1
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
2
|
Aybar-Torres A, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561109. [PMID: 37886547 PMCID: PMC10602033 DOI: 10.1101/2023.10.05.561109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The significance of STING (encoded by the TMEM173 gene) in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human TMEM173 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using STING knock-in mice expressing common human TMEM173 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING-mediated cell death ex vivo, establishing a critical role of STING residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ann T. Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, U.S.A
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
3
|
Lin C, Kuffour EO, Li T, Gertzen CGW, Kaiser J, Luedde T, König R, Gohlke H, Münk C. The ISG15-Protease USP18 Is a Pleiotropic Enhancer of HIV-1 Replication. Viruses 2024; 16:485. [PMID: 38675828 PMCID: PMC11053637 DOI: 10.3390/v16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Taolan Li
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| |
Collapse
|
4
|
Conrad SJ, Raza T, Peterson EA, Liem J, Connor R, Nounamo B, Cannon M, Liu J. Myxoma virus lacking the host range determinant M062 stimulates cGAS-dependent type 1 interferon response and unique transcriptomic changes in human monocytes/macrophages. PLoS Pathog 2022; 18:e1010316. [PMID: 36103568 PMCID: PMC9473615 DOI: 10.1371/journal.ppat.1010316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The evolutionarily successful poxviruses possess effective and diverse strategies to circumvent or overcome host defense mechanisms. Poxviruses encode many immunoregulatory proteins to evade host immunity to establish a productive infection and have unique means of inhibiting DNA sensing-dependent type 1 interferon (IFN-I) responses, a necessity given their dsDNA genome and exclusively cytoplasmic life cycle. We found that the key DNA sensing inhibition by poxvirus infection was dominant during the early stage of poxvirus infection before DNA replication. In an effort to identify the poxvirus gene products which subdue the antiviral proinflammatory responses (e.g., IFN-I response), we investigated the function of one early gene that is the known host range determinant from the highly conserved poxvirus host range C7L superfamily, myxoma virus (MYXV) M062. Host range factors are unique features of poxviruses that determine the species and cell type tropism. Almost all sequenced mammalian poxviruses retain at least one homologue of the poxvirus host range C7L superfamily. In MYXV, a rabbit-specific poxvirus, the dominant and broad-spectrum host range determinant of the C7L superfamily is the M062R gene. The M062R gene product is essential for MYXV infection in almost all cells tested from different mammalian species and specifically inhibits the function of host Sterile αMotif Domain-containing 9 (SAMD9), as M062R-null (ΔM062R) MYXV causes abortive infection in a SAMD9-dependent manner. In this study we investigated the immunostimulatory property of the ΔM062R. We found that the replication-defective ΔM062R activated host DNA sensing pathway during infection in a cGAS-dependent fashion and that knocking down SAMD9 expression attenuated proinflammatory responses. Moreover, transcriptomic analyses showed a unique feature of the host gene expression landscape that is different from the dsDNA alone-stimulated inflammatory state. This study establishes a link between the anti-neoplastic function of SAMD9 and the regulation of innate immune responses. Poxviruses encode a group of genes called host range determinants to maintain or expand their host tropism. The mechanism by which many viral host range factors function remains elusive. Some host range factors possess immunoregulatory functions responsible for evading or subduing host immune defense mechanisms. Most known immunoregulatory proteins encoded by poxviruses are dispensable for viral replication in vitro. The uniqueness of MYXV M062R is that it is essential for viral infection in vitro and belongs to one of the most conserved poxvirus host range families, the C7L superfamily. There is one known host target of the MYXV M062 protein, SAMD9. SAMD9 is constitutively expressed in mammalian cells and exclusively present in the cytoplasm with an anti-neoplastic function. Humans with deleterious mutations in SAMD9 present disease that ranges from lethality at a young age to a predisposition to myelodysplastic syndromes (MDS) that often require bone marrow transplantation. More importantly, SAMD9 serves as an important antiviral intrinsic molecule to many viruses. The cellular function of SAMD9 remains unclear mostly due to the difficulty of studying this protein, i.e., its large size, long half-life, and its constitutive expression in most cells. In this study we used M062R-null MYXV as a tool to study SAMD9 function and report a functional link between SAMD9 and the regulation of the proinflammatory responses triggered by cGAS-dependent DNA sensing.
