1
|
Almarzouki AF. Stress, working memory, and academic performance: a neuroscience perspective. Stress 2024; 27:2364333. [PMID: 38910331 DOI: 10.1080/10253890.2024.2364333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The relationship between stress and working memory (WM) is crucial in determining students' academic performance, but the interaction between these factors is not yet fully understood. WM is a key cognitive function that is important for learning academic skills, such as reading, comprehension, problem-solving, and math. Stress may negatively affect cognition, including WM, via various mechanisms; these include the deleterious effect of glucocorticoids and catecholamines on the structure and function of brain regions that are key for WM, such as the prefrontal cortex and hippocampus. This review explores the mechanisms underlying how stress impacts WM and how it can decrease academic performance. It highlights the importance of implementing effective stress-management strategies to protect WM function and improve academic performance.
Collapse
Affiliation(s)
- Abeer F Almarzouki
- Department of Clinical Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Lee J, Kim EJ, Park GS, Kim J, Kim TE, Lee YJ, Park J, Kang J, Koo JW, Choi TY. Lactobacillus reuteri ATG-F4 Alleviates Chronic Stress-induced Anhedonia by Modulating the Prefrontal Serotonergic System. Exp Neurobiol 2023; 32:313-327. [PMID: 37927130 PMCID: PMC10628864 DOI: 10.5607/en23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Mental health is influenced by the gut-brain axis; for example, gut dysbiosis has been observed in patients with major depressive disorder (MDD). Gut microbial changes by fecal microbiota transplantation or probiotics treatment reportedly modulates depressive symptoms. However, it remains unclear how gut dysbiosis contributes to mental dysfunction, and how correction of the gut microbiota alleviates neuropsychiatric disorders. Our previous study showed that chronic consumption of Lactobacillus reuteri ATG-F4 (F4) induced neurometabolic alterations in healthy mice. Here, we investigated whether F4 exerted therapeutic effects on depressive-like behavior by influencing the central nervous system. Using chronic unpredictable stress (CUS) to induce anhedonia, a key symptom of MDD, we found that chronic F4 consumption alleviated CUS-induced anhedonic behaviors, accompanied by biochemical changes in the gut, serum, and brain. Serum and brain metabolite concentrations involved in tryptophan metabolism were regulated by CUS and F4. F4 consumption reduced the elevated levels of serotonin (5-HT) in the brain observed in the CUS group. Additionally, the increased expression of Htr1a, a subtype of the 5-HT receptor, in the medial prefrontal cortex (mPFC) of stressed mice was restored to levels observed in stress-naïve mice following F4 supplementation. We further demonstrated the role of Htr1a using AAV-shRNA to downregulate Htr1a in the mPFC of CUS mice, effectively reversing CUS-induced anhedonic behavior. Together, our findings suggest F4 as a potential therapeutic approach for relieving some depressive symptoms and highlight the involvement of the tryptophan metabolism in mitigating CUS-induced depressive-like behaviors through the action of this bacterium.
Collapse
Affiliation(s)
- Jiyun Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Eum-Ji Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | | | - Jeongseop Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Eun Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoo Jin Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Juyi Park
- AtoGen Co., Ltd., Daejeon 34015, Korea
| | | | - Ja Wook Koo
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Yong Choi
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
3
|
Iqbal M, Cox SML, Jaworska N, Tippler M, Castellanos-Ryan N, Parent S, Dagher A, Vitaro F, Brendgen MR, Boivin M, Pihl RO, Côté SM, Tremblay RE, Séguin JR, Leyton M. A three-factor model of common early onset psychiatric disorders: temperament, adversity, and dopamine. Neuropsychopharmacology 2022; 47:752-758. [PMID: 34625707 PMCID: PMC8783001 DOI: 10.1038/s41386-021-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Commonly comorbid early onset psychiatric disorders might reflect the varying expression of overlapping risk factors. The mediating processes remain poorly understood, but three factors show some promise: adolescent externalizing traits, early life adversity, and midbrain dopamine autoreceptors. To investigate whether these features acquire greater predictive power when combined, a longitudinal study was conducted in youth who have been followed since birth. Cohort members were invited to participate based on externalizing scores between 11 to 16 years of age. At age 18 (age 18.5 ± 0.6 y.o.), 52 entry criteria meeting volunteers had a 90-min positron emission tomography scan with [18F]fallypride, completed the Childhood Trauma Questionnaire, and were assessed with the Structured Clinical Interview for DSM-5. The three-factor model identified those with a lifetime history of DSM-5 disorders with an overall accuracy of 90.4% (p = 2.4 × 10-5) and explained 91.5% of the area under the receiver operating characteristic curve [95% CI: .824, 1.000]. Targeting externalizing disorders specifically did not yield a more powerful model than targeting all disorders (p = 0.54). The model remained significant when including data from participants who developed their first disorders during a three-year follow-up period (p = 3.5 × 10-5). Together, these results raise the possibility that a combination of temperamental traits, childhood adversity, and poorly regulated dopamine transmission increases risk for diverse, commonly comorbid, early onset psychiatric problems, predicting this susceptibility prospectively.
