1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
4
|
Chen B, Hu Z, Chen X, Zeng X. Molecular mechanisms of two novel and selective TRPV1 channel activators. Int J Biol Macromol 2024; 275:133658. [PMID: 38969044 DOI: 10.1016/j.ijbiomac.2024.133658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Venomous toxins hold immense value as tools in elucidating the intricate structure and underlying mechanisms of ion channels. In this article, we identified of two novel toxins, Hainantoxin-XXI (HNTX-XXI) and Hainantoxin-XXII (HNTX-XXII), derived from the venom of the Chinese spider Ornithoctonus hainana. HNTX-XXI, boasting a molecular weight of 6869.095 Da, comprises 64 amino acid residues and contains 8 cysteines. Meanwhile, HNTX-XXII, with a molecular weight of 8623.732 Da, comprises 77 amino acid residues and contains 12 cysteines. Remarkably, we discovered that both HNTX-XXI and HNTX-XXII possess the ability to activate TRPV1. They activated TRPV1 with EC50 values of 3.6 ± 0.19 μM and 862 ± 56 nM, respectively. Furthermore, the current generated by the activation of TRPV1 by these toxins can be rapidly blocked by ruthenium red. Intriguingly, our analysis revealed that the interaction between HNTX-XXI and TRPV1 is mediated by three key amino acid residues: L465, V469, and D471. Similarly, the interaction between HNTX-XXII and TRPV1 is facilitated by four key amino acid residues: A657, F659, E600, and R601. These findings provide profound insights into the molecular basis of toxin-TRPV1 interactions and pave the way for future research exploring the therapeutic potential of these toxic peptides.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Xinlong Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Xiongzhi Zeng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China.
| |
Collapse
|
5
|
Haller J. Herbal Cannabis and Depression: A Review of Findings Published over the Last Three Years. Pharmaceuticals (Basel) 2024; 17:689. [PMID: 38931356 PMCID: PMC11206863 DOI: 10.3390/ph17060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Public perception contrasts scientific findings on the depression-related effects of cannabis. However, earlier studies were performed when cannabis was predominantly illegal, its production was mostly uncontrolled, and the idea of medical cannabis was incipient only. We hypothesized that recent changes in attitudes and legislations may have favorably affected research. In addition, publication bias against cannabis may have also decreased. To investigate this hypothesis, we conducted a review of research studies published over the last three years. We found 156 relevant research articles. In most cross-sectional studies, depression was higher in those who consumed cannabis than in those who did not. An increase in cannabis consumption was typically followed by an increase in depression, whereas withdrawal from cannabis ameliorated depression in most cases. Although medical cannabis reduced depression in most studies, none of these were placebo-controlled. In clinical studies published in the same period, the placebo also ameliorated depression and, in addition, the average effect size of the placebo was larger than the average effect size of medical cannabis. We also investigated the plausibility of the antidepressant effects of cannabis by reviewing molecular and pharmacological studies. Taken together, the reviewed findings do not support the antidepressant effects of herbal cannabis.
Collapse
Affiliation(s)
- Jozsef Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, Faculty of Law Enforcement, Ludovika University of Public Service, 1083 Budapest, Hungary
| |
Collapse
|
6
|
Alegre-Zurano L, García-Baos A, Castro-Zavala A, Medrano M, Gallego-Landin I, Valverde O. The FAAH inhibitor URB597 reduces cocaine intake during conditioned punishment and mitigates cocaine seeking during withdrawal. Biomed Pharmacother 2023; 165:115194. [PMID: 37499453 DOI: 10.1016/j.biopha.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Medrano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Wei X, Yang Q, Yang Z, Huang T, Yang H, Wang L, Pan L, Ding J. Discovery of novel TRPV1 modulators through machine learning-based molecular docking and molecular similarity searching. Chem Biol Drug Des 2023; 102:409-423. [PMID: 37489095 DOI: 10.1111/cbdd.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure-based virtual screening and ligand-based virtual screening methods were used to screen compound databases respectively. In the structure-based virtual screening route, a full-length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning-based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand-based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.
Collapse
Affiliation(s)
- Xinmiao Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qifan Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Zhijiang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tengxin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Hang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
8
|
Ngoc KH, Kecskés A, Kepe E, Nabi L, Keeble J, Borbély É, Helyes Z. Expression of the Transient Receptor Potential Vanilloid 1 ion channel in the supramammillary nucleus and the antidepressant effects of its antagonist AMG9810 in mice. Eur Neuropsychopharmacol 2023; 73:96-107. [PMID: 37156112 DOI: 10.1016/j.euroneuro.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.
