiation after 24 h. On day 21 following the radiation, the tumors were removed and the tumor index (tumor weight as a percentage of body weight) was calculated. At 1, 7, 14 and 21 days following the 2 Gy radiation, mouse splenocytes were isolated to analyze the NK activity and measure the production of the cytokines interleukin-1β, interferon-γ and tumor necrosis factor-α by ELISA. Apoptosis was also measured by flow cytometry. The results demonstrated that priming radiation significantly delayed the tumor growth and prolonged the median survival time to 38 days compared with the 31-day survival in the 2 Gy radiation group. The percentage of apoptotic cells was significantly higher in the mice that received 75 mGy + 2 Gy radiation compared with that in the mice that received 2 Gy alone; by contrast, mice that were not irradiated exhibited a relatively low level of apoptosis. The primed mice had a higher level of NK activity as compared with the mice exposed to 2 Gy radiation only or mice that were not irradiated. Furthermore, cytokine expression remained at a higher level in mice receiving priming dose of radiation compared that in the mice receiving only 2 Gy radiation. In conclusion, the results indicated that low-dose priming X-ray radiation may enhance the NK activity and the levels of cytokines, and that the immune response serves an important role in anticancer therapy, including radiotherapy.
Collapse
Affiliation(s)
- Li Feng
- Ultrasound Department, Qianfoshan Hospital of Shandong, Jinan, Shandong 250014, P.R. China
| | - Ling Qin
- Ultrasound Department, Qianfoshan Hospital of Shandong, Jinan, Shandong 250014, P.R. China
| | - Dan Guo
- Graduate Department, Taishan Medical University, Taian, Shandong 271016, P.R. China
| | - Daping Deng
- Laboratory of Radiation Biology, The Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Feng Lu
- Laboratory of Radiation Biology, The Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hailiang Li
- Laboratory of Radiation Biology, The Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Narisu Bao
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Xiting Yang
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Hongyu Ding
- Ultrasound Department, Qianfoshan Hospital of Shandong, Jinan, Shandong 250014, P.R. China
| | - Jianguo Li
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028041, P.R. China.,The Key Laboratory of Bioactive Materials, Ministry of Education, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
42
|
Baues C, Schlaak M, von Bergwelt-Baildon M, Theurich S. Should we be combining local tumor therapies with immunotherapies as standard? Future Oncol 2017; 13:1573-1575. [DOI: 10.2217/fon-2017-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christian Baues
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany
| | - Max Schlaak
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department of Dermatology & Venereology, Skin Cancer Center, University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department I for Internal Medicine, Center for Integrated Oncology (CIO) Köln Bonn, University Hospital Cologne, Cologne Germany
- Cologne Interventional Immunology (CII), Department I for Internal Medicine, University Hospital Cologne, Germany
| | - Sebastian Theurich
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department I for Internal Medicine, Center for Integrated Oncology (CIO) Köln Bonn, University Hospital Cologne, Cologne Germany
- Cancer & Immunometabolism Research Group, Department I for Internal Medicine, University Hospital Cologne, Germany
| |
Collapse
|
43
|
Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:151-72. [PMID: 27558821 DOI: 10.1007/978-3-319-39406-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Radiotherapy (RT) predominantly is aimed to induce DNA damage in tumour cells that results in reduction of their clonogenicity and finally in tumour cell death. Adaptation of RT with higher single doses has become necessary and led to a more detailed view on what kind of tumour cell death is induced and which immunological consequences result from it. RT is capable of rendering tumour cells immunogenic by modifying the tumour cell phenotype and the microenvironment. Danger signals are released as well as the senescence-associated secretory phenotype. This results in maturation of dendritic cells and priming of cytotoxic T cells as well as in activation of natural killer cells. However, RT on the other hand can also result in immune suppressive events including apoptosis induction and foster tumour cell proliferation. That's why RT is nowadays increasingly combined with selected immunotherapies.