Collapse
Affiliation(s)
- Maisha Iqbal
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | | | - Natalia Jaworska
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Institute of Mental Health Research, Ottawa, ON Canada
| | - Maria Tippler
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Natalie Castellanos-Ryan
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Sophie Parent
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Alain Dagher
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Frank Vitaro
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada ,grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada
| | - Mara R. Brendgen
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.38678.320000 0001 2181 0211Department of Psychology, Université de Québec à Montréal, Montreal, QC Canada
| | - Michel Boivin
- grid.23856.3a0000 0004 1936 8390Department of Psychology, Université Laval, Quebec, ON Canada ,grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Robert O. Pihl
- grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Sylvana M. Côté
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Social & Preventative Medicine, Université de Montréal, Montreal, QC Canada
| | - Richard E. Tremblay
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Departments of Pediatrics & Psychology, Université de Montréal, Montreal, QC Canada ,grid.7886.10000 0001 0768 2743School of Public Health and Sports Science, University College Dublin, Dublin, Ireland ,grid.7429.80000000121866389INSERM, U669 Paris, France
| | - Jean R. Séguin
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada
| | - Marco Leyton
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada. .,CHU Ste-Justine Research Center, Montreal, QC, Canada. .,Department of Psychology, McGill University, Montreal, QC, Canada. .,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
4
|
David M, Serena B, Jeremy B, Madeline T, Bernard BW. CRF-receptor1 modulation of the dopamine projection to prelimbic cortex facilitates cognitive flexibility after acute and chronic stress. Neurobiol Stress 2022; 16:100424. [PMID: 35005102 PMCID: PMC8718497 DOI: 10.1016/j.ynstr.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Stress reduces cognitive flexibility and dopamine D1 receptor-related activity in the prelimbic cortex (PL), effects hypothesized to depend on reduced corticotropic releasing factor receptor type 1 (CRFr1) regulation of dopamine neurons in the ventral tegmental area (VTA). We assessed this hypothesis in rats by examining the effect of chronic unpredictable restraint stress (CUS), mild acute stress, or their combination on cognitive flexibility, CRFr1 expression in the VTA and D1-related activity in PL. In Experiment 1, rats received either CUS or equivalent handling for 14 days before being trained to press two levers to earn distinct food outcomes. Initial learning was assessed using an outcome devaluation test after which cognitive flexibility was assessed by reversing the outcomes earned by the actions. Prior to each reversal training session, half the CUS and controls receiving acute stress with action-outcome updating assessed using a second devaluation test and CRFr1 expression in the VTA assessed using in-situ hybridisation. Although CUS did not itself affect action-outcome learning, its combination with acute stress blocked reversal learning and decreased VTA CRFr1 expression after acute shock. The relationship between these latter two effects was assessed in Experiment 2 by pharmacologically disconnecting the VTA and PL, unilaterally blocking neurons expressing CRFr1 in the VTA and D1 receptors in the contralateral PL during reversal learning after acute stress. Acute stress again blocked reversal learning but only in the group with VTA-PL disconnection, demonstrating that VTA CRFr1-induced facilitation of dopaminergic activity in the PL is necessary for maintaining cognitive flexibility after acute stress. [250]. Acute stress increased CRF receptor1 expression in the VTA. Chronic stress attenuated the effect of acute stress on CRFr1 expression. Chronic stress plus acute stress produced a loss of cognitive flexibility. Blocking VTA CFRr1 and dopamine D1r in PL reduced cognitive flexibility following stress.
