1
|
Huang J, Zhang Y, King L, Wang J, Nie P, Xie Q, Chen H, Wan X, Li Z, Zhao Y, Xu H. Associations of urinary heavy metals with age at menarche, age at menopause, and reproductive lifespan: A cross-sectional study in U.S. women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116950. [PMID: 39213750 DOI: 10.1016/j.ecoenv.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Female reproductive timing and lifespan, with a close relation to long-term health outcomes, have been altered in U.S. women over the past decades. However, epidemiologic evidence of the potential causes was lacking. On the basis of 1981 naturally postmenopausal women from the National Health and Nutrition Examination Survey 1999-2020, this study aimed to investigate the associations of urinary heavy metals with age at menarche, age at menopause, and reproductive lifespan. Multivariate generalized linear regression and addictive models were used for single metal exposure analysis, and weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were employed for mixed exposures. In the fully adjusted model, higher urinary antimony concentration was associated with earlier age at menarche of 0.137 years, while higher concentrations of cadmium, cesium, lead, antimony, and thallium were associated with delayed age at menopause of 0.396-0.687 years. Additionally, urinary barium, cesium, lead, antimony, and thallium levels were associated with longer reproductive lifespan ranging between 0.277 and 0.713 years. Both WQS and BKMR models showed significantly positive associations of metal mixtures with age at menopause (β: 0.667, 95 % CI: 0.120-1.213) and reproductive lifespan (β: 0.686, 95 % CI: 0.092-1.280), with cadmium and lead identified as principal contributors. In conclusion, heavy metal exposures were associated with reproductive timing and lifespan of U.S. women, highlighting the need for further prevention and intervention strategies.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China; Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yiwei Zhang
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Hong Chen
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xinxia Wan
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zengming Li
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yan Zhao
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Rhee J, Barry KH, Huang WY, Sampson JN, Hofmann JN, Silverman DT, Calafat AM, Botelho JC, Kato K, Purdue MP, Berndt SI. A prospective nested case-control study of serum concentrations of per- and polyfluoroalkyl substances and aggressive prostate cancer risk. ENVIRONMENTAL RESEARCH 2023; 228:115718. [PMID: 36958379 PMCID: PMC10239560 DOI: 10.1016/j.envres.2023.115718] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent organic pollutants detectable in the serum of most U.S. adults. Some studies of highly-exposed individuals have suggested an association between PFAS and prostate cancer, but evidence from population-based studies is limited. We investigated the association between pre-diagnostic serum PFAS concentrations and aggressive prostate cancer risk in a large prospective study. We measured pre-diagnostic serum concentrations of eight PFAS, including perfluorooctanoate (PFOA), for 750 aggressive prostate cancer cases and 750 individually matched controls within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. We assessed the reproducibility of PFAS concentrations in serial samples collected up to six years apart among 60 controls using intraclass correlation coefficients (ICCs). Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with prostate cancer, adjusting for other PFAS and potential confounders. Concentrations of most PFAS were consistent (ICC>0.7) across the serial samples over time. We observed an inverse association between PFOA and aggressive prostate cancer (ORcontinuous = 0.79, 95% CI = 0.63, 0.99), but the association was limited to cases diagnosed ≤3 years after blood collection and became statistically non-significant for cases diagnosed with later follow-up (>3 years, ORcontinuous = 0.90, 95% CI = 0.79, 1.03). Other PFAS were not associated with aggressive prostate cancer risk. Although we cannot rule out an increased risk at higher levels, our findings from a population with PFAS serum concentrations comparable to the general population do not support an association with increased risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Kathryn H Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kayoko Kato
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| |
Collapse
|
3
|