Collapse
Affiliation(s)
- Steven J. Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Tahseen Raza
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Erich A. Peterson
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jason Liem
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Richard Connor
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Martin Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Center of Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang Y, Qian G, Zhu L, Zhao Z, Liu Y, Han W, Zhang X, Zhang Y, Xiong T, Zeng H, Yu X, Yu X, Zhang X, Xu J, Zou Q, Yan D. HIV-1 Vif suppresses antiviral immunity by targeting STING. Cell Mol Immunol 2022; 19:108-121. [PMID: 34811497 PMCID: PMC8752805 DOI: 10.1038/s41423-021-00802-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
HIV-1 infection-induced cGAS-STING-TBK1-IRF3 signaling activates innate immunity to produce type I interferon (IFN). The HIV-1 nonstructural protein viral infectivity factor (Vif) is essential in HIV-1 replication, as it degrades the host restriction factor APOBEC3G. However, whether and how it regulates the host immune response remains to be determined. In this study, we found that Vif inhibited the production of type I IFN to promote immune evasion. HIV-1 infection induced the activation of the host tyrosine kinase FRK, which subsequently phosphorylated the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Vif and enhanced the interaction between Vif and the cellular tyrosine phosphatase SHP-1 to inhibit type I IFN. Mechanistically, the association of Vif with SHP-1 facilitated SHP-1 recruitment to STING and inhibited the K63-linked ubiquitination of STING at Lys337 by dephosphorylating STING at Tyr162. However, the FRK inhibitor D-65495 counteracted the phosphorylation of Vif to block the immune evasion of HIV-1 and antagonize infection. These findings reveal a previously unknown mechanism through which HIV-1 evades antiviral immunity via the ITIM-containing protein to inhibit the posttranslational modification of STING. These results provide a molecular basis for the development of new therapeutic strategies to treat HIV-1 infection.
Collapse
Affiliation(s)
- Yu Wang
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China ,grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Basic Courses, NCO School, Army Medical University, Shijiazhuang, 050081 China
| | - Gui Qian
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| | - Lingyan Zhu
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| | - Zhuo Zhao
- grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Yinan Liu
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| | - Wendong Han
- grid.8547.e0000 0001 0125 2443Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032 China
| | - Xiaokai Zhang
- grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Yihua Zhang
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| | - Tingrong Xiong
- grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Hao Zeng
- grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Xianghui Yu
- grid.64924.3d0000 0004 1760 5735National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Xiaofang Yu
- grid.430605.40000 0004 1758 4110Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130061 China
| | - Xiaoyan Zhang
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| | - Jianqing Xu
- grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Quanming Zou
- grid.410570.70000 0004 1760 6682National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Dapeng Yan
- grid.8547.e0000 0001 0125 2443Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032 China
| |
Collapse
|
6
|
Toll-Like Receptor (TLR) Signaling Enables Cyclic GMP-AMP Synthase (cGAS) Sensing of HIV-1 Infection in Macrophages. mBio 2021; 12:e0281721. [PMID: 34844429 PMCID: PMC8630538 DOI: 10.1128/mbio.02817-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
HIV-1 replicates in cells that express a wide array of innate immune sensors and may do so simultaneously with other pathogens. How a coexisting innate immune stimulus influences the outcome of HIV-1 sensing, however, remains poorly understood. Here, we demonstrate that the activation of a second signaling pathway enables a cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) response to HIV-1 infection. We used RNA sequencing to determine that HIV-1 alone induced few or no signs of an IFN-I response in THP-1 cells. In contrast, when supplemented with suboptimal levels of bacterial lipopolysaccharide (LPS), HIV-1 infection triggered the production of elevated levels of IFN-I and significant upregulation of interferon-stimulated genes. LPS-mediated enhancement of IFN-I production upon HIV-1 infection, which was observed in primary macrophages, was lost by blocking reverse transcription and with a hyperstable capsid, pointing to viral DNA being an essential immunostimulatory molecule. LPS also synergistically enhanced IFN-I production by cyclic GMP-AMP (cGAMP), a second messenger of cGAS. These observations suggest that the DNA sensor cGAS is responsible for a type I IFN response to HIV-1 in concert with LPS receptor Toll-like receptor 4 (TLR4). Small amounts of a TLR2 agonist also cooperate with HIV-1 to induce type I IFN production. These results demonstrate how subtle immunomodulatory activity renders HIV-1 capable of eliciting an IFN-I response through positive cross talk between cGAS and TLR sensing pathways.
