1
|
Li X, Li M. Unlocking Cholesterol Metabolism in Metabolic-Associated Steatotic Liver Disease: Molecular Targets and Natural Product Interventions. Pharmaceuticals (Basel) 2024; 17:1073. [PMID: 39204178 PMCID: PMC11358954 DOI: 10.3390/ph17081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome, represents a growing global health concern. The intricate pathogenesis of MASLD, driven by genetic, metabolic, epigenetic, and environmental factors, leads to considerable clinical variability. Dysregulation of hepatic lipid metabolism, particularly cholesterol homeostasis, is a critical factor in the progression of MASLD and its more severe form, metabolic dysfunction-associated steatohepatitis (MASH). This review elucidates the multifaceted roles of cholesterol metabolism in MASLD, focusing on its absorption, transportation, biosynthesis, efflux, and conversion. We highlight recent advancements in understanding these processes and explore the therapeutic potential of natural products such as curcumin, berberine, and resveratrol in modulating cholesterol metabolism. By targeting key molecular pathways, these natural products offer promising strategies for MASLD management. Finally, this review also covers the clinical studies of natural products in MASLD, providing new insights for future research and clinical applications.
Collapse
Affiliation(s)
| | - Meng Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
| |
Collapse
|
2
|
Hajika Y, Kawaguchi Y, Hamazaki K, Kumeda Y. Beneficial effects of luseogliflozin on lipid profile and liver function in patients with type 2 diabetes mellitus (BLUE trial): a single-center, single-arm, open-label prospective study. Diabetol Metab Syndr 2023; 15:97. [PMID: 37165443 PMCID: PMC10173585 DOI: 10.1186/s13098-023-01074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Arteriosclerosis and non-alcoholic fatty liver disease are major complications of diabetes mellitus. Hyperglycemia, insulin resistance, obesity, and metabolic syndrome are associated with the progression of these complications. Sodium-glucose transporter 2 inhibitors such as luseogliflozin are oral hypoglycemic agents that reduce glucose levels, induce loss of weight or body fat, and improve liver function. However, the effects of these agents on lipid profiles are unclear. Therefore, this study aimed to investigate these effects and their relationship with arteriosclerosis and non-alcoholic fatty liver disease. METHODS This single-center, single-arm, open-labeled prospective study enrolled 25 outpatients with type 2 diabetes mellitus who visited Minami Osaka Hospital. Laboratory tests and body measurements were performed at weeks 0 and 24. Luseogliflozin was started at 2.5 mg/day after breakfast, and data from weeks 0 and 24 were evaluated. There were no changes in the doses of other antidiabetic and dyslipidemia drugs a month prior to or during the study. RESULTS The patients showed significant reductions in the levels of triglycerides, remnant-like particle cholesterol, and triglyceride/high-density lipoprotein cholesterol ratio, along with significant increases in the levels of high-density lipoprotein cholesterol and apolipoprotein A-1. Alanine aminotransferase, γ-glutamyl transpeptidase, and the fatty liver index were significantly reduced. CONCLUSIONS Luseogliflozin-induced changes in the lipid profile were related to the suppression or improvement of arteriosclerosis and liver function, respectively. Patients who received this drug also showed improvements in the levels of liver enzymes and reductions in the fatty liver index. Earlier use of luseogliflozin might prevent diabetic complications. Trial registration This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN 000043595) on April 6th, 2021.
Collapse
Affiliation(s)
- Yuriko Hajika
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan.