Chen D, Sandler DP, Keil AP, Heiss G, Whitsel EA, Edwards JK, Stewart PA, Stenzel MR, Groth CP, Ramachandran G, Banerjee S, Huynh TB, Jackson WB, Blair A, Lawrence KG, Kwok RK, Engel LS. Volatile Hydrocarbon Exposures and Incident Coronary Heart Disease Events: Up to Ten Years of Follow-up among Deepwater Horizon Oil Spill Workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57006. [PMID: 37224072 PMCID: PMC10208425 DOI: 10.1289/ehp11859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, response and cleanup workers were potentially exposed to toxic volatile components of crude oil. However, to our knowledge, no study has examined exposure to individual oil spill-related chemicals in relation to cardiovascular outcomes among oil spill workers. OBJECTIVES Our aim was to investigate the association of several spill-related chemicals [benzene, toluene, ethylbenzene, xylene, n-hexane (BTEX-H)] and total hydrocarbons (THC) with incident coronary heart disease (CHD) events among workers enrolled in a prospective cohort. METHODS Cumulative exposures to THC and BTEX-H across the cleanup period were estimated via a job-exposure matrix that linked air measurement data with self-reported DWH spill work histories. We ascertained CHD events following each worker's last day of cleanup work as the first self-reported physician-diagnosed myocardial infarction (MI) or a fatal CHD event. We estimated hazard ratios (HR) and 95% confidence intervals for the associations of exposure quintiles (Q) with risk of CHD. We applied inverse probability weights to account for bias due to confounding and loss to follow-up. We used quantile g-computation to assess the joint effect of the BTEX-H mixture. RESULTS Among 22,655 workers with no previous MI diagnoses, 509 experienced an incident CHD event through December 2019. Workers in higher quintiles of each exposure agent had increased CHD risks in comparison with the referent group (Q1) of that agent, with the strongest associations observed in Q5 (range of HR = 1.14 - 1.44 ). However, most associations were nonsignificant, and there was no evidence of exposure-response trends. We observed stronger associations among ever smokers, workers with ≤ high school education, and workers with body mass index < 30 kg / m 2 . No apparent positive association was observed for the BTEX-H mixture. CONCLUSIONS Higher exposures to volatile components of crude oil were associated with modest increases in risk of CHD among oil spill workers, although we did not observe exposure-response trends. https://doi.org/10.1289/EHP11859.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessie K. Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | - Caroline P. Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California – Los Angeles, Los Angeles, California, USA
| | - Tran B. Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
| | - W. Braxton Jackson
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, North Carolina, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Kaitlyn G. Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Richard K. Kwok
- Population Studies and Genetics Branch, National Institute on Aging, Bethesda, Maryland, USA
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Batyrova G, Kononets V, Amanzholkyzy A, Tlegenova Z, Umarova G. Chromium as a Risk Factor for Breast Cancer: A Meta-Analysis. Asian Pac J Cancer Prev 2022; 23:3993-4003. [PMID: 36579979 PMCID: PMC9971475 DOI: 10.31557/apjcp.2022.23.12.3993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chromium (Cr) is a transition metal, natural element. Chromium is the 21st most abundant element in Earth's crust. Cr is found in soil, rocks and living organisms. It may have various oxidation states, from -2 to +6, but most of these states are too unstable to exist in any significant quantities. The purpose of this review and meta-analysis is to critically assess the scientific evidence on the carcinogenic effects of chromium (Cr) and to determine whether there is currently sufficient evidence to suggest that that there is a link between chromium levels in hair and blood serum and breast cancer in women. MATERIAL AND METHODS Research on the relationship between heavy metal chromium and the risk of developing breast cancer has been searched in PubMed, EMBASE, Web of Science, Scopus among papers published between January 2000 and September 2020. The search used the following terms (MeSH): breast cancer, women, trace elements, metals, chromium, chemically-induced, hair, serum using additional terms. RESULTS In the second group of comparisons of women from "ecologically clean" districts of Aktobe Region, there were significantly lower indicators of the microelements in tumor tissue. The amount of Fe ranges from 38.46 to 65.39 ug/g (average 49.56±5.81 ug/g), Cu from 2.8 to 6.69 ug/g (average 5.06±1.01 ug/g), Zn from 1.89 to 5.38 ug/g (average 3.88±0.89 ug/g), Cr from zero to 6,1 ug/g (average 2.13±1.29 ug/g), Ni from 0.11 to 0.42 ug/g (average 0.28±0.067 ug/g) и Pb from zero to 0.19 ug/g (average 0.098±0.06 ug/g). CONCLUSION The article established that women who live or work in ecologically polluted areas or have problems with micronutrient exchange need in-depth screening and more frequent screening for early detection of pre- and breast cancer.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory and Visual Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan. ,For Correspondence:
| | - Victoria Kononets
- Department of Molecular Biology and Medical Genetics, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Ainur Amanzholkyzy
- Department of Normal Phiziology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Zhenisgul Tlegenova
- Department of Internal Diseases No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| |
Collapse
|
5
|
Deng YL, Yang P, Wang YX, Liu C, Luo Q, Shi T, Zeng JY, Lu TT, Chen PP, Miao Y, Zhang M, Cui FP, Lu WQ, Zeng Q. Urinary concentrations of polycyclic aromatic hydrocarbon and phthalate metabolite mixtures in relation to semen quality among men attending an infertility clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81749-81759. [PMID: 35737263 DOI: 10.1007/s11356-022-21525-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have reported that exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) is individually associated with altered semen quality, but no human studies have evaluated their joint effects of exposure mixtures, a more real-world scenario. We aimed to explore urinary metabolite mixtures of phthalates and PAHs in associations with semen quality. Repeated spot-urine samples gathered from 695 men attending a fertility clinic were analyzed for urinary metabolites of eight phthalates and ten monohydroxylated-PAHs (OH-PAHs). Principal component analysis (PCA)-multivariable linear regression (MLR) model, quantile g-computation (qg-comp), and Bayesian kernel machine regression (BKMR) were applied to estimate the associations of urinary mixtures of phthalate and OH-PAH metabolites with semen quality. The overall effects of urinary mixtures of phthalate and PAH metabolites on semen quality were not statistically significant. However, hydroxynaphthalene (OHNa) factor identified from PCA was monotonically associated with decreased total sperm count and sperm concentration, whereas di(2-ethylhexyl) phthalate (DEHP) factor was non-monotonically related to increased progressive sperm motility and total sperm motility. Qg-comp and BKMR models confirmed these findings and identified 2-OHNa and 2-OHFlu as the primary negative contributors, whereas MEOHP and MEHP as the primary positive contributors. Our findings suggest that exposure to mixtures of naphthalene and DEHP is associated with altered semen quality. The finding is warranted to confirm in further well-designed epidemiological studies.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Occupational and Environmental Health, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Letellier N, Zamora S, Yang JA, Sears DD, Jankowska MM, Benmarhnia T. How do environmental characteristics jointly contribute to cardiometabolic health? A quantile g-computation mixture analysis. Prev Med Rep 2022; 30:102005. [PMID: 36245803 PMCID: PMC9562428 DOI: 10.1016/j.pmedr.2022.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence links cardiometabolic health with social and environmental neighborhood exposures, which may contribute to health inequities. We examined whether environmental characteristics were individually or jointly associated with insulin resistance, hypertension, obesity, type 2 diabetes, and metabolic syndrome in San Diego County, CA. As part of the Community of Mine Study, cardiometabolic outcomes of insulin resistance, hypertension, BMI, diabetes, and metabolic syndrome were collected in 570 participants. Seven census tract level characteristics of participants' residential environment were assessed and grouped as follows: economic, education, health care access, neighborhood conditions, social environment, transportation, and clean environment. Generalized estimating equation models were performed, to take into account the clustered nature of the data and to estimate β or relative risk (RR) and 95 % confidence intervals (CIs) between each of the seven environmental characteristics and cardiometabolic outcomes. Quantile g-computation was used to examine the association between the joint effect of a simultaneous increase in all environmental characteristics and cardiometabolic outcomes. Among 570 participants (mean age 58.8 ± 11 years), environmental economic, educational and health characteristics were individually associated with insulin resistance, diabetes, obesity, and metabolic syndrome. In the mixture analyses, a joint quartile increase in all environmental characteristics (i.e., improvement) was associated with decreasing insulin resistance (β, 95 %CI: -0.09, -0.18-0.01)), risk of diabetes (RR, 95 %CI: 0.59, 0.36-0.98) and obesity (RR, 95 %CI: 0.81, 0.64-1.02). Environmental characteristics synergistically contribute to cardiometabolic health and independent analysis of these determinants may not fully capture the potential health impact of social and environmental determinants of health.