Collapse
Affiliation(s)
- Mor David
- School of Medical Sciences, University of Sydney, Australia
| | - Becchi Serena
- Decision Neuroscience Lab, University of New South Wales, Australia
| | - Bowring Jeremy
- School of Medical Sciences, University of Sydney, Australia
| | | | | |
Collapse
|
5
|
Abstract
Chronic stress evokes wide-ranging behavioral alterations, including risk avoidance, increased motoric output, and reduced consummatory behaviors. These are often interpreted as dysfunctions, but they may subserve adaptations for coping with existential threats. We tested this in a cohort of rats previously exposed to mild unpredictable stress for 5 weeks. Previously stressed rats exhibited the typically increased avoidance of open field and altered responses to predator odor, suggesting enhanced sensitivity to threatening contexts and cues. Interestingly, these animals collected rewards at a higher rate than controls, because they locomoted faster, spent less time in off-task (exploratory) behavior, and committed fewer licks at feeders. Further, they were not impaired in flexibly shifting choice as reward probabilities changed among feeders, suggesting that behavioral adaptations are not simply of transference to behavioral control to neural systems insensitive to reward (e.g. habits). These data add to a small but growing body of evidence indicating that stress shifts responses away from exploration and toward exploitation of resources, possibly to reduce threat exposure.HighlightsRats with a history of stress collected reward at a higher rate than controls on an operant task, owing to increase locomotion speed, reduced off-task behavior, and reduced time licking at feeders.Previously stressed rats exhibited increased win-stay responses than controls, suggesting the involvement of neural circuits related to goal-directed responding.Previously stressed rats performed equally to controls on a task requiring a shift of preferences based on reward probability, suggesting that they are not simply relying more on habit-based neural systems.
Collapse
Affiliation(s)
- C E Matisz
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C A Badenhorst
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - A J Gruber
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
6
|
Karkhanis AN, Leach AC, Yorgason JT, Uneri A, Barth S, Niere F, Alexander NJ, Weiner JL, McCool BA, Raab-Graham KF, Ferris MJ, Jones SR. Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chem Neurosci 2019; 10:2033-2044. [PMID: 30284806 DOI: 10.1021/acschemneuro.8b00360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic peri-adolescent stress in humans increases risk to develop a substance use disorder during adulthood. Rats reared in social isolation during peri-adolescence (aSI; 1 rat/cage) period show greater ethanol and cocaine intake compared to group housed (aGH; 4 rats/cage) rats. In addition, aSI rats have a heightened dopamine response in the nucleus accumbens (NAc) to rewarding and aversive stimuli. Furthermore, single pulse electrical stimulation in slices containing NAc core elicits greater dopamine release in aSI rats. Here, we further investigated dopamine release kinetics and machinery following aSI. Dopamine release, across a wide range of stimulation intensities and frequencies, was significantly greater in aSI rats. Interestingly, subthreshold intensity stimulations also resulted in measurable dopamine release in accumbal slices from aSI but not aGH rats. Extracellular [Ca2+] manipulations revealed augmented calcium sensitivity of dopamine release in aSI rats. The readily releasable pools of dopamine, examined by bath application of Ro-04-1284/000, a vesicular monoamine transporter 2 (VMAT2) inhibitor, were depleted faster in aGH rats. Western blot analysis of release machinery proteins (VMAT2, Synaptogyrin-3, Syntaxin-1, and Munc13-3) showed no difference between the two groups. Tyrosine hydroxylase (TH) protein expression levels, however, were elevated in aSI rats. The greater dopamine release could potentially be explained by higher levels of TH, the rate-limiting step for dopamine synthesis. This augmented responsivity of the dopamine system and heightened dopamine availability post-aSI may lead to an increased risk of addiction vulnerability.