| | - Yuji Kawaguchi
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Kenji Hamazaki
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Yasuro Kumeda
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| |
Collapse
|
3
|
Banerjee S, De A. Pathophysiology and inhibition of cholesteryl ester transfer protein for prevention of cardiovascular diseases: An update. Drug Discov Today 2021; 26:1759-1764. [DOI: 10.1016/j.drudis.2021.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
|
4
|
Saadatagah S, Pasha AK, Alhalabi L, Sandhyavenu H, Farwati M, Smith CY, Wood‐Wentz CM, Bailey KR, Kullo IJ. Coronary Heart Disease Risk Associated with Primary Isolated Hypertriglyceridemia; a Population-Based Study. J Am Heart Assoc 2021; 10:e019343. [PMID: 34032140 PMCID: PMC8483538 DOI: 10.1161/jaha.120.019343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Background Hypertriglyceridemia is associated with increased risk of coronary heart disease but the association is often attributed to concomitant metabolic abnormalities. We investigated the epidemiology of primary isolated hypertriglyceridemia (PIH) and associated cardiovascular risk in a population-based setting. Methods and Results We identified adults with at least one triglyceride level ≥500 mg/dL between 1998 and 2015 in Olmsted County, Minnesota. We also identified age- and sex-matched controls with triglyceride levels <150 mg/dL. There were 3329 individuals with elevated triglyceride levels; after excluding those with concomitant hypercholesterolemia, a secondary cause of high triglycerides, age <18 years or an incomplete record, 517 patients (49.4±14.0 years, 72.0% men) had PIH (triglyceride 627.6±183.6 mg/dL). The age- and sex-adjusted prevalence of PIH in adults was 0.80% (0.72-0.87); the diagnosis was recorded in 60%, 46% were on a lipid-lowering medication for primary prevention and a triglyceride level <150 mg/dL was achieved in 24.1%. The association of PIH with coronary heart disease was attenuated but remained significant after adjustment for demographic, socioeconomic, and conventional cardiovascular risk factors (hazard ratio [HR], 1.53; 95% CI, 1.06-2.20; P= 0.022). There was no statistically significant association between PIH and cerebrovascular disease (HR, 1.06; 95% CI, 0.65-1.73, P= 0.813), peripheral artery disease (HR, 1.27; 95% CI, 0.43-3.75; P= 0.668), or the composite end point of all 3 (HR, 1.28; 95% CI, 0.92-1.80; P=0.148) in adjusted models. Conclusions PIH was associated with incident coronary heart disease events (although there was attenuation after adjustment for conventional risk factors), supporting a causal role for triglycerides in coronary heart disease. The condition is relatively prevalent but awareness and control are low.
Collapse
Affiliation(s)
| | - Ahmed K. Pasha
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | - Lubna Alhalabi
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | | | - Medhat Farwati
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | - Carin Y. Smith
- Division of Clinical Trials and BiostatisticsMayo ClinicRochesterMN
| | | | - Kent R. Bailey
- Division of Clinical Trials and BiostatisticsMayo ClinicRochesterMN
| | - Iftikhar J. Kullo
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Gonda Vascular CenterMayo ClinicRochesterMN
| |
Collapse
|
5
|
Chou Y, Ma J, Su X, Zhong Y. Emerging insights into the relationship between hyperlipidemia and the risk of diabetic retinopathy. Lipids Health Dis 2020; 19:241. [PMID: 33213461 PMCID: PMC7677820 DOI: 10.1186/s12944-020-01415-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperlipidemia is correlated with a series of health problems. Notably, aside from its established role in promoting cardiovascular morbidity and mortality, hyperlipidemia has also been considered for modulating the risk and the severity of multiple metabolic disorders. According to the results of epidemiologic investigations, several certain circulating lipoprotein species are correlated with the prevalence of diabetic retinopathy, suggesting that the physiological and pathological role of these lipoproteins is analogous to that observed in cardiovascular diseases. Furthermore, the lipid-lowering treatments, particularly using statin and fibrate, have been demonstrated to ameliorate diabetic retinopathy. Thereby, current focus is shifting towards implementing the protective strategies of diabetic retinopathy and elucidating the potential underlying mechanisms. However, it is worth noting that the relationship between major serum cholesterol species and the development of diabetic retinopathy, published by other studies, was inconsistent and overall modest, revealing the relationship is still not clarified. In this review, the current understanding of hyperlipidemia in pathogenesis of diabetic retinopathy was summarized and the novel insights into the potential mechanisms whereby hyperlipidemia modulates diabetic retinopathy were put forward.
