1
|
Nel C, Frater J. Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination. Front Immunol 2024; 15:1478703. [PMID: 39575236 PMCID: PMC11578998 DOI: 10.3389/fimmu.2024.1478703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Although HIV infection can be managed with antiretroviral drugs, there is no cure and therapy has to be taken for life. Recent successes in animal models with HIV-specific broadly neutralising antibodies (bNAbs) have led to long-term virological remission and even possible cures in some cases. This has resulted in substantial investment in human studies to explore bNAbs as a curative intervention for HIV infection. Emerging data are encouraging, but suggest that combinations of bNAbs with other immunomodulatory agents may be needed to induce and sustain long-term viral control. As a result, a number of clinical trials are currently underway exploring these combinations. If successful, the impact for the millions of people living with HIV could be substantial. Here, we review the background to the use of bNAbs in the search for an HIV cure and how different adjunctive agents might be used together to enhance their efficacy.
Collapse
Affiliation(s)
- Carla Nel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
2
|
Adenovirus DNA Polymerase Loses Fidelity on a Stretch of Eleven Homocytidines during Pre-GMP Vaccine Preparation. Vaccines (Basel) 2022; 10:vaccines10060960. [PMID: 35746566 PMCID: PMC9227658 DOI: 10.3390/vaccines10060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we invented and construct novel candidate HIV-1 vaccines. Through genetic and protein engineering, we unknowingly constructed an HIV-1-derived transgene with a homopolymeric run of 11 cytidines, which was inserted into an adenovirus vaccine vector. Here, we describe the virus rescue, three rounds of clonal purification and preparation of good manufacturing practise (GMP) starting material assessed for genetic stability in five additional virus passages. Throughout these steps, quality control assays indicated the presence of the transgene in the virus genome, expression of the correct transgene product and immunogenicity in mice. However, DNA sequencing of the transgene revealed additional cytidines inserted into the original 11-cytidine region, and the GMP manufacture had to be aborted. Subsequent analyses indicated that as little as 1/25th of the virus dose used for confirmation of protein expression (106 cells at a multiplicity of infection of 10) and murine immunogenicity (108 infectious units per animal) met the quality acceptance criteria. Similar frameshifts in the expressed proteins were reproduced in a one-reaction in vitro transcription/translation employing phage T7 polymerase and E. coli ribosomes. Thus, the most likely mechanism for addition of extra cytidines into the ChAdOx1.tHIVconsv6 genome is that the adenovirus DNA polymerase lost its fidelity on a stretch of 11 cytidines, which informs future adenovirus vaccine designs.
Collapse
|
3
|
Abstract
In this review, we address issues that relate to the rapid "Warp Speed" development of vaccines to counter the COVID-19 pandemic. We review the antibody response that is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of humans and how it may inform vaccine research. The isolation and properties of neutralizing monoclonal antibodies from COVID-19 patients provide additional information on what vaccines should try to elicit. The nature and longevity of the antibody response to coronaviruses are relevant to the potency and duration of vaccine-induced immunity. We summarize the immunogenicity of leading vaccine candidates tested to date in animals and humans and discuss the outcome and interpretation of virus challenge experiments in animals. By far the most immunogenic vaccine candidates for antibody responses are recombinant proteins, which were not included in the initial wave of Warp Speed immunogens. A substantial concern for SARS-CoV-2 vaccines is adverse events, which we review by considering what was seen in studies of SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) vaccines. We conclude by outlining the possible outcomes of the Warp Speed vaccine program, which range from the hoped-for rapid success to a catastrophic adverse influence on vaccine uptake generally.