1
|
Han D, Lu X, Yin W, Fu H, Zhang X, Cheng L, Liu F, Jin C, Tian X, Xie Y, Wu N. Activation of NRF2 blocks HIV replication and apoptosis in macrophages. Heliyon 2022; 9:e12575. [PMID: 36691556 PMCID: PMC9860420 DOI: 10.1016/j.heliyon.2022.e12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/30/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Abnormal oxidative stress caused by human immunodeficiency virus (HIV) infection affects viral replication and causes non-acquired immune deficiency syndrome-related complications in infected individuals. The transcription factor NFE2-related factor 2 (NRF2), a key regulator of oxidative stress, responds to abnormal oxidative stress by regulating the expression of NRF2-dependent cytoprotective genes. The present study aimed to determine whether inhibition of oxidative stress could control HIV replication and improve cell survival. In this study, the NRF2 activator, methyl bardoxolone, was used to treat cells for HIV infection. The effects on HIV replication and apoptosis pathways were confirmed by NRF2 activation or knockdown. The results showed that NRF2 activation could block HIV replication in macrophages before the integration phase and inhibited the expression of apoptotic pathways in virus-exposed macrophages. The study presents an unconventional anti-viral strategy of activation antioxidant response for HIV infection blocking.
Collapse
Affiliation(s)
- Dating Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wanpeng Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Haijing Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Fuming Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yiwen Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China,Corresponding author.
| |
Collapse
|
2
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
3
|
Abstract
Macrophages are one of the major targets of Human Immunodeficiency virus 1 (HIV-1) and play crucial roles in viral dissemination and persistence during AIDS progression. Here, we reveal the dynamic podosome-mediated entry of HIV-1 into macrophages. Inhibition of podosomes prevented HIV-1 entry into macrophages, while stimulation of podosome formation promoted viral entry. Single-virus tracking revealed the temporal and spatial mechanism of the dynamic podosome-mediated viral entry process. The core and ring structures of podosomes played complex roles in viral entry. The HIV coreceptor, CCR5, was recruited to form specific clusters at the podosome ring, where it participated in viral entry. The podosome facilitated HIV-1 entry with a rotation mode triggered by dynamic actin. Our discovery of this novel HIV-1 entry route into macrophages, mediated by podosomes critical for cell migration and tissue infiltration, provides a new view of HIV infection and pathogenesis, which may assist in the development of new antiviral strategies.IMPORTANCEMacrophages are motile leukocytes and play critical roles in HIV-1 infection and AIDS progression. Podosomes, as small dynamic adhesion microdomains driven by the dynamic actin cytoskeleton, are mainly involved in cell migration of macrophages. Herein, we found that HIV-1 uses dynamic podosomes to facilitate its entry into macrophages. Single-virus imaging coupled with drug assays revealed the mechanism underlying the podosome-mediated route of HIV-1 entry into macrophages, including the dynamic relationship between the viral particles and the podosome core and ring structures, the CCR5 coreceptor. The dynamic podosome-mediated entry of HIV-1 into macrophages will be very significant for HIV-1 pathogenesis, especially for viral dissemination via macrophage migration and tissue infiltration. Thus, we report a novel HIV-1 entry route into macrophages mediated by podosomes, which extends our understanding of HIV infection and pathogenesis.