Collapse
|
7
|
Zhang Z, Zhang L, Shen Y. Identification of immune features of HIV-infected patients with antiretroviral therapy through bioinformatics analysis. Virology 2021; 566:69-74. [PMID: 34875552 DOI: 10.1016/j.virol.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is a disease arising from human immunodeficiency virus (HIV). Antiretroviral therapy (ART) is a main therapeutic regimen for inhibiting HIV proliferation and viability. Identification of differentially expressed genes (DEGs) in HIV-infected patients with and without ART could provide theoretical evidence for deep research into the efficacy of ART and corresponding mechanism. METHODS In this study, mRNA microarray data (GSE108296) of HIV-infected patients who received and didn't receive ART were downloaded from Gene Expression Omnibus (GEO) database. DEGs were obtained through differential analysis with R package limma. Then, protein-protein interaction (PPI) analysis was performed to identify hub genes and functional modules. Besides, immune-related DEGs were screened, followed by GO annotation and KEGG pathway enrichment analysis. Moreover, various immune cells and immune functions in samples were analyzed by ESTIMATE, ssGSEA and CIBERSORT, based on which the immune function of HIV-infected patients who received and didn't receive ART was evaluated. RESULTS A total of 109 DEGs were obtained from differential analysis. Among them, 19 immune-related DEGs were identified and subjected to GO and KEGG enrichment analyses. Furthermore, PPI network analysis was undertaken on the 109 DEGs. 10 hub genes and 3 functional modules were further screened. It was shown that these genes and functional modules were correlated with immune functions and relevant signaling pathways. ESTIMATE, ssGSEA and CIBERSORT results displayed that HIV-infected patients with ART presented a relatively high immune level. CONCLUSION According to bioinformatics analysis, we reasonably posited that HIV-infected patients who received ART had an increased immune level relative to patients who didn't receive ART.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Infectious Disease (Hepatology), Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing City, Zhejiang Province, 312000, China.
| | - Lei Zhang
- Department of Infectious Disease (Hepatology), Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing City, Zhejiang Province, 312000, China
| | - Yulan Shen
- Department of Hemodialysis Center, Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing City, Zhejiang Province, 312000, China
| |
Collapse
|
8
|
Carrasco I, Tarancon-Diez L, Vázquez-Alejo E, Jiménez de Ory S, Sainz T, Apilanez M, Epalza C, Guillén S, Tomás Ramos J, Díez C, Bernardino JI, Iribarren JA, Zamora A, Muñoz-Fernández MÁ, Navarro ML. Innate and adaptive abnormalities in youth with vertically acquired HIV through a multicentre cohort in Spain. J Int AIDS Soc 2021; 24:e25804. [PMID: 34672108 PMCID: PMC8528666 DOI: 10.1002/jia2.25804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Immune abnormalities have been described among youth with vertically acquired HIV (YWVH) despite antiretroviral treatment (ART). The CD4/CD8 ratio could be a useful prognostic marker. We assess immune activation and senescence in a cohort of YWVH in comparison to youth without vertically acquired HIV. Methods YWVH under suppressive ART were included and compared to a group of HIV‐negative donors (HD) matched by age and sex, from September 2019 to September 2020. Subset distribution and expression of activation, maturation, senescence and exhaustion markers on T and NK cells were studied on peripheral blood mononuclear cells by multiparametric flow cytometry. Results Thirty‐two YWVH (median age: 24.4 years (interquartile range: 22.5 to 28.3 years)) were included. Among YWVH, CD4‐ and CD8‐T cells showed high levels of activation (HLA‐DR/CD38), IL‐7 receptor expression (CD127) and exhaustion (TIM‐3). Regarding NK cells, YWVH showed increased levels of activation and exhaustion markers compared to HD. Strong inverted correlations were observed between T‐cell activation (HLA‐DR/CD38), senescence (CD57) and exhaustion (TIGIT, PD‐1) levels with the CD4/CD8 ratio among YWVH. HLA‐DR, CD69, NKG2D and NKG2A expression levels on NK cells also correlated with the CD4/CD8 ratio. Age at ART initiation was directly associated with higher frequency of CD16high NK‐cell subsets, exhaustion T‐cell levels (CD57, TIM3) and NK cells activation levels. Conclusions Immunological changes associated with vertically acquired HIV, characterized by increased activation and exhaustion levels in innate and adaptive immune components, are only partially restored by ART. The CD4/CD8 ratio can be a useful marker of disease progression for routine clinical practice.