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Med 2020; 17:e1003117. [PMID: 32442195 PMCID: PMC7244095 DOI: 10.1371/journal.pmed.1003117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA plasmids promise a pragmatic alternative to viral vectors for prime-boost HIV-1 vaccines. We evaluated DNA plasmid versus canarypox virus (ALVAC) primes in 2 randomized, double-blind, placebo-controlled trials in southern Africa with harmonized trial designs. HIV Vaccine Trials Network (HVTN) 111 tested DNA plasmid prime by needle or needleless injection device (Biojector) and DNA plasmid plus gp120 protein plus MF59 adjuvant boost. HVTN 100 tested ALVAC prime and ALVAC plus gp120 protein plus MF59 adjuvant boost (same protein/adjuvant as HVTN 111) by needle. METHODS AND FINDINGS The primary endpoints for this analysis were binding antibody (bAb) responses to HIV antigens (gp120 from strains ZM96, 1086, and TV1; variable 1 and 2 [V1V2] regions of gp120 from strains TV1, 1086, and B.CaseA, as 1086 V1V2 and B.CaseA were correlates of risk in the RV144 efficacy trial), neutralizing antibody (nAb) responses to pseudoviruses TV1c8.2 and MW925.26, and cellular responses to vaccine-matched antigens (envelope [Env] from strains ZM96, 1086, and TV1; and Gag from strains LAI and ZM96) at month 6.5, two weeks after the fourth vaccination. Per-protocol cohorts included vaccine recipients from HVTN 100 (n = 186, 60% male, median age 23 years) enrolled between February 9, 2015, and May 26, 2015 and from HVTN 111 (n = 56, 48% male, median age 24 years) enrolled between June 21, 2016, and July 13, 2017. IgG bAb response rates were 100% to 3 Env gp120 antigens in both trials. Response rates to V1V2 were lower and similar in both trials except to vaccine-matched 1086 V1V2, with rates significantly higher for the DNA-primed regimen than the ALVAC-primed regimen: 96.6% versus 72.7% (difference = 23.9%, 95% CI 15.6%-32.2%, p < 0.001). Among positive responders, bAb net mean fluorescence intensity (MFI) was significantly higher with the DNA-primed regimen than ALVAC-primed for 1086 V1V2 (geometric mean [GM] 2,833.3 versus 1,200.9; ratio = 2.36, 95% CI 1.42-3.92, p < 0.001) and B.CaseA V1V2 (GM 2314.0 versus 744.6, ratio = 3.11, 95% CI 1.51-6.38, p = 0.002). nAb response rates were >98% in both trials, with significantly higher 50% inhibitory dilution (ID50) among DNA-primed positive responders (n = 53) versus ALVAC-primed (n = 182) to tier 1A MW965.26 (GM 577.7 versus 265.7, ratio = 2.17, 95% CI 1.67-2.83, p < 0.001) and to TV1c8.2 (GM 187.3 versus 100.4, ratio = 1.87, 95% CI 1.48-2.35, p < 0.001). CD4+ T-cell response rates were significantly higher with DNA plasmid prime via Biojector than ALVAC prime (91.4% versus 52.8%, difference = 38.6%, 95% CI 20.5%-56.6%, p < 0.001 for ZM96.C; 88.0% versus 43.1%, difference = 44.9%, 95% CI 26.7%-63.1%, p < 0.001 for 1086.C; 55.5% versus 2.2%, difference = 53.3%, 95% CI 23.9%-82.7%, p < 0.001 for Gag LAI/ZM96). The study's main limitations include the nonrandomized comparison of vaccines from 2 different trials, the lack of data on immune responses to other non-vaccine-matched antigens, and the uncertain clinical significance of the observed immunological effects. CONCLUSIONS In this study, we found that further investigation of DNA/protein regimens is warranted given enhanced immunogenicity to the V1V2 correlates of decreased HIV-1 acquisition risk identified in RV144, the only HIV vaccine trial to date to show any efficacy.
Collapse
|
5
|
Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019; 37:3400-3408. [PMID: 30979571 DOI: 10.1016/j.vaccine.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Abstract
In the past when large investments have been made in tackling narrow scientific challenges, the enormous expansion in our knowledge in one small area has had a spill-over effect on research and treatment of other diseases. The large investment in HIV vaccine development in recent years has the potential for such an effect on vaccine development for other diseases. HIV vaccine developers have experienced repeated failure using the standard approaches to vaccine development. This has forced them to consider immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immunity. It has advanced the development of many novel vaccine vectors and vehicles that are now available for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms and community engagement on vaccine development. These developments and considerations have implications for vaccinology more generally. Some suggestions are made for investigators working on other "hard-to-develop" vaccines.