Collapse
|
44
|
Shao L, Peng Q, Du K, He J, Dong Y, Lin X, Li J, Wu J. Tumor cell PD-L1 predicts poor local control for rectal cancer patients following neoadjuvant radiotherapy. Cancer Manag Res 2017; 9:249-258. [PMID: 28721097 PMCID: PMC5500567 DOI: 10.2147/cmar.s139889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumor cell (TC) PD-L1 expression has been reported by several studies in various types of cancer, and it reduces the cytotoxicity of T-cells toward cancer and evades the anticancer immune response. Herein, our study focuses on the impact of PD-L1 expression in prognosis and the correlation with clinical prognostic factors for local advanced rectal cancer with neoadjuvant radiotherapy (RT). A total of 68 rectal cancer patients treated with neoadjuvant RT were retrospectively enrolled in the present study. PD-L1 expression was investigated using immunohistochemistry. A regression model was used to identify prognostic factors associated with the disease-free survival, the local recurrence-free survival (LRFS), and the overall survival rates. The median follow-up was 32.5 months. Seven patients presented TC PD-L1 positive (TC PD-L1+), while the others were TC PD-L1 negative (TC PD-L1−). TC PD-L1+ patients showed frequent tumor recurrence than TC PD-L1− patients. Several patients with TC PD-L1− underwent long-course RT. TC PD-L1 expression was similar to interstitial cell (IC) PD-L1 expression, and the relationship between IC PD-L1 and pathological T stage was observed. TC PD-L1+ was related to poor LRFS. The multivariate analysis showed TC PD-L1+ as an independent negative prognostic factor for LRFS. In conclusion, TC PD-L1 expression putatively predicts the LRFS for patients with rectal cancer following neoadjuvant RT. The patients with TC PD-L1+ are susceptible to high local recurrent rate, thereby proposing a novel immunotherapeutic strategy for PD-L1 inhibition-mediated control.
Collapse
Affiliation(s)
- Lingdong Shao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Qingqin Peng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Kaixin Du
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Junyan He
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yaping Dong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Xiaoyi Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Jinluan Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
45
|
Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, Anderson CJ, Edwards WB, Ferris RL. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology 2017; 6:e1329071. [PMID: 28811971 DOI: 10.1080/2162402x.2017.1329071] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) can induce upregulation of programmed death ligand 1 (PD-L1) on tumor cells or myeloid cells, which may affect response to PD-1-based immunotherapy. PD-L1 upregulation during RT is a dynamic process that has been difficult to monitor during treatment. The aim of this study was to evaluate the RT-induced PD-L1 upregulation in the tumor and its microenvironment using immunoPET/CT imaging of two syngeneic murine tumor models (HPV+ head and neck squamous cell carcinoma (HNSCC) or B16F10 melanoma). Tumors were established in two locations per mouse (neck and flank), and fractionated RT (2 Gy × 4 or 2 Gy × 10) was delivered only to the neck tumor, alone or during anti-PD-1 mAb immunotherapy. PD-L1 expression was measured by PET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and results were validated by flow cytometry. PET/CT imaging demonstrated significantly increased tracer uptake in irradiated neck tumors compared with non-irradiated flank tumors. Ex vivo analysis by biodistribution and flow cytometry validated PD-L1 upregulation specifically in irradiated tumors. In the HNSCC model, RT-induced PD-L1 upregulation was only observed after 2 Gy × 10 fractionated RT, while in the B16F10 model upregulation of PD-L1 occurred after 2 Gy × 4 fractionated RT. Fractionated RT, but not anti-PD-1 therapy, upregulated PD-L1 expression on tumor and infiltrating inflammatory cells in murine models, which could be non-invasively monitored by immunoPET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and differentially identified anti-PD-1 responsive as well as selectively irradiated tumors in vivo.
Collapse
Affiliation(s)
- Masahiro Kikuchi
- Department of Otolaryngology-Head and Neck Surgery, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Clump
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lingyi Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dexing Zeng
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julio A Diaz-Perez
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.,Translational Medicine Program, CEINDO, Madrid, Spain
| | - Carolyn J Anderson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Baues C, Trommer-Nestler M, Jablonska K, Bröckelmann PJ, Schlaak M, von Bergwelt-Baildon M, Engert A, Semrau R, Marnitz S, Theurich S. Short review of potential synergies of immune checkpoint inhibition and radiotherapy with a focus on Hodgkin lymphoma: radio-immunotherapy opens new doors. Immunotherapy 2017; 9:423-433. [PMID: 28357914 DOI: 10.2217/imt-2017-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy is an established local treatment in patients with various malignancies. Systemic responses following local irradiation have been described as abscopal effects. Modern cancer immunotherapy with immune checkpoint inhibitors has shown impressive response rates and prolongation of survival even in heavily pretreated patients with advanced solid malignancies and lymphomas. Radiotherapy has been shown to modulate immune response, and its application in the context of immune checkpoint inhibition has recently evolved into an active field of research. Prospective studies investigating combination treatment are currently ongoing and will answer questions as to the optimal schedule and radiation dosing. This short review focuses on the immunomodulatory role of radiotherapy and the use of immune checkpoint inhibition with a special focus on Hodgkin lymphoma.