Collapse
Affiliation(s)
- Yuyu Chou
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jin Ma
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, 363001, Fujian, China.
| | - Yong Zhong
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510:733-740. [PMID: 32941836 DOI: 10.1016/j.cca.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Dyslipidemia is associated with atherosclerosis and cardiovascular disease development, posing serious risks to human health. Cholesteryl ester transfer protein (CETP) is responsible for exchange of neutral lipids, such as cholesteryl ester and TG, between plasma high density lipoprotein (HDL) particles and Apolipoprotein B-100 (ApoB-100) containing lipoprotein particles. Genetic studies suggest that single-nucleotide polymorphism (SNPs) with loss of activity CETP is associated with increased HDL-C, reduced LDL-C, and cardiovascular risk. In animal studies, mostly in rabbits, which have similar CETP activity to humans, inhibition of CETP through antisense oligonucleotides reduced aortic arch atherosclerosis. Concerning this notion, inhibiting the CETP is considered as a promise approach to reduce cardiovascular events, and several CETP inhibitors have been recently studied as a cholesterol modifying agent to reduce cardiovascular mortality in high risk cardiovascular disease patients. However, in Phase III cardiovascular outcome trials, three CETP inhibitors, named Torcetrapib, Dalcetrapib, and Evacetrapib, did not provide expected cardiovascular benefits and failed to improve outcomes of patient with cardiovascular diseases (CVD). Although REVEAL trail has recently shown that Anacetrapib could reduce major coronary events, it was also shown to induce excessive lipid accumulation in adipose tissue; thereby, the further regulatory approval will not be sought. On the other hand, growing evidence indicated that the function of CETP inhibitors on modulating the cardiovascular events are determined by correlated single nucleotide polymorphism (SNP) in the ADCY9 gene. However, the underlying mechanisms whereby CETP inhibitors interact with the genotype are not yet elucidated, which could potentially be related to the genotype-dependent cholesterol efflux capacity of HDL particles. In the present review, we summarize the current understanding of the functions of CETP and the outcomes of the phase III randomized controlled trials of CETP inhibitors. In addition, we also put forward the implications from results of the trials which potentially suggest that the CETP inhibitors could be a promising precise therapeutic medicine for CVD based on genetic background.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Guiyang Li
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yingjian Deng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dong Chang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Li-Gao R, Mook-Kanamori DO, Cannegieter SC, Willems van Dijk K, Rosendaal FR, van Hylckama Vlieg A. The association of genetic variants in the cholesteryl ester transfer protein gene with hemostatic factors and a first venous thrombosis. J Thromb Haemost 2019; 17:1535-1543. [PMID: 31148376 DOI: 10.1111/jth.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) plays an important role in lipoprotein metabolism. Previous studies have suggested that the CETP TaqI B1/B2 allele is associated with the risk of venous thrombosis (VT). AIM To investigate the associations between genetically determined CETP concentrations and 22 hemostatic factors in healthy individuals, and the risk of a first VT event, in a large VT case-control study. METHODS Analyses were performed in the Multiple Environmental and Genetic Assessment of Risk Factors for Venous Thrombosis (MEGA) case-control study. CETP unweighted/weighted genetic risk scores (GRSs) were derived from three single-nucleotide polymorphisms that were identified from a recent genome-wide association study on serum CETP concentrations. The associations between CETP GRSs and 22 hemostatic factors (procoagulant/anticoagulant and fibrinolytic factors) were assessed by linear regression from an additive model in controls (n = 2813). The associations between CETP GRSs and the risk of a first VT were assessed by logistic regression analyses in 3950 VT cases and 4765 controls. RESULTS In the controls (median age, 49 years; 53% women), both unweighted and weighted GRSs showed that factor VII activity was negatively associated with the genetically determined CETP concentration (weighted GRS β -3.08 IU/dL per μg/mL genetically determined CETP, 95% confidence interval -5.73 to -0.42). No association was observed with the risk of a first VT. CONCLUSIONS Genetically determined CETP concentrations only showed a weak negative association with factor VII activity. However, this did not lead to an association with the risk of a first VT.