Collapse
Affiliation(s)
- Anushree N. Karkhanis
- Department of Psychology and Developmental Exposure Alcohol Research Center, Binghamton University−SUNY, Binghamton, New York, United States
| | | | - Jordan T. Yorgason
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
8
|
Arnsten AFT. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci 2015; 18:1376-85. [PMID: 26404712 DOI: 10.1038/nn.4087] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
A variety of cognitive disorders are worsened by stress exposure and involve dysfunction of the newly evolved prefrontal cortex (PFC). Exposure to acute, uncontrollable stress increases catecholamine release in PFC, reducing neuronal firing and impairing cognitive abilities. High levels of noradrenergic α1-adrenoceptor and dopaminergic D1 receptor stimulation activate feedforward calcium-protein kinase C and cyclic AMP-protein kinase A signaling, which open potassium channels to weaken synaptic efficacy in spines. In contrast, high levels of catecholamines strengthen the primary sensory cortices, amygdala and striatum, rapidly flipping the brain from reflective to reflexive control of behavior. These mechanisms are exaggerated by chronic stress exposure, where architectural changes lead to persistent loss of PFC function. Understanding these mechanisms has led to the successful translation of prazosin and guanfacine for treating stress-related disorders. Dysregulation of stress signaling pathways by genetic insults likely contributes to PFC deficits in schizophrenia, while age-related insults initiate interacting vicious cycles that increase vulnerability to Alzheimer's degeneration.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Zhao TT, Shin KS, Choi HS, Lee MK. Ameliorating effects of gypenosides on chronic stress-induced anxiety disorders in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:323. [PMID: 26370834 PMCID: PMC4570649 DOI: 10.1186/s12906-015-0856-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ethanol extract from Gynostemma pentaphyllum (GP) shows anti-stress and anxiolytic functions in mice, and also protects dopamine neurons in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. In addition, gypenosides (the gypenoside-enriched components of GP, GPS) have a protective effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. In this study, the ameliorating effects of GPS on chronic stress-induced anxiety disorders in mice were investigated. METHODS Mice were orally treated with GPS (100 and 200 mg/kg) once a day for 10 days, followed by exposure to electric footshock (EF) stress (0.6 mA, 1 s every 5 s, 3 min). After the final administration of either GPS, water extract of GP (GP-WX) or ethanol extract of GP (GP-EX, positive control), the behavioral tests such as elevated plus-maze, marble burying and locomotor activity tests, and the biochemical parameters including dopamine, serotonin and corticosterone levels, and c-Fos expression were examined. RESULTS Treatment with GPS (100 and 200 mg/kg) increased the number of open arm entries and the time spent on open arms in elevated plus-maze which were reduced by chronic EF stress. GPS (100 and 200 mg/kg) reduced the number of marbles buried which increased by chronic EF stress. In these states, the brain levels of dopamine and serotonin decreased by chronic EF stress and they were recovered by GPS. The serum levels of corticosterone increased by chronic EF stress were also reduced by GPS (100 and 200 mg/kg). Finally, chronic EF stress-induced c-Fos expression was markedly reduced by GPS (100 and 200 mg/kg) in the brain. GPS (100 and 200 mg/kg) also showed an equivalent efficacy on anxiolytic functions, as compared with GP-EX (50 mg/kg). However, GP-WX (50 mg/kg) showed a less effect on anxiety disorders than GP-EX (50 mg/kg) and GPS (100 and 200 mg/kg). CONCLUSION These results suggest that GPS (100 and 200 mg/kg) has anxiolytic effects on chronic EF stress-induced anxiety disorders by modulating dopamine and serotonin neuronal activities, c-Fos expression and corticosterone levels. GPS may serve as a phytonutrient in chronic stress-induced anxiety disorders.
Collapse
Affiliation(s)
- Ting Ting Zhao
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Keon Sung Shin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Hyun Sook Choi
- Department of Food and Nutrition, Chungcheong University, Cheongju, Chungbuk, 28171, Republic of Korea.
| | - Myung Koo Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
10
|
Park HJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Arch Pharm Res 2015; 38:1204-12. [DOI: 10.1007/s12272-015-0548-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/01/2015] [Indexed: 01/05/2023]
|