Collapse
Affiliation(s)
- Christian Baues
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany.,Radio Immune-Oncology Consortium (RIO), University Hospital Cologne, Cologne, Germany.,German Hodgkin Study Group, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany
| | - Maike Trommer-Nestler
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany.,Radio Immune-Oncology Consortium (RIO), University Hospital Cologne, Cologne, Germany
| | - Karolina Jablonska
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany
| | - Paul J Bröckelmann
- German Hodgkin Study Group, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany.,Department I of Internal Medicine, Hematology & Oncology, University Hospital Cologne, Cologne, Germany
| | - Max Schlaak
- Radio Immune-Oncology Consortium (RIO), University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany.,Department of Dermatology & Venerology, University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Radio Immune-Oncology Consortium (RIO), University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany.,Department I of Internal Medicine, Hematology & Oncology, University Hospital Cologne, Cologne, Germany
| | - Andreas Engert
- German Hodgkin Study Group, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany.,Department I of Internal Medicine, Hematology & Oncology, University Hospital Cologne, Cologne, Germany
| | - Robert Semrau
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany.,German Hodgkin Study Group, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany
| | - Simone Marnitz
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany.,German Hodgkin Study Group, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany
| | - Sebastian Theurich
- Radio Immune-Oncology Consortium (RIO), University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Cologne Bonn, University Hospital Cologne, Cologne, Germany.,Department I of Internal Medicine, Hematology & Oncology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
47
|
Eckert F, Jelas I, Oehme M, Huber SM, Sonntag K, Welker C, Gillies SD, Strittmatter W, Zips D, Handgretinger R, Schilbach K. Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 2017; 6:e1323161. [PMID: 28680762 DOI: 10.1080/2162402x.2017.1323161] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
NHS-IL12 is an immunocytokine, a fusion protein of IL12's functional domains and a necrosis-targeting antibody, which has shown significant effects against human rhabdomyosarcoma xenografts in a humanized tumor model, including terminal growth arrest and differentiation of the tumor cells. Here, we locally irradiated the tumors, increasing necrosis and consequently intratumoral immune cytokine availability, and asked whether this effect may surmount efficacy of single treatment modality. Humanized mice bearing bilateral rhabdomyosarcoma xenografts were evaluated for tumor burden and survival after irradiation, systemic NHS-IL12 therapy or a combination of both. Intratumoral immune compartments were characterized by immunohistochemistry and molecular methods. TH1-cytokine dependency of underlying effector mechanisms were investigated in vitro in several human tumor cell lines. NHS-IL12 when combined with irradiation terminally arrested tumor growth and significantly improved survival. Combination treatment induced dense intratumoral T-cell infiltrates, clonal epitope-specific T-cell expansions, expression of cytotoxins, decreased pro-tumorigenic cytokines and induced senescence and differentiation in the cancer cells. Senescence and differentiation were reproduced in vitro and confirmed to be dependent on TH1 cytokines IFNγ and TNF-α. NHS-IL12 and irradiation together induced broad intratumoral TH1 biased NK and T-cell compartments, established antitumoral cytokine profiles and irreversibly growth arrested tumor cells, leading to systemic cancer control and improved survival. For the first time, we describe immune-induced senescence as a novel mechanism resulting from a treatment regimen combining irradiation with immunotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivan Jelas
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Oehme
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Sonntag
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian Welker
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
49
|
Chen GZ, Zhu HC, Dai WS, Zeng XN, Luo JH, Sun XC. The mechanisms of radioresistance in esophageal squamous cell carcinoma and current strategies in radiosensitivity. J Thorac Dis 2017; 9:849-859. [PMID: 28449496 PMCID: PMC5394057 DOI: 10.21037/jtd.2017.03.23] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
Esophageal cancer is the eighth most common cancer and the sixth leading cause of cancer-related death worldwide. Surgery is the primary form of treatment, but the survival is poor, especially for patients with locally advanced esophageal cancer. Radiotherapy has been a critical treatment option that may be combined with chemotherapy in patients with unresectable esophageal cancer. However, resistance to chemoradiotherapy might result in treatment failures and cancer relapse. This review will mainly focus on the possible cellular mechanisms and tumor-associated microenvironmental (TAM) factors that result in radioresistance in patients with esophageal cancer. In addition, current strategies to increase radiosensitivity, including targeted therapy and the use of radiosensitive biomarkers in clinical treatment, are discussed in this review.
Collapse
Affiliation(s)
- Guang-Zong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Cheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Wang-Shu Dai
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jin-Hua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xin-Chen Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
50
|
Kee D, McArthur G. Immunotherapy of melanoma. Eur J Surg Oncol 2017; 43:594-603. [DOI: 10.1016/j.ejso.2016.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
|