Collapse
Affiliation(s)
- Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
8
|
Blauw LL, Li-Gao R, Noordam R, de Mutsert R, Trompet S, Berbée JFP, Wang Y, van Klinken JB, Christen T, van Heemst D, Mook-Kanamori DO, Rosendaal FR, Jukema JW, Rensen PCN, Willems van Dijk K. CETP (Cholesteryl Ester Transfer Protein) Concentration: A Genome-Wide Association Study Followed by Mendelian Randomization on Coronary Artery Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002034. [PMID: 29728394 DOI: 10.1161/circgen.117.002034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND We aimed to identify independent genetic determinants of circulating CETP (cholesteryl ester transfer protein) to assess causal effects of variation in CETP concentration on circulating lipid concentrations and cardiovascular disease risk. METHODS A genome-wide association discovery and replication study on serum CETP concentration were embedded in the NEO study (Netherlands Epidemiology of Obesity). Based on the independent identified variants, Mendelian randomization was conducted on serum lipids (NEO study) and coronary artery disease (CAD; CARDIoGRAMplusC4D consortium). RESULTS In the discovery analysis (n=4248), we identified 3 independent variants (P<5×10-8) that determine CETP concentration. These single-nucleotide polymorphisms were mapped to CETP and replicated in a separate subpopulation (n=1458). Per-allele increase (SE) in serum CETP was 0.32 (0.02) µg/mL for rs247616-C, 0.35 (0.02) µg/mL for rs12720922-A, and 0.12 (0.02) µg/mL for rs1968905-G. Combined, these 3 variants explained 16.4% of the total variation in CETP concentration. One microgram per milliliter increase in genetically determined CETP concentration strongly decreased high-density lipoprotein cholesterol (-0.23 mmol/L; 95% confidence interval, -0.26 to -0.20), moderately increased low-density lipoprotein cholesterol (0.08 mmol/L; 95% confidence interval, 0.00-0.16), and was associated with an odds ratio of 1.08 (95% confidence interval, 0.94-1.23) for CAD risk. CONCLUSIONS This is the first genome-wide association study identifying independent variants that largely determine CETP concentration. Although high-density lipoprotein cholesterol is not a causal risk factor for CAD, it has been unequivocally demonstrated that low-density lipoprotein cholesterol lowering is proportionally associated with a lower CAD risk. Therefore, the results of our study are fully consistent with the notion that CETP concentration is causally associated with CAD through low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Lisanne L Blauw
- Department of Internal Medicine, Division of Endocrinology (L.L.B., J.F.P.B., Y.W., P.C.N.R., K.W.v.D.) .,Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.).,Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.)
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.)
| | - Raymond Noordam
- Department of Internal Medicine, Division of Gerontology and Geriatrics (R.N., S.T., D.v.H.)
| | - Renée de Mutsert
- Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.)
| | - Stella Trompet
- Department of Internal Medicine, Division of Gerontology and Geriatrics (R.N., S.T., D.v.H.).,Department of Cardiology (S.T., J.W.J.)
| | - Jimmy F P Berbée
- Department of Internal Medicine, Division of Endocrinology (L.L.B., J.F.P.B., Y.W., P.C.N.R., K.W.v.D.).,Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.)
| | - Yanan Wang
- Department of Internal Medicine, Division of Endocrinology (L.L.B., J.F.P.B., Y.W., P.C.N.R., K.W.v.D.).,Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.)
| | - Jan B van Klinken
- Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.).,Department of Human Genetics (J.B.v.K., K.W.v.D.)
| | - Tim Christen
- Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.)
| | - Diana van Heemst
- Department of Internal Medicine, Division of Gerontology and Geriatrics (R.N., S.T., D.v.H.)
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.).,and Department of Public Health and Primary Care (D.O.M.-K.) Leiden University Medical Center, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology (L.L.B., R.L.-G., R.d.M., T.C., D.O.M.-K., F.R.R.)
| | | | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology (L.L.B., J.F.P.B., Y.W., P.C.N.R., K.W.v.D.).,Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.)