Collapse
|
6
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
7
|
Çuburu N, Khan S, Thompson CD, Kim R, Vellinga J, Zahn R, Lowy DR, Scheper G, Schiller JT. Adenovirus vector-based prime-boost vaccination via heterologous routes induces cervicovaginal CD8 + T cell responses against HPV16 oncoproteins. Int J Cancer 2017; 142:1467-1479. [PMID: 29159802 DOI: 10.1002/ijc.31166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Recent advances in immunotherapy against cancer underscore the importance of T lymphocytes and tumor microenvironment, but few vaccines targeting cancer have been approved likely due in part to the dearth of common tumor antigens, insufficient immunogenicity and the evolution of immune evasion mechanisms during the progression to malignancy. Human papillomaviruses (HPVs) are the primary etiologic agents of cervical cancer and progression from persistent HPV-infection to cervical intraepithelial lesions and eventually cancer requires persistent expression of the oncoproteins E6 and E7. This offers the opportunity to specifically target these virus-specific antigens for vaccine-induced clearance of infected cells before cancers develop. Here we have evaluated the immunogenicity of Adenovirus Types 26 and 35 derived vectors expressing a fusion of HPV16 E6 and E7 oncoproteins after intramuscular (IM) and/or intravaginal (Ivag) immunization in mice. The adenovirus vectors were shown to transduce an intact cervicovaginal epithelium. IM prime followed by Ivag boost maximized the induction and trafficking of HPV-specific CD8+ T cells producing IFN-γ and TNF-α to the cervicovaginal tract. Importantly, the cervicovaginal CD8+ T cells expressed CD69 and CD103; hallmarks of intraepithelial tissue-resident memory CD8+ T cells. This prime-boost strategy targeting heterologous locations also induced circulating HPV-specific CD8+ T cell responses. Our study prompts further evaluation of Ivag immunization with adenoviral vectors expressing modified E6 and E7 antigens for therapeutic vaccination against persistent HPV infection and cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
- Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Selina Khan
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Cynthia D Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rina Kim
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jort Vellinga
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gert Scheper
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Aikins ME, Bazzill J, Moon JJ. Vaccine nanoparticles for protection against HIV infection. Nanomedicine (Lond) 2017; 12:673-682. [PMID: 28244816 DOI: 10.2217/nnm-2016-0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of a successful vaccine against HIV is a major global challenge. Antiretroviral therapy is the standard treatment against HIV-1 infection. However, only 46% of the eligible people received the therapy in 2015. Furthermore, suboptimal adherence poses additional obstacles. Therefore, there is an urgent need for an HIV-1 vaccine. The most promising clinical trial to date is Phase III RV144, which for the first time demonstrated the feasibility of vaccine-mediated immune protection against HIV-1. Nevertheless, its 31% efficacy and limited durability underscore major hurdles. Here, we discuss recent progress in HIV-1 vaccine development with a special emphasis on nanovaccines, which are at the forefront of efforts to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Marisa E Aikins
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Bazzill
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Plotkin S. Foreword. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Lauer KB, Borrow R, Blanchard TJ. Multivalent and Multipathogen Viral Vector Vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00298-16. [PMID: 27535837 PMCID: PMC5216423 DOI: 10.1128/cvi.00298-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
Collapse
Affiliation(s)
- Katharina B Lauer
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Ray Borrow
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Thomas J Blanchard
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Consultant in Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool, United Kingdom
| |
Collapse
|
11
|
Clarke DK, Hendry RM, Singh V, Rose JK, Seligman SJ, Klug B, Kochhar S, Mac LM, Carbery B, Chen RT. Live virus vaccines based on a vesicular stomatitis virus (VSV) backbone: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2016; 34:6597-6609. [PMID: 27395563 PMCID: PMC5220644 DOI: 10.1016/j.vaccine.2016.06.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viral and other microbial pathogens in their genome (so-called "chimeric virus vaccines"). Many such viral vector vaccines are now at various stages of clinical evaluation. Here, we introduce an attenuated form of recombinant vesicular stomatitis virus (rVSV) as a potential chimeric virus vaccine for HIV-1, with implications for use as a vaccine vector for other pathogens. The rVSV/HIV-1 vaccine vector was attenuated by combining two major genome modifications. These modifications acted synergistically to greatly enhance vector attenuation and the resulting rVSV vector demonstrated safety in sensitive mouse and non-human primate neurovirulence models. This vector expressing HIV-1 gag protein has completed evaluation in two Phase I clinical trials. In one trial the rVSV/HIV-1 vector was administered in a homologous two-dose regimen, and in a second trial with pDNA in a heterologous prime boost regimen. No serious adverse events were reported nor was vector detected in blood, urine or saliva post vaccination in either trial. Gag specific immune responses were induced in both trials with highest frequency T cell responses detected in the prime boost regimen. The rVSV/HIV-1 vector also demonstrated safety in an ongoing Phase I trial in HIV-1 positive participants. Additionally, clinical trial material has been produced with the rVSV vector expressing HIV-1 env, and Phase I clinical evaluation will initiate in the beginning of 2016. In this paper, we use a standardized template describing key characteristics of the novel rVSV vaccine vectors, in comparison to wild type VSV. The template facilitates scientific discourse among key stakeholders by increasing transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Clinical Trials, Phase I as Topic
- Drug Carriers
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Drug-Related Side Effects and Adverse Reactions/pathology
- Genetic Vectors
- Humans
- Primates
- Risk Assessment
- T-Lymphocytes/immunology
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vesiculovirus/genetics
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
| | - R Michael Hendry
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Vidisha Singh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA.