Collapse
|
4
|
Jerebtsova M, Ahmad A, Niu X, Rutagarama O, Nekhai S. HIV-1 Transcription Inhibitor 1E7-03 Restores LPS-Induced Alteration of Lung Leukocytes' Infiltration Dynamics and Resolves Inflammation in HIV Transgenic Mice. Viruses 2020; 12:v12020204. [PMID: 32059509 PMCID: PMC7077267 DOI: 10.3390/v12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected individuals treated with anti-retroviral therapy often develop chronic non-infectious lung disease. To determine the mechanism of HIV-1-associated lung disease we evaluated the dynamics of lung leukocytes in HIV-1 transgenic (Tg) mice with integrated HIV-1 provirus. In HIV-Tg mice, lipopolysacharide (LPS) induced significantly higher levels of neutrophil infiltration in the lungs compared to wild-type (WT) mice. In WT mice, the initial neutrophil infiltration was followed by macrophage infiltration and fast resolution of leukocytes infiltration. In HIV-Tg mice, resolution of lung infiltration by both neutrophils and macrophages was significantly delayed, with macrophages accumulating in the lumen of lung capillaries resulting in a 45% higher rate of mortality. Trans-endothelial migration of HIV-Tg macrophages was significantly reduced in vitro and this reduction correlated with lower HIV-1 gene expression. HIV-1 transcription inhibitor, 1E7-03, enhanced trans-endothelial migration of HIV-Tg macrophages in vitro, decreased lung neutrophil infiltration in vivo, and increased lung macrophage levels in HIV-Tg mice. Moreover, 1E7-03 reduced levels of inflammatory IL-6 cytokine, improved bleeding score and decreased lung injury. Together this indicates that inhibitors of HIV-1 transcription can correct abnormal dynamics of leukocyte infiltration in HIV-Tg, pointing to the utility of transcription inhibition in the treatment of HIV-1 associated chronic lung disease.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA;
- Correspondence: (M.J.); (S.N.)
| | - Asrar Ahmad
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA; (A.A.); (X.N.)
| | - Xiaomei Niu
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA; (A.A.); (X.N.)
| | - Ornela Rutagarama
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA;
| | - Sergei Nekhai
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA;
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA; (A.A.); (X.N.)
- Department of Medicine, Howard University, Washington, DC 20059, USA
- Correspondence: (M.J.); (S.N.)
| |
Collapse
|
5
|
Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep 2018; 21:141-153. [PMID: 28978468 DOI: 10.1016/j.celrep.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophages are heterogeneous immune cells with distinct origins, phenotypes, functions, and tissue localization. Their susceptibility to HIV-1 is subject to variations from permissiveness to resistance, owing in part to regulatory microRNAs. Here, we used RNA sequencing (RNA-seq) to examine the expression of >400 microRNAs in productively infected and bystander cells of HIV-1-exposed macrophage cultures. Two microRNAs upregulated in bystander macrophages, miR-221 and miR-222, were identified as negative regulators of CD4 expression and CD4-mediated HIV-1 entry. Both microRNAs were enhanced by tumor necrosis factor alpha (TNF-α), an inhibitor of CD4 expression. MiR-221/miR-222 inhibitors recovered HIV-1 entry in TNF-α-treated macrophages by enhancing CD4 expression and increased HIV-1 replication and spread in macrophages by countering TNF-α-enhanced miR-221/miR-222 expression in bystander cells. In line with these findings, HIV-1-resistant intestinal myeloid cells express higher levels of miR-221 than peripheral blood monocytes. Thus, miR-221/miR-222 act as effectors of the antiviral host response activated during macrophage infection that restrict HIV-1 entry.
Collapse
|
6
|
Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How Might They Be Implicated in the Development of Invasive Salmonella Typhimurium? Front Immunol 2018; 9:531. [PMID: 29628924 PMCID: PMC5876300 DOI: 10.3389/fimmu.2018.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and kills T cells, profoundly damaging the host-specific immune response. The virus also integrates into memory T cells and long-lived macrophages, establishing chronic infections. HIV-1 infection impairs the functions of macrophages both in vivo and in vitro, which contributes to the development of opportunistic diseases. Non-typhoidal Salmonella enterica serovar Typhimurium has been identified as the most common cause of bacterial bloodstream infections in HIV-infected adults. In this review, we report how the functions of macrophages are impaired post HIV infection; introduce what makes invasive Salmonella Typhimurium specific for its pathogenesis; and finally, we discuss why these bacteria may be particularly adapted to the HIV-infected host.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
7
|
Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR. Methods 2017; 134-135:98-105. [PMID: 29197654 DOI: 10.1016/j.ymeth.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance.
Collapse
|
8
|
Interleukin 1-Beta (IL-1β) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 74:213-220. [PMID: 27654812 DOI: 10.1097/qai.0000000000001181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV coinfection because immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time-points before TB recurrence were stimulated with ligands for Toll-like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multicolor flow cytometry and intracellular cytokine staining were used to detect IL-1β, TNF-α, IL-12, and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS Elevated production of IL-1β from monocytes following TLR-2, TLR-4, and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs, respectively). CONCLUSION Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB.