Collapse
Affiliation(s)
- Noémie Letellier
- Scripps Institution of Oceanography, UC San Diego, USA,Corresponding author.
| | - Steven Zamora
- Scripps Institution of Oceanography, UC San Diego, USA
| | - Jiue-An Yang
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA,Department of Medicine, UC San Diego, La Jolla, CA, USA,Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Marta M. Jankowska
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | | |
Collapse
|
7
|
Wang X, Ding N, Harlow SD, Randolph JF, Mukherjee B, Gold EB, Park SK. Urinary metals and metal mixtures and timing of natural menopause in midlife women: The Study of Women's Health Across the Nation. ENVIRONMENT INTERNATIONAL 2021; 157:106781. [PMID: 34311223 PMCID: PMC8490279 DOI: 10.1016/j.envint.2021.106781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to metals and metal mixtures may influence ovarian aging. However, epidemiologic evidence of their potential impact is lacking. OBJECTIVE We prospectively examined the associations of 15 urinary metal concentrations and their mixtures with natural menopause in the Study of Women's Health Across the Nation Multi-Pollutant Study. METHODS The study population consisted of 1082 premenopausal women from multiple racial/ethnic groups, aged 45-56 years at baseline (1999-2000), with the median follow-up of 4.1 years. Urinary concentrations of 15 metals, including arsenic, barium, cadmium, cobalt, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, tin, thallium, and zinc, were measured at baseline. Natural menopause was defined as the final bleeding episode prior to at least 12 months of amenorrhea, not due to surgery or hormone therapy. Cox proportional hazards models were used to examine associations between individual metal concentrations and timing of natural menopause. The associations between metal mixtures and natural menopause were evaluated using elastic net penalized Cox regression, and an environmental risk score (ERS) was computed to represent individual risks of natural menopause related to metal mixtures. RESULTS The median age at natural menopause was 53.2 years. Using the Cox proportional hazards models, the adjusted hazard ratio (HR) (and its 95% confidence interval (CI)) for natural menopause was 1.32 (1.03, 1.67) for arsenic and 1.36 (1.05, 1.76) for lead, comparing the highest with the lowest quartiles of metal concentrations. The predicted ages at natural menopause in the highest and lowest quartiles were 52.7 and 53.5 years for arsenic; and 52.9 and 53.8 years for lead. A significant association between ERS and menopause was also observed. Women in the highest vs. the lowest quartiles of ERS had an HR of 1.71 (1.36, 2.15), equivalent to a 1.6 year earlier median time to natural menopause. CONCLUSION This study suggests that arsenic, lead, and metal mixtures are associated with earlier natural menopause, a risk factor for adverse health outcomes in later life.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - John F Randolph
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, United States
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
8
|
Eick SM, Goin DE, Cushing L, DeMicco E, Park JS, Wang Y, Smith S, Padula AM, Woodruff TJ, Morello-Frosch R. Mixture effects of prenatal exposure to per- and polyfluoroalkyl substances and polybrominated diphenyl ethers on maternal and newborn telomere length. Environ Health 2021; 20:76. [PMID: 34193151 PMCID: PMC8247076 DOI: 10.1186/s12940-021-00765-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/24/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) are endocrine disrupting chemicals with widespread exposures across the U.S. given their abundance in consumer products. PFAS and PBDEs are associated with reproductive toxicity and adverse health outcomes, including certain cancers. PFAS and PBDEs may affect health through alternations in telomere length. In this study, we examined joint associations between prenatal exposure to PFAS, PBDEs, and maternal and newborn telomere length using mixture analyses, to characterize effects of cumulative environmental chemical exposures. METHODS Study participants were enrolled in the Chemicals in Our Bodies (CIOB) study, a demographically diverse cohort of pregnant people and children in San Francisco, CA. Seven PFAS (ng/mL) and four PBDEs (ng/g lipid) were