| | - John K Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Lisa Marie Mac
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Baevin Carbery
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Robert T Chen
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
12
|
Negri D, Blasi M, LaBranche C, Parks R, Balachandran H, Lifton M, Shen X, Denny T, Ferrari G, Vescio MF, Andersen H, Montefiori DC, Tomaras GD, Liao HX, Santra S, Haynes BF, Klotman ME, Cara A. Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Mol Ther 2016; 24:2021-2032. [PMID: 27455880 PMCID: PMC5154473 DOI: 10.1038/mt.2016.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/11/2016] [Indexed: 02/05/2023] Open
Abstract
The design of an effective HIV-1 vaccine remains a major challenge. Several vaccine strategies based on viral vectors have been evaluated in preclinical and clinical trials, with largely disappointing results. Integrase defective lentiviral vectors (IDLV) represent a promising vaccine candidate given their ability to induce durable and protective immune responses in mice after a single immunization. Here, we evaluated the immunogenicity of a SIV-based IDLV in nonhuman primates. Six rhesus monkeys were primed intramuscularly with IDLV-Env and boosted with the same vector after 1 year. A single immunization with IDLV-Env induced broad humoral and cellular immune responses that waned over time but were still detectable at 1 year postprime. The boost with IDLV-Env performed at 1 year from the prime induced a remarkable increase in both antibodies and T-cell responses. Antibody binding specificity showed a predominant cross-clade gp120-directed response. Monkeys' sera efficiently blocked anti-V2 and anti-CD4 binding site antibodies, neutralized the tier 1 MW965.26 pseudovirus and mediated antibody-dependent cellular cytotoxicity (ADCC). Durable polyfunctional Env-specific T-cell responses were also elicited. Our study demonstrates that an IDLV-Env-based vaccine induces functional, comprehensive, and durable immune responses in Rhesus macaques. These results support further evaluation of IDLV as a new HIV-1 vaccine delivery platform.
Collapse
Affiliation(s)
- Donatella Negri
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Blasi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Parks
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Michelle Lifton
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas Denny
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mary E Klotman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Andrea Cara
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
13
|
Kaveh DA, Garcia-Pelayo MC, Webb PR, Wooff EE, Bachy VS, Hogarth PJ. Parenteral adenoviral boost enhances BCG induced protection, but not long term survival in a murine model of bovine TB. Vaccine 2016; 34:4003-11. [PMID: 27317453 DOI: 10.1016/j.vaccine.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Boosting BCG using heterologous prime-boost represents a promising strategy for improved tuberculosis (TB) vaccines, and adenovirus (Ad) delivery is established as an efficacious boosting vehicle. Although studies demonstrate that intranasal administration of Ad boost to BCG offers optimal protection, this is not currently possible in cattle. Using Ad vaccine expressing the mycobacterial antigen TB10.4 (BCG/Ad-TB10.4), we demonstrate, parenteral boost of BCG immunised mice to induce specific CD8(+) IFN-γ producing T cells via synergistic priming of new epitopes. This induces significant improvement in pulmonary protection against Mycobacterium bovis over that provided by BCG when assessed in a standard 4week challenge model. However, in a stringent, year-long survival study, BCG/Ad-TB10.4 did not improve outcome over BCG, which we suggest may be due to the lack of additional memory cells (IL-2(+)) induced by boosting. These data indicate BCG-prime/parenteral-Ad-TB10.4-boost to be a promising candidate, but also highlight the need for further understanding of the mechanisms of T cell priming and associated memory using Ad delivery systems. That we were able to generate significant improvement in pulmonary protection above BCG with parenteral, rather than mucosal administration of boost vaccine is critical; suggesting that the generation of effective mucosal immunity is possible, without the risks and challenges of mucosal administration, but that further work to specifically enhance sustained protective immunity is required.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - M Carmen Garcia-Pelayo
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Paul R Webb
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Esen E Wooff
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Véronique S Bachy
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1)
| | - Philip J Hogarth
- Department of Bacteriology, Animal & Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom(1).
| |
Collapse
|
14
|
Aurisicchio L, Roscilli G, Marra E, Luberto L, Mancini R, La Monica N, Ciliberto G. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen. Hum Gene Ther 2016; 26:386-98. [PMID: 25869226 DOI: 10.1089/hum.2014.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.