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology (L.L.B., J.F.P.B., Y.W., P.C.N.R., K.W.v.D.).,Einthoven Laboratory for Experimental Vascular Medicine (L.L.B., J.F.P.B., Y.W., J.B.v.K., P.C.N.R., K.W.v.D.).,Department of Human Genetics (J.B.v.K., K.W.v.D.)
| |
Collapse
|
9
|
High-Density Lipoprotein Functionality as a New Pharmacological Target on Cardiovascular Disease: Unifying Mechanism That Explains High-Density Lipoprotein Protection Toward the Progression of Atherosclerosis. J Cardiovasc Pharmacol 2019. [PMID: 29528874 DOI: 10.1097/fjc.0000000000000573] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of the atherosclerotic plaque that is characterized by the accumulation of abnormal amounts of cholesterol-loaded macrophages in the artery wall is mediated by both inflammatory events and alterations of lipid/lipoprotein metabolism. Reverse transport of cholesterol opposes the formation and development of atherosclerotic plaque by promoting high density lipoprotein (HDL)-mediated removal of cholesterol from peripheral macrophages and its delivery back to the liver for excretion into the bile. Although an inverse association between HDL plasma levels and the risk of cardiovascular disease (CVD) has been demonstrated over the years, several studies have recently shown that the antiatherogenic functions of HDL seem to be mediated by their functionality, not always associated with their plasma concentrations. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux, may offer a better prediction of CVD than HDL levels alone. In agreement with this idea, it has recently been shown that the assessment of serum cholesterol efflux capacity (CEC), as a metric of HDL functionality, may represent a predictor of atherosclerosis extent in humans. The purpose of this narrative review is to summarize the current evidence concerning the role of cholesterol efflux capacity that is important for evaluating CVD risk, focusing on pharmacological evidences and its relationship with inflammation. We conclude that HDL therapeutics are a promising area of investigation but strategies for identifying efficacy must move beyond the idea of simply raising static HDL-cholesterol levels and toward methods of measuring the dynamics of HDL particle remodeling and the generation of lipid-free apolipoprotein A-I (apoA-I). In this way, apoA-I, unlike mature HDL, can promote the greatest extent of cholesterol efflux relieving cellular cholesterol toxicity and the inflammation it causes.
Collapse
|
10
|
Mendelian randomization reveals unexpected effects of CETP on the lipoprotein profile. Eur J Hum Genet 2018; 27:422-431. [PMID: 30420679 DOI: 10.1038/s41431-018-0301-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023] Open
Abstract
According to the current dogma, cholesteryl ester transfer protein (CETP) decreases high-density lipoprotein (HDL)-cholesterol (C) and increases low-density lipoprotein (LDL)-C. However, detailed insight into the effects of CETP on lipoprotein subclasses is lacking. Therefore, we used a Mendelian randomization approach based on a genetic score for serum CETP concentration (rs247616, rs12720922 and rs1968905) to estimate causal effects per unit (µg/mL) increase in CETP on 159 standardized metabolic biomarkers, primarily lipoprotein subclasses. Metabolic biomarkers were measured by nuclear magnetic resonance (NMR) in 5672 participants of the Netherlands Epidemiology of Obesity (NEO) study. Higher CETP concentrations were associated with less large HDL (largest effect XL-HDL-C, P = 6 × 10-22) and more small VLDL components (largest effect S-VLDL cholesteryl esters, P = 6 × 10-6). No causal effects were observed with LDL subclasses. All these effects were replicated in an independent cohort from European ancestry (MAGNETIC NMR GWAS; n ~20,000). Additionally, we assessed observational associations between ELISA-measured CETP concentration and metabolic measures. In contrast to results from Mendelian randomization, observationally, CETP concentration predominantly associated with more VLDL, IDL and LDL components. Our results show that CETP is an important causal determinant of HDL and VLDL concentration and composition, which may imply that the CETP inhibitor anacetrapib decreased cardiovascular disease risk through specific reduction of small VLDL rather than LDL. The contrast between genetic and observational associations might be explained by a high capacity of VLDL, IDL and LDL subclasses to carry CETP, thereby concealing causal effects on HDL.
Collapse
|
11
|
Sloop GD, Pop G, Weidman JJ, St Cyr JA. Flawed Reasoning Allows the Persistence of Mainstream Atherothrombosis Theory. Cureus 2018; 10:e2377. [PMID: 29805946 PMCID: PMC5969815 DOI: 10.7759/cureus.2377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deaths due to atherothrombosis are increasing throughout the world except in the lowest socio-demographic stratum. This is despite 60 years of study and expenditure of billions of dollars on lipid theory. Nevertheless, mainstream atherothrombosis theory persists even though it has failed numerous tests. Contrary data are ignored, consistent with the practice of science as envisioned by Thomas Kuhn. This paper examines defects in mainstream atherogenesis theory and the flawed logic which allows its persistence in the face of what should be obvious shortcomings.