Collapse
Affiliation(s)
- Itzíar Carrasco
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Tarancon-Diez
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - Elena Vázquez-Alejo
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - Santiago Jiménez de Ory
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain
| | - Talía Sainz
- Department of Paediatrics, La Paz Research Institute (IdiPAZ) and University Hospital, Madrid, Spain
| | - Miren Apilanez
- Department of Paediatrics, Donostia University Hospital, País Vasco, Spain
| | - Cristina Epalza
- Department of Paediatrics, 12 de Octubre University Hospital, Madrid, Spain
| | - Sara Guillén
- Department of Paediatrics, Getafe University Hospital, Madrid, Spain
| | - José Tomás Ramos
- Department of Paediatrics, Clínico San Carlos University Hospital, Madrid, Spain
| | - Cristina Díez
- Department Infectious Diseases, Gregorio Marañón Research Institute and University Hospital, Madrid, Spain
| | - Jose Ignacio Bernardino
- Department of Infectious Diseases, La Paz Research Institute (IdiPAZ) and University Hospital, Madrid, Spain
| | | | - Angielys Zamora
- Biochemistry Section, Gregorio Marañón University Hospital, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - María Luisa Navarro
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | -
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain
| |
Collapse
|
9
|
Reif T, Dyckhoff G, Hohenberger R, Kolbe CC, Gruell H, Klein F, Latz E, Stolp B, Fackler OT. Contact-dependent inhibition of HIV-1 replication in ex vivo human tonsil cultures by polymorphonuclear neutrophils. CELL REPORTS MEDICINE 2021; 2:100317. [PMID: 34195682 PMCID: PMC8233696 DOI: 10.1016/j.xcrm.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Polymorphonuclear neutrophils (PMNs), the most abundant white blood cells, are recruited rapidly to sites of infection to exert potent anti-microbial activity. Information regarding their role in infection with human immunodeficiency virus (HIV) is limited. Here we report that addition of PMNs to HIV-infected cultures of human tonsil tissue or peripheral blood mononuclear cells causes immediate and long-lasting suppression of HIV-1 spread and virus-induced depletion of CD4 T cells. This inhibition of HIV-1 spread strictly requires PMN contact with infected cells and is not mediated by soluble factors. 2-Photon (2PM) imaging visualized contacts of PMNs with HIV-1-infected CD4 T cells in tonsil tissue that do not result in lysis or uptake of infected cells. The anti-HIV activity of PMNs also does not involve degranulation, formation of neutrophil extracellular traps, or integrin-dependent cell communication. These results reveal that PMNs efficiently blunt HIV-1 replication in primary target cells and tissue by an unconventional mechanism. PMNs blunt HIV-1 spread and CD4 T cell depletion in HIV-infected human tonsils Suppression of HIV-1 replication by PMNs requires cell-cell contacts PMNs do not affect HIV via effector functions such as NETosis or degranulation PMNs exert unconventional antiviral activity
Collapse
Affiliation(s)
- Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms 2020; 8:microorganisms8111787. [PMID: 33202596 PMCID: PMC7697840 DOI: 10.3390/microorganisms8111787] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are key pathogen sensing receptors that respond to diverse microbial ligands, and trigger both innate and adaptive immune responses to infection. Since their discovery, a growing body of evidence has pointed to an important role for TLRs in retroviral infection and pathogenesis. These data suggest that multiple TLRs contribute to the anti-retroviral response, and that TLR engagement by retroviruses can have complex and divergent outcomes for infection. Despite this progress, numerous questions remain about the role of TLRs in retroviral infection. In this review, I summarize existing evidence for TLR-retrovirus interactions and the functional roles these receptors play in immunity and pathogenesis, with particular focus on human immunodeficiency virus (HIV).