Collapse
Affiliation(s)
| | | | | | - Laura Luberto
- 1 Takis srl, 00128 Rome, Italy .,2 Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia ," Catanzaro, Italy
| | - Rita Mancini
- 3 Department of Clinical and Molecular Medicine, University of Rome "La Sapienza ," Rome, Italy .,4 Laboratory of Research and Diagnostics, Department of Surgery "P. Valdoni," University of Rome "La Sapienza ," Rome, Italy
| | | | | |
Collapse
|
15
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
16
|
Ji Z, Xie Z, Wang Q, Zhang Z, Gong T, Sun X. A Prime-Boost Strategy Combining Intravaginal and Intramuscular Administration of Homologous Adenovirus to Enhance Immune Response Against HIV-1 in Mice. Hum Gene Ther 2016; 27:219-29. [PMID: 26715124 DOI: 10.1089/hum.2015.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immune responses to HIV in the vaginal tract effectively trigger both systemic and mucosal protection, providing a double layer of defense. However, recombinant adenoviral (rAd) vectors delivered intravaginally do not effectively penetrate the mucus layer and vaginal epithelium, and instead are rapidly cleared. To overcome these barriers, we previously synthesized a novel cationic polyethylene glycol derivative that can self-assemble into nanocomplexes with rAd. These nanocomplexes can help rAd bypass the mucus layer and enhance mucosal immune response to the encoded antigen. However, the resulting cellular and humoral responses were still lower than those elicited by single intramuscular injection of rAd. Therefore, in the present study we investigated a new vaccination strategy involving intravaginal priming with our nanocomplexes, followed by an intramuscular boost with rAd-gag. Mice immunized in this way showed more potent humoral and cellular responses, as well as higher IgA levels, than animals primed and boosted intravaginally with nanocomplexes. These results show the promise of a prime-boost strategy for developing vaccine candidates against HIV.
Collapse
Affiliation(s)
- Zhonghua Ji
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Zhaolu Xie
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Qin Wang
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Rosa DS, Ribeiro SP, Fonseca SG, Almeida RR, Santana VC, Apostólico JDS, Kalil J, Cunha-Neto E. Multiple Approaches for Increasing the Immunogenicity of an Epitope-Based Anti-HIV Vaccine. AIDS Res Hum Retroviruses 2015; 31:1077-88. [PMID: 26149745 DOI: 10.1089/aid.2015.0101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4(+) T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8(+) T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4(+) T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4(+) T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection.
Collapse
Affiliation(s)
- Daniela Santoro Rosa
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Juliana de Souza Apostólico
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
18
|
Dunkel A, Shen S, LaBranche CC, Montefiori D, McGettigan JP. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Res Hum Retroviruses 2015; 31:1126-38. [PMID: 25848984 DOI: 10.1089/aid.2014.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.
Collapse
Affiliation(s)
- Amber Dunkel
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shixue Shen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - James P. McGettigan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Corey L, Gilbert PB, Tomaras GD, Haynes BF, Pantaleo G, Fauci AS. Immune correlates of vaccine protection against HIV-1 acquisition. Sci Transl Med 2015; 7:310rv7. [PMID: 26491081 PMCID: PMC4751141 DOI: 10.1126/scitranslmed.aac7732] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The partial efficacy reported in the RV144 HIV vaccine trial in 2009 has driven the HIV vaccine field to define correlates of risk associated with HIV-1 acquisition and connect these functionally to preventing HIV infection. Immunological correlates, mainly including CD4(+) T cell responses to the HIV envelope and Fc-mediated antibody effector function, have been connected to reduced acquisition. These immunological correlates place immunological and genetic pressure on the virus. Indeed, antibodies directed at conserved regions of the V1V2 loop and antibodies that mediate antibody-dependent cellular cytotoxicity to HIV envelope in the absence of inhibiting serum immunoglobulin A antibodies correlated with decreased HIV risk. More recently, researchers have expanded their search with nonhuman primate studies using vaccine regimens that differ from that used in RV144; these studies indicate that non-neutralizing antibodies are associated with protection from experimental lentivirus challenge as well. These immunological correlates have provided the basis for the design of a next generation of vaccine regimens to improve upon the qualitative and quantitative degree of magnitude of these immune responses on HIV acquisition.