Collapse
|
9
|
Gomez AM, Ouellet M, Deshiere A, Breton Y, Tremblay MJ. HIV-1-Mediated BAFF Secretion in Macrophages Does Not Require Endosomal TLRs, Type-I IFN, and Nef, but Depends on the Cellular Phenotype Status. THE JOURNAL OF IMMUNOLOGY 2016; 196:3806-17. [PMID: 27022194 DOI: 10.4049/jimmunol.1501249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
HIV-1 infection is characterized by persistent viral replication, chronic immune activation, and CD4(+) T cell depletion. Moreover, several immune dysfunctions are observed in cells that are not targeted by the virus, such as B cells. Some B cell abnormalities include hypergammaglobulinemia, nonspecific B cell activation, class switching, increased cell turnover, breakage of tolerance, and a loss of the capacity to generate and maintain memory. Several cytokines and growth factors that are increased in the serum of HIV-1-infected individuals have been suggested to directly or indirectly trigger B cell activation, and one of these is BAFF. In this study, we investigate the ability of fully competent (R5-tropic) HIV-1 to induce BAFF production by monocyte-derived macrophages (MDMs). We demonstrate here that HIV-1 drives BAFF production in MDMs in a type-I IFN- and TLR-independent manner. Moreover, we determine that HIV-1 Nef accessory protein is dispensable in BAFF upregulation as a nef-deleted HIV-1 strain is still able to increase BAFF at levels similar to the wild type strain. Finally, we show that the macrophage phenotype status affects HIV-1 replication and BAFF induction, as both were abrogated in MDMs displaying a M1 phenotype. This study provides new useful information about the increased levels of BAFF observed during HIV-1 infection and highlights the importance of macrophages as a source of BAFF, a phenomenon that might contribute to B cell dysfunctions at inflammatory tissue sites in infected individuals.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Michel Ouellet
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Yann Breton
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
10
|
Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. Proc Natl Acad Sci U S A 2015; 112:E3265-73. [PMID: 26056317 DOI: 10.1073/pnas.1500656112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.
Collapse
|
11
|
Guendel I, Iordanskiy S, Sampey GC, Van Duyne R, Calvert V, Petricoin E, Saifuddin M, Kehn-Hall K, Kashanchi F. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells. J Neurovirol 2015; 21:257-75. [PMID: 25672887 DOI: 10.1007/s13365-015-0323-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alidjinou EK, Bocket L, Hober D. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods. ACTA ACUST UNITED AC 2014; 63:53-9. [PMID: 25201144 DOI: 10.1016/j.patbio.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes.
Collapse
Affiliation(s)
- E K Alidjinou
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - L Bocket
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - D Hober
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France.
| |
Collapse
|
13
|
Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. MOLECULAR AND CELLULAR THERAPIES 2014; 2:10. [PMID: 26056579 PMCID: PMC4452058 DOI: 10.1186/2052-8426-2-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus (HIV) is still a serious global health concern responsible for more than 25 million deaths in last three decades. More than 34 million people are living with HIV infection. Macrophages and CD4+ T cells are the principal targets of HIV-1. The pathogenesis of HIV-1 takes different routes in macrophages and CD4+ T cells. Macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time. In addition, macrophages being present in every organ system thus can disseminate virus to the different anatomical sites leading to the formation of viral sanctuaries. Complete cure of HIV-1 needs better understanding of viral pathogenesis in these reservoirs and implementation of knowledge into robust therapeutic products. In this review we will focus on the unique relationship between HIV-1 and macrophages. Furthermore, we will describe how successful antiretroviral therapy (ART) is in suppressing HIV and novel molecular and cellular strategies against HIV-1 in macrophages.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
| | - Georges Herbein
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France ; Department of Virology, Hôpital Saint-Jacques, CHRU Besançon, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|
14
|
Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J. SAMHD1 Host Restriction Factor: A Link with Innate Immune Sensing of Retrovirus Infection. J Mol Biol 2013; 425:4981-94. [DOI: 10.1016/j.jmb.2013.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023]
|
15
|
Genetically modified hematopoietic stem cell transplantation for HIV-1-infected patients: can we achieve a cure? Mol Ther 2013; 22:257-264. [PMID: 24220323 DOI: 10.1038/mt.2013.264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/07/2013] [Indexed: 12/27/2022] Open
Abstract