Collapse
|
11
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
12
|
HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses 2020; 12:v12070711. [PMID: 32630058 PMCID: PMC7412260 DOI: 10.3390/v12070711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, which plays a significant role in disease pathogenesis. Acute HIV infection induces robust inflammatory responses, which are insufficient to prevent or eliminate virus in mucosal tissues. While establishment of viral set-point is coincident with downregulation of acute innate responses, systemic inflammatory responses persist during the course of chronic HIV infection. Since the introduction of combination antiviral therapy (cART), most HIV-1+ individuals can suppress viremia under detection levels for decades. However, chronic immune activation persists and has been postulated to cause HIV associated non-AIDS complications (HANA). Importantly, inflammatory cytokines and activation markers associated with macrophages are strongly and selectively correlated with the incidence of HIV-associated neurocognitive disorder (HAND), cardiovascular dysfunctions (CVD) and other HANA conditions. In this review, we discuss the roles of macrophages in facilitating viral persistence and contributing to generation of persistent inflammatory responses.
Collapse
|
13
|
Cui X, Zhang R, Cen S, Zhou J. STING modulators: Predictive significance in drug discovery. Eur J Med Chem 2019; 182:111591. [PMID: 31419779 PMCID: PMC7172983 DOI: 10.1016/j.ejmech.2019.111591] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) - stimulator of interferon genes (STING) signaling pathway plays the critical role in the immune response to DNA. Pharmacological modulation of the STING pathway has been well characterized both from structural and functional perspectives, which paves the way for the drug design of small modulators by medicinal chemists. Here, we outline recent progress in studies on the STING pathway, the structure and biological function of STING, the STING related disease, as well as the rationale and progress in the development of STING modulators. Our review demonstrates that STING is a promising drug target, and providing clues for the discovery of novel STING agonists and antagonists for the potential treatment of various disease including microbial infectious diseases, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Xiangling Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
14
|
Abstract
HIV-1 has evolved many strategies to circumvent the host’s antiviral innate immune responses and establishes disseminated infection; the molecular mechanisms of these strategies are not entirely clear. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for clearance. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which supports HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis. Macrophages and dendritic cells dominate early immune responses to lentiviruses. HIV-1 sensing by pathogen recognition receptors induces signaling cascades that culminate in type I alpha/beta interferon (IFN-α/β) induction. IFN-α/β signals back via the IFN-α/β receptors, inducing a plethora of IFN-stimulated gene (ISGs), including ISG15, p53, and p21Cip1. p21 inhibits HIV-1 replication by inactivating the deoxynucleoside triphosphate (dNTP) biosynthesis pathway and activating the restriction factor SAMHD1. p21 is induced by functional p53. ISG15-specific isopeptidase USP18 negatively regulates IFN signaling. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for its degradation. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which enhances HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis.
Collapse
|
15
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation. PLoS Pathog 2017; 13:e1006598. [PMID: 28859166 PMCID: PMC5597281 DOI: 10.1371/journal.ppat.1006598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. The cellular transcription factor NF-κB plays a complex role in the lentiviral replication cycle. On the one hand, activation of NF-κB is required for efficient transcription of viral genes and reactivation of latent proviruses. On the other hand, NF-κB is also a key driver of antiviral gene expression, immune activation and progression to AIDS. As a result, primate lentiviruses tightly regulate the activation of NF-κB throughout their replication cycle to enable transcription of viral genes while minimizing antiviral gene expression. Here, we show that human and simian immunodeficiency viruses have evolved at least three alternative strategies to suppress NF-κB-dependent immune activation: HIV-2 and most SIVs prevent T cell activation via Nef-mediated downmodulation of CD3. In comparison, HIV-1 and its vpu-containing SIV precursors inhibit NF-κB activation via their accessory protein Vpu and lost the CD3 downmodulation function of Nef. Finally, SIVcol and SIVolc, infecting mantled guerezas and olive colobus monkeys, respectively, utilize Vpr. Our findings emphasize the key role of NF-κB as inducer of antiretroviral immune responses and add to the accumulating evidence that lentiviral accessory proteins target innate signaling cascades by sophisticated mechanisms to evade restriction.