Collapse
Affiliation(s)
- Lawrence Corey
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Peter B Gilbert
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Giuseppe Pantaleo
- Lausanne University Hospital and Swiss Vaccine Research Institute, Lausanne 1011, Switzerland
| | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Walsh SR, Moodie Z, Fiore-Gartland AJ, Morgan C, Wilck MB, Hammer SM, Buchbinder SP, Kalams SA, Goepfert PA, Mulligan MJ, Keefer MC, Baden LR, Swann EM, Grant S, Ahmed H, Li F, Hertz T, Self SG, Friedrich D, Frahm N, Liao HX, Montefiori DC, Tomaras GD, McElrath MJ, Hural J, Graham BS, Jin X. Vaccination With Heterologous HIV-1 Envelope Sequences and Heterologous Adenovirus Vectors Increases T-Cell Responses to Conserved Regions: HVTN 083. J Infect Dis 2015; 213:541-50. [PMID: 26475930 DOI: 10.1093/infdis/jiv496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing the breadth of human immunodeficiency virus type 1 (HIV-1) vaccine-elicited immune responses or targeting conserved regions may improve coverage of circulating strains. HIV Vaccine Trials Network 083 tested whether cellular immune responses with these features are induced by prime-boost strategies, using heterologous vectors, heterologous inserts, or a combination of both. METHODS A total of 180 participants were randomly assigned to receive combinations of adenovirus vectors (Ad5 or Ad35) and HIV-1 envelope (Env) gene inserts (clade A or B) in a prime-boost regimen. RESULTS T-cell responses to heterologous and homologous insert regimens targeted a similar number of epitopes (ratio of means, 1.0; 95% confidence interval [CI], .6-1.6; P = .91), but heterologous insert regimens induced significantly more epitopes that were shared between EnvA and EnvB than homologous insert regimens (ratio of means, 2.7; 95% CI, 1.2-5.7; P = .01). Participants in the heterologous versus homologous insert groups had T-cell responses that targeted epitopes with greater evolutionary conservation (mean entropy [±SD], 0.32 ± 0.1 bits; P = .003), and epitopes recognized by responders provided higher coverage (49%; P = .035). Heterologous vector regimens had higher numbers of total, EnvA, and EnvB epitopes than homologous vector regimens (P = .02, .044, and .045, respectively). CONCLUSIONS These data demonstrate that vaccination with heterologous insert prime boosting increased T-cell responses to shared epitopes, while heterologous vector prime boosting increased the number of T-cell epitopes recognized. CLINICAL TRIALS REGISTRATION NCT01095224.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | | | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Marissa B Wilck
- Division of Infectious Diseases, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | | | | | - Spyros A Kalams
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | | | - Shannon Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Hasan Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Fusheng Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Tomer Hertz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Steven G Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - David Friedrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center Department of Global Health, University of Washington, Seattle
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center Department of Global Health, University of Washington, Seattle Departments of Medicine and Laboratory Medicine, University of Washington, Seattle
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Barney S Graham
- Dale and Betty Bumpers Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Xia Jin
- University of Rochester, New York
| | | |
Collapse
|
21
|
Interleukin-1- and type I interferon-dependent enhanced immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef vaccine vector with dual deletions of type I and type II interferon-binding proteins. J Virol 2015; 89:3819-32. [PMID: 25609807 DOI: 10.1128/jvi.03061-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.