The cure of a human immunodeficiency virus (HIV)-1-infected patient following allogeneic transplantation from a CCR5-null donor and potential cure of two patients transplanted with CCR5 wild-type hematopoietic stem cells (HSC) have provided renewed optimism that a potential alternative to conventional antiretroviral therapy (ART) is forthcoming. While allogeneic grafts have thus far suggested complete eradication of viral reservoirs, it has yet to be observed following autologous HSC transplantation. Development of curative autologous transplantation strategies would significantly increase the number of treatable patients, eliminating the need for matched donors and reducing the risks of adverse events. Recent studies suggest gene therapy may provide a mechanism for developing curative therapies. Expression of cellular/artificial restriction factors or disruption of CCR5 has been shown to limit viral replication and provide protection of genetically modified cells. However, significant obstacles remain with regards to the depletion of established viral reservoirs in an autologous transplantation setting devoid of the "allo-effect". Here, we discuss results from early-stage clinical trials and recent findings in animal models of gene modified HSC transplantation. Finally, we propose innovative combination therapies that may aid in the reduction and/or elimination of viral reservoirs in HIV-1-infected patients and promote the artificial development of a natural controller phenotype.
Collapse
|
16
|
Duncan CJ, Russell RA, Sattentau QJ. High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS 2013; 27:2201-6. [PMID: 24005480 PMCID: PMC4714465 DOI: 10.1097/qad.0b013e3283632ec4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Few studies have examined the efficacy of antiretroviral therapy (ART) in the context of cell-to-cell transmission. We aimed to determine whether the activity of ART is limited by the mode of HIV-1 spread between cells and the type of immune cell implicated in transmission, or is independent of these variables. DESIGN ART activity was evaluated in primary cells using in-vitro cell-free and cell to-cell HIV-1 infection systems. METHODS HIV-1 cell-free or cell-to-cell transmission between infected monocyte-derived macrophages (MDMs) and autologous target CD4+ T cells was measured in the presence or absence of reverse transcriptase and integrase inhibitors. Viral infection was evaluated using luciferase-reporter infectious molecular HIV-1 clones carrying macrophage-tropic envelope glycoproteins (Envs). Cell-free HIV-1 was titrated to yield different multiplicities of CD4+ T-cell infection. RESULTS Whereas cell-free infection of CD4+ T cells was substantially reduced by all inhibitors, cell-to-cell spread from macrophages to CD4+ T cells was largely resistant to inhibition. However, when multiplicity of infection was controlled for, we observed no difference in antiretroviral inhibition of cell-to-cell or cell-free infection. CONCLUSION Cell-to-cell spread of HIV-1 reduces the probability of antiretroviral inhibition, but it is the number of infectious viruses transferred between cells rather than the specific mode of viral spread or transmitting cell type that governs antiretroviral activity. High multiplicity infection in vivo is more likely to occur by cell-to-cell transmission, and these data will inform use of ART against viral reservoirs.
Collapse
Affiliation(s)
- Christopher J.A. Duncan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Rebecca A. Russell
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Quentin J. Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
17
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The persistence of HIV within infected CD4 T cells is a major obstacle to eradication, and assessment of the strategies to reduce HIV reservoirs is one of the major challenges. Measuring HIV reservoirs accurately will be necessary to assess those strategies. The objective of this review is to present the most recent studies that may help to define the best markers to measure HIV reservoirs. RECENT FINDINGS Recent findings have shown that multiple assays can be used to quantify the different analytes that reflect the HIV reservoirs. They have provided new insights, but lack of standardization has made cross-comparisons of data difficult. No single best assay for measuring HIV reservoirs has been identified and these assays often address different questions, such as the size of the reservoirs, the composition of the reservoirs, or the capacity of latent reservoirs to produce virus. A consensus on what values reflect robust conclusions will have to wait for the generation of additional results. SUMMARY In conclusion, there is a compelling need for investigators to optimize assays and share protocol reagents and specimens to permit the validation, comparison, and standardization of techniques. There is an important need for validated, high-throughput, sensitive, and accurate assays that can detect changes in HIV reservoir size in order to assess the impact of candidate therapies.