Collapse
|
17
|
The multiple roles of the nucleocapsid in retroviral RNA conversion into proviral DNA by reverse transcriptase. Biochem Soc Trans 2017; 44:1427-1440. [PMID: 27911725 DOI: 10.1042/bst20160101-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/27/2023]
Abstract
Retroviruses are enveloped plus-strand RNA viruses that can cause cancer, immunodeficiency and neurological disorder in human and animals. Retroviruses have several unique properties, such as a genomic RNA in a dimeric form found in the virus, and a replication strategy called 'copy-and-paste' during which the plus-strand genomic RNA is converted into a double-stranded DNA, subsequently integrated into the cellular genome. Two essential viral enzymes, reverse transcriptase (RT) and integrase (IN), direct this 'copy-and-paste' replication. RT copies the genomic RNA generating the double-stranded proviral DNA, while IN catalyzes proviral DNA integration into the cellular DNA, then called the provirus. In that context, a major component of the virion core, the nucleocapsid protein (NC), was found to be a potent nucleic-acid chaperone that assists RT during the conversion of the genomic RNA into proviral DNA. Here we briefly review the interplay of NC with viral nucleic-acids, which enables rapid and faithful folding and hybridization of complementary sequences, and with active RT thus providing assistance to the synthesis of the complete proviral DNA. Because of its multiple roles in retrovirus replication, NC could be viewed as a two-faced Janus-chaperone acting on viral nucleic-acids and enzymes.
Collapse
|
18
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
19
|
Zevini A, Olagnier D, Hiscott J. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol 2017; 38:194-205. [PMID: 28073693 PMCID: PMC5329138 DOI: 10.1016/j.it.2016.12.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
Detection of evolutionarily conserved molecules on microbial pathogens by host immune sensors represents the initial trigger of the immune response against infection. Cytosolic receptors sense viral and intracellular bacterial genomes, as well as nucleic acids produced during replication. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Although distinct classes of receptors are responsible for the RNA and DNA sensing, the downstream signaling components are physically and functionally interconnected. This review highlights the importance of the crosstalk between retinoic acid inducible gene-I (RIG-I)-mitochondrial antiviral-signaling protein (MAVS) RNA sensing and the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) DNA sensing pathways in potentiating efficient antiviral responses. The potential of cGAS-STING manipulation as a component of cancer immunotherapy is also reviewed.
Collapse
Affiliation(s)
- Alessandra Zevini
- Istituto Pasteur - Italia, Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Denmark
| | - John Hiscott
- Istituto Pasteur - Italia, Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
20
|
Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 2017; 8:198. [PMID: 28261165 PMCID: PMC5306280 DOI: 10.3389/fmicb.2017.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle.
Collapse
Affiliation(s)
- Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
21
|
Schott K, Riess M, König R. Role of Innate Genes in HIV Replication. Curr Top Microbiol Immunol 2017; 419:69-111. [PMID: 28685292 DOI: 10.1007/82_2017_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
22
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
23
|
Exploring viral infection using single-cell sequencing. Virus Res 2016; 239:55-68. [PMID: 27816430 DOI: 10.1016/j.virusres.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent progress in our understanding of innate sensing of HIV. Furthermore, we present the mechanisms that HIV has evolved to attenuate innate immune responses and discuss open questions. RECENT FINDINGS Toll-like receptors (TLRs) and various cytosolic sensors induce an antiviral interferon response upon detection of genomic HIV RNA or intermediates of reverse transcription. HIV limits activation of these sensing pathways by interfering with TLR signaling and by cloaking viral nucleic acids in the cytoplasm, before proviral dsDNA translocates into the nucleus. Furthermore, the viral accessory protein Vpu mitigates antiviral gene expression by inhibiting canonical nuclear factor kappa B (NF-κB) signaling. These evasion mechanisms, however, are imperfect and HIV infection almost inevitably triggers the activation of IRF3, NF-κB and other key transcription factors of antiviral immunity. Notably, the interplay of these processes plays a critical role in the induction of chronic inflammation that drives progression to AIDS. SUMMARY HIV has evolved sophisticated but imperfect mechanisms to evade and counteract innate sensing. Whether virus-induced immune activation represents merely a suboptimal adaptation of HIV to its human host or even facilitates HIV replication, for example by increasing the number of viral target cells, remains to be clarified.