Collapse
|
22
|
Monath TP, Seligman SJ, Robertson JS, Guy B, Hayes EB, Condit RC, Excler JL, Mac LM, Carbery B, Chen RT. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment. Vaccine 2015; 33:62-72. [PMID: 25446819 PMCID: PMC4656044 DOI: 10.1016/j.vaccine.2014.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 01/09/2023]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
Collapse
Affiliation(s)
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | - James S Robertson
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, UK
| | - Bruno Guy
- Discovery Department, Sanofi Pasteur, 69280 Marcy l'Etoile, France
| | - Edward B Hayes
- Barcelona Centre for International Health Research (CRESIB), 08036 Barcelona, Spain
| | - Richard C Condit
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jean Louis Excler
- International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA; U.S. Military HIV Research Program (MHRP), Bethesda, MD 20817, USA
| | - Lisa Marie Mac
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Baevin Carbery
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Robert T Chen
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
23
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Hassapis KA, Stylianou DC, Kostrikis LG. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines. Viruses 2014; 6:5047-76. [PMID: 25525909 PMCID: PMC4276942 DOI: 10.3390/v6125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
Collapse
Affiliation(s)
- Kyriakos A Hassapis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| |
Collapse
|
25
|
Chen RT, Carbery B, Mac L, Berns KI, Chapman L, Condit RC, Excler JL, Gurwith M, Hendry M, Khan AS, Khuri-Bulos N, Klug B, Robertson JS, Seligman SJ, Sheets R, Williamson AL. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). Vaccine 2014; 33:73-5. [PMID: 25305565 DOI: 10.1016/j.vaccine.2014.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
Recombinant viral vectors provide an effective means for heterologous antigen expression in vivo and thus represent promising platforms for developing novel vaccines against human pathogens from Ebola to tuberculosis. An increasing number of candidate viral vector vaccines are entering human clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to improve our ability to anticipate potential safety issues and meaningfully assess or interpret safety data, thereby facilitating greater public acceptance when licensed.
Collapse
Affiliation(s)
- Robert T Chen
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | - Baevin Carbery
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lisa Mac
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Kenneth I Berns
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, Gainesville, FL 32610, USA
| | - Louisa Chapman
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, Gainesville, FL 32610, USA
| | - Jean-Louis Excler
- International AIDS Vaccine Initiative, New York, NY, USA; U.S. Military HIV Research Program (MHRP), Bethesda, MD 20817, USA
| | | | - Michael Hendry
- DHAP, NCHHSTP, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Arifa S Khan
- Laboratory of Retroviruses, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Disease, Jordan University Hospital, Amman, Jordan
| | | | - James S Robertson
- Independent Adviser (formerly of National Institute for Biological Standards and Control, Potters Bar, EN6 3QG, UK)
| | - Stephen J Seligman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Rebecca Sheets
- Division of AIDS, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | | |
Collapse
|
26
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Baden LR, Walsh SR, Seaman MS, Johnson JA, Tucker RP, Kleinjan JA, Gothing JA, Engelson BA, Carey BR, Oza A, Bajimaya S, Peter L, Bleckwehl C, Abbink P, Pau MG, Weijtens M, Kunchai M, Swann EM, Wolff M, Dolin R, Barouch DH. First-in-human evaluation of a hexon chimeric adenovirus vector expressing HIV-1 Env (IPCAVD 002). J Infect Dis 2014; 210:1052-61. [PMID: 24719474 PMCID: PMC4168302 DOI: 10.1093/infdis/jiu217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We report the first-in-human safety and immunogenicity assessment of a prototype hexon chimeric adenovirus (Ad) serotype 5 (Ad5) vector containing the hexon hypervariable regions of Ad serotype 48 (Ad48) and expressing human immunodeficiency virus (HIV) type 1 EnvA. METHODS Forty-eight Ad5 and Ad48 seronegative, HIV-uninfected subjects were enrolled in a randomized, double-blind, placebo-controlled, dose escalation phase 1 study. Four groups of 12 subjects received 10(9) to 10(11) viral particles (vp) of the Ad5HVR48.EnvA.01 vaccine (n = 10 per group) or placebo (n = 2 per group) at week 0 or weeks 0, 4, and 24. Safety and immunogenicity were assessed. RESULTS Self-limited reactogenicity was observed after the initial immunization in the highest (10(11) vp) dose group. Responses in vaccinees included Ad48 neutralizing antibody (nAb) titers higher than Ad5 nAb titers, EnvA-specific enzyme-linked immunosorbent assay titers, and EnvA-specific enzyme-linked immunospot assay responses, and these responses generally persisted at week 52. At week 28 in the 10(9), 10(10), and 10(11) vp 3-dose groups, geometric mean EnvA enzyme-linked immunosorbent assay titers were 5721, 10 929, and 3420, respectively, and Ad48 nAb titers were a median of 1.7-fold higher than for Ad5. CONCLUSIONS Ad5HVR48.ENVA.01 was safe, well tolerated, and immunogenic at all doses tested. Vector-elicited nAb responses were greater for Ad48 than Ad5, confirming that Ad-specific nAbs in humans are primarily, but not exclusively, directed against the hexon hypervariable regions. Clinical Trials Registration. NCT00695877.