Collapse
Affiliation(s)
- Christine Rouzioux
- Department of Virology, Necker Hospital, Paris Descartes University, Paris-Sorbonne-Cité, Paris, France.
| | | |
Collapse
|
19
|
Rodriguez-Garcia M, Biswas N, Patel MV, Barr FD, Crist SG, Ochsenbauer C, Fahey JV, Wira CR. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection. PLoS One 2013; 8:e62069. [PMID: 23614015 PMCID: PMC3629151 DOI: 10.1371/journal.pone.0062069] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Spadaro F, Cecchetti S, Purificato C, Sabbatucci M, Podo F, Ramoni C, Gessani S, Fantuzzi L. Nuclear phosphoinositide-specific phospholipase C β1 controls cytoplasmic CCL2 mRNA levels in HIV-1 gp120-stimulated primary human macrophages. PLoS One 2013; 8:e59705. [PMID: 23555755 PMCID: PMC3610878 DOI: 10.1371/journal.pone.0059705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/17/2013] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of CCL2 from macrophages. In turn, this chemokine acts as an autocrine factor enhancing viral replication. In this study, we show for the first time that phosphoinositide-specific phospholipase C (PI-PLC) is required for the production of CCL2 triggered by gp120 in macrophages. Using a combination of confocal laser-scanner microscopy, pharmacologic inhibition, western blotting and fluorescence-activated cell sorter analysis, we demonstrate that gp120 interaction with CCR5 leads to nuclear localization of the PI-PLC β1 isozyme mediated by mitogen-activated protein kinase ERK-1/2. Notably, phosphatidylcholine-specific phospholipase C (PC-PLC), previously reported to be required for NF-kB-mediated CCL2 production induced by gp120 in macrophages, drives both ERK1/2 activation and PI-PLC β1 nuclear localization induced by gp120. PI-PLC β1 activation through CCR5 is also triggered by the natural chemokine ligand CCL4, but independently of ERK1/2. Finally, PI-PLC inhibition neither blocks gp120-mediated NF-kB activation nor overall accumulation of CCL2 mRNA, whereas it decreases CCL2 transcript level in the cytoplasm. These results identify nuclear PI-PLC β1 as a new intermediate in the gp120-triggered PC-PLC-driven signal transduction pathway leading to CCL2 secretion in macrophages. The finding that a concerted gp120-mediated signaling involving both PC- and PI-specific PLCs is required for the expression of CCL2 in macrophages suggests that this signal transduction pathway may also be relevant for the modulation of viral replication in these cells. Thus, this study may contribute to identify novel targets for therapeutic intervention in HIV-1 infection.
Collapse
Affiliation(s)
- Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Purificato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Sabbatucci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Franca Podo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Ramoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
21
|
Characterization of HIV-1 infection and innate sensing in different types of primary human monocyte-derived macrophages. Mediators Inflamm 2013; 2013:208412. [PMID: 23431237 PMCID: PMC3569920 DOI: 10.1155/2013/208412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
Macrophages play an important role in human immunodeficiency virus (HIV) pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs) generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF). Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-)differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.
Collapse
|
22
|
Abstract
TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV-TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs.