Collapse
|
25
|
Landolfo S, De Andrea M, Dell’Oste V, Gugliesi F. Intrinsic host restriction factors of human cytomegalovirus replication and mechanisms of viral escape. World J Virol 2016; 5:87-96. [PMID: 27563536 PMCID: PMC4981826 DOI: 10.5501/wjv.v5.i3.87] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
Before a pathogen even enters a cell, intrinsic immune defenses are active. This first-line defense is mediated by a variety of constitutively expressed cell proteins collectively termed “restriction factors” (RFs), and they form a vital element of the immune response to virus infections. Over time, however, viruses have evolved in a variety ways so that they are able to overcome these RF defenses via mechanisms that are specific for each virus. This review provides a summary of the universal characteristics of RFs, and goes on to focus on the strategies employed by some of the most important RFs in their attempt to control human cytomegalovirus (HCMV) infection. This is followed by a discussion of the counter-restriction mechanisms evolved by viruses to circumvent the host cell’s intrinsic immune defenses. RFs include nuclear proteins IFN-γ inducible protein 16 (IFI16) (a Pyrin/HIN domain protein), Sp100, promyelocytic leukemia, and hDaxx; the latter three being the keys elements of nuclear domain 10 (ND10). IFI16 inhibits the synthesis of virus DNA by down-regulating UL54 transcription - a gene encoding a CMV DNA polymerase; in response, the virus antagonizes IFI16 via a process involving viral proteins UL97 and pp65 (pUL83), which results in the mislocalizing of IFI16 into the cytoplasm. In contrast, viral regulatory proteins, including pp71 and IE1, seek to modify or disrupt the ND10 proteins and thus block or reverse their inhibitory effects upon virus replication. All in all, detailed knowledge of these HCMV counter-restriction mechanisms will be fundamental for the future development of new strategies for combating HCMV infection and for identifying novel therapeutic agents.
Collapse
|
26
|
Rausell A, Muñoz M, Martinez R, Roger T, Telenti A, Ciuffi A. Innate immune defects in HIV permissive cell lines. Retrovirology 2016; 13:43. [PMID: 27350062 PMCID: PMC4924258 DOI: 10.1186/s12977-016-0275-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Primary CD4+ T cells and cell lines differ in their permissiveness to HIV infection. Impaired innate immunity may contribute to this different phenotype. Findings We used transcriptome profiling of 1503 innate immunity genes in primary CD4+ T cells and permissive cell lines. Two clusters of differentially expressed genes were identified: a set of 249 genes that were highly expressed in primary cells and minimally expressed in cell lines and a set of 110 genes with the opposite pattern. Specific to HIV, HEK293T, Jurkat, SupT1 and CEM cell lines displayed unique patterns of downregulation of genes involved in viral sensing and restriction. Activation of primary CD4+ T cells resulted in reversal of the pattern of expression of those sets of innate immunity genes. Functional analysis of prototypical innate immunity pathways of permissive cell lines confirmed impaired responses identified in transcriptome analyses. Conclusion Integrity of innate immunity genes and pathways needs to be considered in designing gain/loss functional genomic screens of viral infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Rausell
- Clinical Bioinformatics lab, Imagine Institute, Paris Descartes University - Sorbonne Paris Cité, 75015, Paris, France.
| | - Miguel Muñoz
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Amalio Telenti
- Genetic Medicine, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
27
|
Barouch DH, Ghneim K, Bosche WJ, Li Y, Berkemeier B, Hull M, Bhattacharyya S, Cameron M, Liu J, Smith K, Borducchi E, Cabral C, Peter L, Brinkman A, Shetty M, Li H, Gittens C, Baker C, Wagner W, Lewis MG, Colantonio A, Kang HJ, Li W, Lifson JD, Piatak M, Sekaly RP. Rapid Inflammasome Activation following Mucosal SIV Infection of Rhesus Monkeys. Cell 2016; 165:656-67. [PMID: 27085913 PMCID: PMC4842119 DOI: 10.1016/j.cell.2016.03.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/31/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
Abstract
The earliest events following mucosal HIV-1 infection, prior to measurable viremia, remain poorly understood. Here, by detailed necropsy studies, we show that the virus can rapidly disseminate following mucosal SIV infection of rhesus monkeys and trigger components of the inflammasome, both at the site of inoculation and at early sites of distal virus spread. By 24 hr following inoculation, a proinflammatory signature that lacked antiviral restriction factors was observed in viral RNA-positive tissues. The early innate response included expression of NLRX1, which inhibits antiviral responses, and activation of the TGF-β pathway, which negatively regulates adaptive immune responses. These data suggest a model in which the virus triggers specific host mechanisms that suppress the generation of antiviral innate and adaptive immune responses in the first few days of infection, thus facilitating its own replication. These findings have important implications for the development of vaccines and other strategies to prevent infection.