Collapse
Affiliation(s)
- Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women's Hospital
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Jennifer A. Johnson
- Division of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts
| | | | | | - Jon A. Gothing
- Division of Infectious Diseases, Brigham and Women's Hospital
| | | | - Brittany R. Carey
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Avinash Oza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | | | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Chelsea Bleckwehl
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | | | | | | | - Edith M. Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | - Raphael Dolin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
INTRODUCTION Tuberculosis (TB) remains a major health problem and novel vaccination regimens are urgently needed. AREAS COVERED DNA vaccines against TB have been tested in various preclinical models and strategies have been developed to increase their immunogenicity in large animal species. DNA vaccines are able to induce a wide variety of immune responses, including CD8(+) T-cell-mediated cytolytic and IFN-γ responses. DNA vaccination may be valuable in heterologous prime-boost strategies with the currently used bacillus Calmette-Guérin (BCG) vaccine. This approach could broaden the antigenic repertoire of BCG and enhance its weak induction of MHC class I-restricted immune responses. EXPERT OPINION DNA vaccines offer a number of advantages over certain other types of vaccines, such as the induction of robust MHC class I-restricted cytotoxic T lymphocyte (CTL), their generic manufacturing platform and their relatively low manufacturing costs. Because of their strong potential for inducing memory responses, DNA vaccines are particularly suited for priming immune responses. Furthermore, DNA vaccine technology may help antigen discovery by facilitating screening of candidate vaccines. Co-administration of BCG with plasmid DNA coding for immunodominant, subdominant and phase-specific antigens, poorly expressed by BCG, may lead to the development of improved TB vaccines.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Scientific Institute of Public Health, O.D. CID-Immunology , Engelandstraat 642, Brussels, B1180 , Belgium
| | | | | |
Collapse
|
29
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
30
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
31
|
Baird FJ, Lopata AL. The dichotomy of pathogens and allergens in vaccination approaches. Front Microbiol 2014; 5:365. [PMID: 25076945 PMCID: PMC4100532 DOI: 10.3389/fmicb.2014.00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022] Open
Abstract
Traditional prophylactic vaccination to prevent illness is the primary objective of many research activities worldwide. The golden age of vaccination began with an approach called variolation in ancient China and the evolution of vaccines still continues today with modern developments such as the production of Gardasil(TM) against HPV and cervical cancer. The historical aspect of how different forms of vaccination have changed the face of medicine and communities is important as it dictates our future approaches on both a local and global scale. From the eradication of smallpox to the use of an experimental vaccine to save a species, this review will explore these successes in infectious disease vaccination and also discuss a few significant failures which have hampered our efforts to eradicate certain diseases. The second part of the review will explore designing a prophylactic vaccine for the growing global health concern that is allergy. Allergies are an emerging global health burden. Of particular concern is the rise of food allergies in developed countries where 1 in 10 children is currently affected. The formation of an allergic response results from the recognition of a foreign component by our immune system that is usually encountered on a regular basis. This may be a dust-mite or a prawn but this inappropriate immune response can result in a life-time of food avoidance and lifestyle restrictions. These foreign components are very similar to antigens derived from infectious pathogens. The question arises: should the allergy community be focussing on protective measures rather than ongoing therapeutic interventions to deal with these chronic inflammatory conditions? We will explore the difficulties and benefits of prophylactic vaccination against various allergens by means of genetic technology that will dictate how vaccination against allergens could be utilized in the near future.
Collapse
Affiliation(s)
- Fiona J. Baird
- Centre for Biodiscovery & Molecular Development of Therapeutics, Centre for Biosecurity in Tropical Infectious Diseases, Australian Institute of Tropical Health & Medicine, James Cook UniversityTownsville, QLD, Australia
- Molecular Immunology Group, School of Pharmacy and Molecular Biology, James Cook UniversityTownsville, QLD, Australia
| | - Andreas L. Lopata
- Centre for Biodiscovery & Molecular Development of Therapeutics, Centre for Biosecurity in Tropical Infectious Diseases, Australian Institute of Tropical Health & Medicine, James Cook UniversityTownsville, QLD, Australia
- Molecular Immunology Group, School of Pharmacy and Molecular Biology, James Cook UniversityTownsville, QLD, Australia
| |
Collapse
|
32
|
|