Collapse
Affiliation(s)
| | - Gheorghe Pop
- Cardiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, Nijmegen, NLD
| | | | - John A St Cyr
- Research and Development, Jacqmar, Inc., Minneapolis, USA
| |
Collapse
|
12
|
van der Tuin SJL, Li Z, Berbée JFP, Verkouter I, Ringnalda LE, Neele AE, van Klinken JB, Rensen SS, Fu J, de Winther MPJ, Groen AK, Rensen PCN, Willems van Dijk K, Wang Y. Lipopolysaccharide Lowers Cholesteryl Ester Transfer Protein by Activating F4/80 +Clec4f +Vsig4 +Ly6C - Kupffer Cell Subsets. J Am Heart Assoc 2018. [PMID: 29525783 PMCID: PMC5907564 DOI: 10.1161/jaha.117.008105] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) decreases hepatic CETP (cholesteryl ester transfer protein) expression albeit that the underlying mechanism is disputed. We recently showed that plasma CETP is mainly derived from Kupffer cells (KCs). In this study, we investigated the role of KC subsets in the mechanism by which LPS reduces CETP expression. METHODS AND RESULTS In CETP-transgenic mice, LPS markedly decreased hepatic CETP expression and plasma CETP concentration without affecting hepatic macrophage number. This was paralleled by decreased expression of the resting KC markers C-type lectin domain family 4, member f (Clec4f) and V-set and immunoglobulin domain containing 4 (Vsig4), while expression of the infiltrating monocyte marker lymphocyte antigen 6 complex locus C (Ly6C) was increased. Simultaneously, the ratio of plasma high-density lipoprotein-cholesterol over non-high-density lipoprotein-cholesterol transiently increased. After ablation hepatic macrophages via injection with liposomal clodronate, the reappearance of hepatic gene and protein expression of CETP coincided with Clec4f and Vsig4, but not Ly6C. Double-immunofluorescence staining showed that CETP co-localized with Clec4f+ KCs and not Ly6C+ monocytes. In humans, microarray gene-expression analysis of liver biopsies revealed that hepatic expression and plasma level of CETP both correlated with hepatic VSIG4 expression. LPS administration decreased the plasma CETP concentration in humans. In vitro experiments showed that LPS reduced liver X receptor-mediated CETP expression. CONCLUSIONS Hepatic expression of CETP is exclusively confined to the resting KC subset (ie, F4/80+Clec4f+Vsig4+Ly6C-). LPS activated resting KCs, leading to reduction of Clec4f and Vsig4 expression and reduction of hepatic CETP expression, consequently decreasing plasma CETP and raising high-density lipoprotein (HDL)-cholesterol. This sequence of events is consistent with the anti-inflammatory role of HDL in the response to LPS and may be relevant as a defense mechanism against bacterial infections.