Collapse
Affiliation(s)
- Naomi F Walker
- Infectious Diseases & Immunity, Imperial College London, W12 0NN, UK
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
- MRC National Institute for Medical Research, London, NW7 1AA, UK
| |
Collapse
|
23
|
Kumar S, Jin M, Ande A, Sinha N, Silverstein PS, Kumar A. Alcohol consumption effect on antiretroviral therapy and HIV-1 pathogenesis: role of cytochrome P450 isozymes. Expert Opin Drug Metab Toxicol 2012; 8:1363-75. [PMID: 22871069 PMCID: PMC4033313 DOI: 10.1517/17425255.2012.714366] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Alcohol consumption, which is highly prevalent in HIV-infected individuals, poses serious concerns in terms of rate of acquisition of HIV-1 infection, HIV-1 replication, response to highly active antiretroviral therapy (HAART) and AIDS/neuroAIDS progression. However, little is known about the mechanistic pathways by which alcohol exerts these effects, especially with respect to HIV-1 replication and the patient's response to HAART. AREAS COVERED In this review, the authors discuss the effects of alcohol consumption on HIV-1 pathogenesis and its effect on HAART. They also describe the role of cytochrome P450 2E1 (CYP2E1) in alcohol-mediated oxidative stress and toxicity, and the role of CYP3A4 in the metabolism of drugs used in HAART (i.e., protease inhibitors (PI) and non-nucleoside reverse transcriptase inhibitors (NNRTI)). Based on the most recent findings the authors discuss the role of CYP2E1 in alcohol-mediated oxidative stress in monocytes/macrophages and astrocytes, as well as the role of CYP3A4 in alcohol-PI interactions leading to altered metabolism of PI in these cells. EXPERT OPINION The authors propose that alcohol and PI/NNRTI interact synergistically in monocytes/macrophages and astrocytes through the CYP pathway leading to an increase in oxidative stress and a decrease in response to HAART. Ultimately, this exacerbates HIV-1 pathogenesis and neuroAIDS.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri Kansas City, School of Pharmacy, 2464 Charlotte St., Kansas City, MO 64108, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Tan Gana NH, Onuki T, Victoriano AFB, Okamoto T. MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol 2012; 3:306. [PMID: 22936931 PMCID: PMC3426883 DOI: 10.3389/fmicb.2012.00306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/01/2012] [Indexed: 12/15/2022] Open
Abstract
The microRNA pathways govern complex interactions of the host and virus at the transcripts level that regulate cellular responses, viral replication and viral pathogenesis. As a group of single-stranded short non-coding ribonucleotides (ncRNAs), the microRNAs complement their messenger RNA (mRNA) targets to effect post-transcriptional or translational gene silencing. Previous studies showed the ability of human immunodeficiency virus 1 (HIV-1) to encode microRNAs which modify cellular defence mechanisms thus creating an environment favorable for viral invasion and replication. In corollary, cellular microRNAs were linked to the alteration of HIV-1 infection at different stages of replication and latency. As evidences further establish the regulatory involvement of both cellular and viral microRNA in HIV-1-host interactions, there is a necessity to organize this information. This paper would present current and emerging knowledge on these multi-dimensional interactions that may facilitate the design of microRNAs as effective antiretroviral reagents.
Collapse
Affiliation(s)
- Neil H Tan Gana
- Department of Molecular and Cell Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | | | | | | |
Collapse
|
25
|
Williams JP, Frater J. Current understanding in HIV immunopathology and treatment. QJM 2012; 105:725-8. [PMID: 22294649 DOI: 10.1093/qjmed/hcs019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J P Williams
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | | |
Collapse
|
26
|
Abstract
In the past few years, major advances have been achieved in understanding the nature and the maintenance mechanisms of the HIV reservoir. Although antiretroviral therapy works well in a majority of patients, it faces problems of compliance, resistance, toxicity, and cost. In most cases, the remaining HIV reservoir precluding antiretroviral cessation consists of a tiny cell pool that is long-lived and inaccessible to current therapies. New strategies are therefore needed to either purge or control this residual reservoir and finally stop antiretroviral drugs. Both ways leading to a functional or a sterilizing cure are currently pursued. Several molecules have been identified to achieve these goals and some of them have already entered clinical testing in humans. In this article, we review recent findings on the biology of HIV persistence and detail how HIV eradication trials should be designed in the near future.
Collapse
|
27
|
Interplay between HIV-1 and Host Genetic Variation: A Snapshot into Its Impact on AIDS and Therapy Response. Adv Virol 2012; 2012:508967. [PMID: 22666249 PMCID: PMC3361994 DOI: 10.1155/2012/508967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/26/2012] [Accepted: 03/11/2012] [Indexed: 11/18/2022] Open
Abstract
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response.
Collapse
|
28
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|