Collapse
Affiliation(s)
- Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Khader Ghneim
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Hull
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | | | - Mark Cameron
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaitlin Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Crystal Cabral
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Brinkman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mayuri Shetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hualin Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | - Hyung-Joo Kang
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wenjun Li
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | | |
Collapse
|
28
|
Macura SL, Lathrop MJ, Gui J, Doncel GF, Asin SN, Rollenhagen C. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues. J Acquir Immune Defic Syndr 2016; 71:474-82. [PMID: 26545124 PMCID: PMC4788559 DOI: 10.1097/qai.0000000000000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The interferon-gamma-induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti-HIV-1 activity of prophylactic antiretrovirals. DESIGN Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4 T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. METHODS HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4 T cells was quantified using fluorescence-activated cell sorting. RESULTS Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4 T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. CONCLUSIONS CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals.
Collapse
Affiliation(s)
- Sherrill L. Macura
- Research Service, V. A. Medical Center, White River Junction, VT
- Center for Devices and Radiological Health, Food and Drug Administration, Office of Device Evaluation, Silver Spring, MD
| | - Melissa J. Lathrop
- Research Service, V. A. Medical Center, White River Junction, VT
- Division of Select Agents and Toxins, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Susana N. Asin
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
| | - Christiane Rollenhagen
- Research Service, V. A. Medical Center, White River Junction, VT
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
29
|
Christensen MH, Paludan SR. Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 2016; 14:4-13. [PMID: 26972769 PMCID: PMC5214947 DOI: 10.1038/cmi.2016.06] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.
Collapse
Affiliation(s)
- Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
30
|
Movements of HIV-1 genomic RNA-APOBEC3F complexes and PKR reveal cytoplasmic and nuclear PKR defenses and HIV-1 evasion strategies. Virus Res 2016; 213:124-139. [PMID: 26626364 DOI: 10.1016/j.virusres.2015.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/21/2015] [Accepted: 11/21/2015] [Indexed: 11/22/2022]
Abstract
APOBEC3 cytidine deaminases and viral genomic RNA (gRNA) occur in virions, polysomes, and cytoplasmic granules, but have not been tracked together. Moreover, gRNA traffic is important, but the factors that move it into granules are unknown. Using in situ hybridization of transfected cells and protein synthesis inhibitors that drive mRNAs between locales, we observed APOBEC3F cotrafficking with gRNA without altering its movements. Whereas cells with little cytoplasmic gRNA were translationally active and accumulated Gag, suprathreshold amounts induced autophosphorylation of the cytoplasmic double-stranded RNA (dsRNA)-dependent protein kinase (PKR), causing eIF2α phosphorylation, protein synthesis suppression, and gRNA sequestration in stress granules. Additionally, we confirmed recent evidence that PKR is activated by chromosome-associated cellular dsRNAs after nuclear membranes disperse in prophase. By arresting cells in G2, HIV-1 blocks this mechanism for PKR activation and eIF2α phosphorylation. However, cytopathic membrane damage in CD4- and coreceptor-positive cultures infected with laboratory-adapted fusogenic HIV-1LAI eventually enabled PKR entry and activation in interphase nuclei. These results reveal multiple stages in the PKR-HIV-1 battleground that culminate in cell death. We discuss evidence suggesting that HIV-1s evolve in vivo to prevent or delay PKR activation by all these mechanisms.
Collapse
|
31
|
Host Response in HIV Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Dai M, Wang X, Li JL, Zhou Y, Sang M, Liu JB, Wu JG, Ho WZ. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages. FASEB J 2015; 29:4978-88. [PMID: 26296370 DOI: 10.1096/fj.15-273128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.
Collapse
Affiliation(s)
- Ming Dai
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jie-Liang Li
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yu Zhou
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ming Sang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jin-Biao Liu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jian-Guo Wu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|