Collapse
Affiliation(s)
- Sam J L van der Tuin
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Verkouter
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda E Ringnalda
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen University of Groningen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany
| | - Albert K Groen
- Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Pediatrics, University of Groningen, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanan Wang
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pediatrics, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Schooling CM, Huang JV, Zhao JV, Kwok MK, Au Yeung SL, Lin SL. Disconnect Between Genes Associated With Ischemic Heart Disease and Targets of Ischemic Heart Disease Treatments. EBioMedicine 2018; 28:311-315. [PMID: 29396305 PMCID: PMC5835561 DOI: 10.1016/j.ebiom.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background Development of pharmacological treatments to mitigate ischemic heart disease (IHD) has encompassed disappointing results and expensive failures, which has discouraged investment in new approaches to prevention and control. New treatments are most likely to be successful if they act on genetically validated targets. We assessed whether existing pharmacological treatments for IHD reduction are acting on genetically validated targets and whether all such targets for IHD are currently being exploited. Methods Genes associated with IHD were obtained from the loci of single nucleotide polymorphisms reported in either of two recent genome wide association studies supplemented by a gene-based analysis (accounting for linkage disequilibrium) of CARDIoGRAMplusC4D 1000 Genomes, a large IHD case (n = 60,801)-control (n = 123,504) study. Treatments targeting the products of these IHD genes and genes with products targeted by current IHD treatments were obtained from Kyoto Encyclopedia of Genes and Genomes and Drugbank. Cohen's kappa was used to assess agreement. Results We identified 173 autosomal genes associated with IHD and 236 autosomal genes with products targeted by current IHD treatments, only 8 genes (PCSK9, EDNRA, PLG, LPL, CXCL12, LRP1, CETP and ADORA2A) overlapped, i.e. were both associated with IHD and had products targeted by current IHD treatments. The Cohen's kappa was 0.03. Interventions related to another 29 IHD genes exist, including dietary factors, environmental exposures and existing treatments for other indications. Conclusions Closer alignment of IHD treatments with genetically validated physiological targets may represent a major opportunity for combating a leading cause of global morbidity and mortality through repurposing existing interventions. Pharmacological treatments for ischemic heart disease (IHD) target < 5% (8/173) of genes strongly predicting IHD. Treatments or nutraceuticals targeting products of another 17% (29/173) of genes strongly predicting IHD exist. Repurposing represents a major opportunity to prevent and treat a leading cause of global morbidity and mortality.
Development of drugs to mitigate ischemic heart disease, a leading cause of global morbidity and mortality, has stalled. We examined the relation between the physiological targets of current drugs for ischemic heart disease and the genetic predictors of ischemic heart disease. We found little correspondence between the genes with products targeted by current ischemic heart disease drugs and the genes associated with ischemic heart disease, but found several drugs for other purposes relevant to ischemic heart disease genes. Refocusing ischemic heart disease drug development on genetically valid targets and repurposing existing drugs represents a major opportunity to improve population health.
Collapse
Affiliation(s)
- C M Schooling
- CUNY Graduate School of Public Health and Health Policy, New York, USA; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - J V Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - J V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - M K Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S L Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S L Lin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Li D, Fawaz MV, Morin EE, Sviridov D, Ackerman R, Olsen K, Remaley AT, Schwendeman A. Effect of Synthetic High Density Lipoproteins Modification with Polyethylene Glycol on Pharmacokinetics and Pharmacodynamics. Mol Pharm 2018; 15:83-96. [PMID: 29141139 PMCID: PMC6435036 DOI: 10.1021/acs.molpharmaceut.7b00734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic high density lipoprotein nanoparticles (sHDLs) capable of mobilizing excess cholesterol from atherosclerotic arteries and delivering it to the liver for elimination have been shown to reduce plaque burden in patients. Unfortunately, sHDLs have a narrow therapeutic index and relative to the endogenous HDL shorter circulation half-life. Surface modification with polyethylene glycol (PEG) was investigated for its potential to extend sHDL circulation in vivo. Various amounts (2.5, 5, and 10%) and different chain lengths (2 and 5 kDa) of PEG-modified lipids were incorporated in sHDL's lipid membrane. Incorporating PEG did not reduce the ability of sHDL to facilitate cholesterol efflux, nor did it inhibit cholesterol uptake by the liver cells. By either adding more PEG or using PEG of longer chain lengths, the circulation half-life was extended. Addition of PEG also increased the area under the curve for the phospholipid component of sHDL (p < 0.05), but not for the apolipoprotein A-I peptide component of sHDL, suggesting sHDL is remodeled by endogenous lipoproteins in vivo. The extended phospholipid circulation led to a higher mobilization of plasma free cholesterol, a biomarker for facilitation of reverse cholesterol transport. The area under the cholesterol mobilization increased about 2-4-fold (p < 0.05), with greater increases observed for longer PEG chains and higher molar percentages of incorporated PEGylated lipids. Mobilized cholesterol was associated primarily with the HDL fraction, led to a transient increase in VLDL cholesterol, and returned to baseline 24 h postdose. Overall, PEGylation of sHDL led to beneficial changes in sHDL particle pharmacokinetic and pharmacodynamic behaviors.