measured in second trimester maternal serum samples. Telomere length (T/S ratio) was measured in delivery cord blood of 292 newborns and 110 second trimester maternal whole blood samples. Quantile g-computation was used to assess the joint associations between groups of PFAS and PBDEs and newborn and maternal telomere length. Groups considered were: (1) all PFAS and PBDEs combined, (2) PFAS, and (3) PBDEs. Maternal and newborn telomere length were modeled as separate outcomes. RESULTS T/S ratios in newborn cord and maternal whole blood were moderately correlated (Spearman ρ = 0.31). In mixtures analyses, a simultaneous one quartile increase in all PFAS and PBDEs was associated with a small increase in newborn (mean change per quartile increase = 0.03, 95% confidence interval [CI] = -0.03, 0.08) and maternal telomere length (mean change per quartile increase = 0.03 (95% CI = -0.03, 0.09). When restricted to maternal-fetal paired samples (N = 76), increasing all PFAS and PBDEs combined was associated with a strong, positive increase in newborn telomere length (mean change per quartile increase = 0.16, 95% CI = 0.03, 0.28). These associations were primarily driven by PFAS (mean change per quartile increase = 0.11 [95% CI = 0.01, 0.22]). No associations were observed with maternal telomere length among paired samples. CONCLUSIONS Our findings suggest that PFAS and PBDEs may be positively associated with newborn telomere length.
Collapse
Affiliation(s)
- Stephanie M. Eick
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Dana E. Goin
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Lara Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Erin DeMicco
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - June-Soo Park
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Amy M. Padula
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Tracey J. Woodruff
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Rachel Morello-Frosch
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
9
|
Rager JE, Clark J, Eaves LA, Avula V, Niehoff NM, Kim YH, Jaspers I, Gilmour MI. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145759. [PMID: 33611182 PMCID: PMC8243846 DOI: 10.1016/j.scitotenv.2021.145759] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical components in wildfire smoke that primarily drive toxicity and associated disease are largely unknown. This study utilized a suite of computational approaches to identify groups of chemicals induced by variable biomass burn conditions that were associated with biological responses in the mouse lung, including pulmonary immune response and injury markers. Smoke condensate samples were collected and characterized, resulting in chemical distribution information for 86 constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a chemical clustering and data-reduction method, weighted chemical co-expression network analysis (WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against individual chemical relationships. Seven chemical groups were identified using WCCNA based on co-occurrence showing both positive and negative relationships with biological responses. A group containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed highly significant, negative relationships with several biological responses, including cytokines and lung injury markers. This group was further shown through quantile g-computation methods to associate with reduced biological responses. Specifically, mixtures modeling based on all chemicals excluding those in the methoxyphenol group demonstrated more significant, positive relationships with several biological responses; whereas mixtures modeling based on just those in the methoxyphenol group demonstrated significant negative relationships with several biological responses, suggesting potential protective effects. Mixtures-based analyses also identified other groups consisting of inorganic elements and ionic constituents showing positive relationships with several biological responses, including markers of inflammation. Many of the effects identified through mixtures modeling in this analysis were not captured through individual chemical analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify potential drivers and inhibitors of toxicity relevant to wildfire exposures.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|