1
|
Bhattacharya T, Gupta A, Gupta S, Saha S, Ghosh S, Shireen Z, Dey S, Sinha S. Benzofuran Iboga-Analogs Modulate Nociception and Inflammation in an Acute Mouse Pain Model. Chembiochem 2024; 25:e202400162. [PMID: 38874536 DOI: 10.1002/cbic.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30 mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.
Collapse
Affiliation(s)
- Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Samrat Saha
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Shatabdi Ghosh
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Zofa Shireen
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| |
Collapse
|
2
|
Todorov P, Georgieva S, Peneva P, Nikolov S, Rangelov M, Todorova N, Pechlivanova D, Tchekalarova J. Synthesis, molecular docking, electrochemical and fluorimetric analysis of new caffeic and cinnamic acid-conjugated hemorphin derivatives designed as potential anticonvulsant and antinociceptive agents. Bioorg Chem 2024; 143:107063. [PMID: 38150935 DOI: 10.1016/j.bioorg.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Based on the pharmacophore model of opioid receptors, our team recently synthesized a series of short-chain hemorphin peptide analogs containing non-natural amino acids. They demonstrated anticonvulsant and antinociceptive activity with low neurotoxicity. In the present study, a series of novel bioconjugates of N-modified hemorphin analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetric analysis, in vivo anticonvulsant and antinociceptive activity in mice were conducted on the compounds. The three CA acid- (H4-CA, H5-CA, and H7-CA) and three KA acid- (H4-KA, H5-KA, and H7-KA) conjugated hemorphin derivatives exhibited potency at the highest doses of 2 µg/5 µl, administered by intracerebroventricular (icv) mode, against seizure spread in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate, at the lowest dose, was the only compound that suppressed clonic seizures in the subcutaneous pentylenetetrazol (scPTZ) test. Except for the H5-CA, all tested CA acid- and KA acid-conjugated peptide derivates had the potency to increase the latency for clonic seizures in a dose-dependent mode. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. All investigated peptides showed a more pronounced antinociceptive effect in the "intraplantar formalin" test compared to the "hot plate" test. Shorter chain analogs showed a better antinociceptive profile against tonic pain. The data suggest a DOR and KOR-mediated mechanism of action. According to the docking analysis, H7-CA showed a different antinociceptive profile than other investigated peptides. The novel peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA morphine peptides can be used to develop novel morphine-related analogs with anticonvulsant and antinociceptive activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Spas Nikolov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria; Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Pechlivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria; Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Uenohara Y, Tsumura S, Hirayama S, Higashi E, Watanabe Y, Gouda H, Nagase H, Fujii H. Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors. Bioorg Med Chem 2022; 53:116552. [PMID: 34894610 DOI: 10.1016/j.bmc.2021.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the μ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.
Collapse
Affiliation(s)
- Yuka Uenohara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Tsumura
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eika Higashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
6
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
8
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
9
|
Ulker E, Caillaud M, Patel T, White A, Rashid D, Alqasem M, Lichtman AH, Bryant CD, Damaj MI. C57BL/6 substrain differences in formalin-induced pain-like behavioral responses. Behav Brain Res 2020; 390:112698. [PMID: 32428630 PMCID: PMC7375808 DOI: 10.1016/j.bbr.2020.112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Substantial evidence from preclinical models of pain suggests that basal and noxious nociceptive sensitivity, as well as antinociceptive responses to drugs, show significant heritability. Individual differences to these responses have been observed across species from rodents to humans. The use of closely related C57BL/6 inbred mouse substrains can facilitate gene mapping of acute nociceptive behaviors in preclinical pain models. In this study, we investigated behavioral differences between C57BL/6 J (B6 J) and C57BL/6 N (B6 N) substrains in the formalin test, a widely used tonic inflammatory pain model, using a battery of pain-related phenotypes, including reflexive tests, nesting, voluntary wheel running, sucrose preference and anxiety-like behavior in the light/dark test at two different time points (1-h and 24-h). Our results show that these substrains did not differ in reflexive thermal and mechanical responses at the 1-h time point. However, B6 N substrain mice showed increased sensitivity to spontaneous pain-like behaviors. In addition, B6 N substrain continued to show higher levels of mechanical hypersensitivity compared to controls at 24-h. indicating that mechanical hypersensitivity is a more persistent pain-related phenotype induced by formalin. Finally, no sex differences were observed in our outcome measures. Our results provide a comprehensive behavioral testing paradigm in response to an inflammatory agent for future mouse genetic studies in pain.
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | - Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Trusha Patel
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Danyal Rashid
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Mashael Alqasem
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|