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Maria V. Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 – 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892
| | - Rose Ackerman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Karl Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 – 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Onat A, Kaya A, Ademoglu E. Modified risk associations of lipoproteins and apolipoproteins by chronic low-grade inflammation. Expert Rev Cardiovasc Ther 2017; 16:39-48. [PMID: 29241386 DOI: 10.1080/14779072.2018.1417839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Lipoproteins and the apolipoproteins (apo) that they carry are major determinants of cardiovascular diseases (CVD) as well as metabolic, renal and inflammatory chronic disorders either directly or through mediation of risk factors. The notion that elevated low-density lipoprotein cholesterol (LDL-C) and apoB levels are related to the acquisition of CVD and, high-density lipoprotein cholesterol (HDL-C) and apoA-I indicate protection against CVD has been challenged in the past decade. Advanced age, adiposity, ethnicity or impaired glucose intolerance rendered autoimmune activation in an environment of pro-inflammatory state/oxidative stress and may disrupt the linear risk association between lipoproteins. Areas covered: This review summarizes the modified risk associations of lipoproteins and apolipoprotein by an environment of chronic systemic low-grade inflammation with special emphasis on the non-linear relationship of lipoprotein(a) [Lp(a)], a biomarker of renewed interest in cardiometabolic risk. Expert commentary: It seems that autoimmune activation in an environment of pro-inflammatory state/oxidative stress not only disrupts the linear risk association between lipoproteins, but also may cause interference in immunoassays. Hence, methodological improvement in immunoassays and much further research focusing on population segments susceptible to a pro-inflammatory state is necessary for further advances in knowledge.
Collapse
Affiliation(s)
- Altan Onat
- a Department of Cardiology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Aysem Kaya
- b Laboratory of Biochemistry, Institute of Cardiology , Istanbul University , Istanbul , Turkey
| | - Evin Ademoglu
- c Department of Biochemistry, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| |
Collapse
|
16
|
Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits. Mediators Inflamm 2017; 2017:3824276. [PMID: 29317793 PMCID: PMC5727764 DOI: 10.1155/2017/3824276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
High levels of plasma high-density lipoprotein-cholesterol (HDL-C) are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP) is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg) rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.
Collapse
|
17
|
DOBIÁŠOVÁ M. Atherogenic Impact of Lecithin-Cholesterol Acyltransferase and Its Relation to Cholesterol Esterification Rate in HDL (FERHDL) and AIP [log(TG/HDL-C)] Biomarkers: The Butterfly Effect? Physiol Res 2017; 66:193-203. [DOI: 10.33549/physiolres.933621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers – FERHDL (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.
Collapse
Affiliation(s)
- M. DOBIÁŠOVÁ
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Gillard BK, Bassett GR, Gotto AM, Rosales C, Pownall HJ. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J Biol Chem 2017; 292:8864-8873. [PMID: 28373285 DOI: 10.1074/jbc.m117.781963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.
Collapse
Affiliation(s)
- Baiba K Gillard
- From the Houston Methodist Research Institute, Houston Texas 77030, .,Weill Cornell Medicine, New York, New York 10065, and
| | | | - Antonio M Gotto
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Corina Rosales
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Henry J Pownall
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
19
|
Millar JS, Lassman ME, Thomas T, Ramakrishnan R, Jumes P, Dunbar RL, deGoma EM, Baer AL, Karmally W, Donovan DS, Rafeek H, Wagner JA, Holleran S, Obunike J, Liu Y, Aoujil S, Standiford T, Gutstein DE, Ginsberg HN, Rader DJ, Reyes-Soffer G. Effects of CETP inhibition with anacetrapib on metabolism of VLDL-TG and plasma apolipoproteins C-II, C-III, and E. J Lipid Res 2017; 58:1214-1220. [PMID: 28314859 PMCID: PMC5454510 DOI: 10.1194/jlr.m074880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/16/2017] [Indexed: 01/30/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph Obunike
- New York City College of Technology, CUNY, Brooklyn, NY 11201
| | - Yang Liu
- Merck & Co., Inc., Kenilworth, NJ 07033
| | | | | | | | | | | | | |
Collapse
|