Collapse
Affiliation(s)
- Khai Huynh Ngoc
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Kepe
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Liza Nabi
- King's College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Julie Keeble
- King's College London, Centre for Human & Applied Physiological Sciences, London, United Kingdom
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Eötvös Loránd Research Network, Chronic Pain Research Group, University of Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; PharmInVivo Ltd, Pécs, Hungary.
| |
Collapse
|
9
|
Bai X, Zhang K, Ou C, Nie B, Zhang J, Huang Y, Zhang Y, Huang J, Ouyang H, Cao M, Huang W. Selective activation of AKAP150/TRPV1 in ventrolateral periaqueductal gray GABAergic neurons facilitates conditioned place aversion in male mice. Commun Biol 2023; 6:742. [PMID: 37460788 PMCID: PMC10352381 DOI: 10.1038/s42003-023-05106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Aversion refers to feelings of strong dislike or avoidance toward particular stimuli or situations. Aversion can be caused by pain stimuli and has a long-term negative impact on physical and mental health. Aversion can also be caused by drug abuse withdrawal, resulting in people with substance use disorder to relapse. However, the mechanisms underlying aversion remain unclear. The ventrolateral periaqueductal gray (vlPAG) is considered to play a key role in aversive behavior. Our study showed that inhibition of vlPAG GABAergic neurons significantly attenuated the conditioned place aversion (CPA) induced by hindpaw pain pinch or naloxone-precipitated morphine withdrawal. However, activating or inhibiting glutamatergic neurons, or activating GABAergic neurons cannot affect or alter CPA response. AKAP150 protein expression and phosphorylated TRPV1 (p-TRPV1) were significantly upregulated in these two CPA models. In AKAP150flox/flox mice and C57/B6J wild-type mice, cell-type-selective inhibition of AKAP150 in GABAergic neurons in the vlPAG attenuated aversion. However, downregulating AKAP150 in glutamatergic neurons did not attenuate aversion. Knockdown of AKAP150 in GABAergic neurons effectively reversed the p-TRPV1 upregulation in these two CPA models utilized in our study. Collectively, inhibition of the AKAP150/p-TRPV1 pathway in GABAergic neurons in the vlPAG may be considered a potential therapeutic target for the CPA response.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Minghui Cao
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation. Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun 2023; 14:2451. [PMID: 37117175 PMCID: PMC10147690 DOI: 10.1038/s41467-023-38162-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Pain therapy has remained conceptually stagnant since the opioid crisis, which highlighted the dangers of treating pain with opioids. An alternative addiction-free strategy to conventional painkiller-based treatment is targeting receptors at the origin of the pain pathway, such as transient receptor potential (TRP) ion channels. Thus, a founding member of the vanilloid subfamily of TRP channels, TRPV1, represents one of the most sought-after pain therapy targets. The need for selective TRPV1 inhibitors extends beyond pain treatment, to other diseases associated with this channel, including psychiatric disorders. Here we report the cryo-electron microscopy structures of human TRPV1 in the apo state and in complex with the TRPV1-specific nanomolar-affinity analgesic antagonist SB-366791. SB-366791 binds to the vanilloid site and acts as an allosteric hTRPV1 inhibitor. SB-366791 binding site is supported by mutagenesis combined with electrophysiological recordings and can be further explored to design new drugs targeting TRPV1 in disease conditions.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Iglesias LP, Fernandes HB, de Miranda AS, Perez MM, Faccioli LH, Sorgi CA, Bertoglio LJ, Aguiar DC, Wotjak CT, Moreira FA. TRPV1 modulation of contextual fear memory depends on stimulus intensity and endocannabinoid signalling in the dorsal hippocampus. Neuropharmacology 2023; 224:109314. [PMID: 36336070 DOI: 10.1016/j.neuropharm.2022.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S de Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Malena M Perez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A Sorgi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany
| | - Fabrício A Moreira
- Graduate School in Neuroscience and Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
13
|
Beneficial Effects of Capsaicin in Disorders of the Central Nervous System. Molecules 2022; 27:molecules27082484. [PMID: 35458680 PMCID: PMC9029810 DOI: 10.3390/molecules27082484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer’s disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson’s disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system.
Collapse
|
14
|
Topuz RD, Cetinkaya MZ, Erumit D, Duvan Aydemir K, Gunduz O, Karadag CH, Ulugol A. The role of endocannabinoid system and TRPV1 receptors in the antidepressant and anxiolytic effects of dipyrone in chronic unpredictable mild stress in mice. Eur J Pharmacol 2021; 908:174315. [PMID: 34270988 DOI: 10.1016/j.ejphar.2021.174315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Although dipyrone is a widely used analgesic and antipyretic, its mechanism of action is not fully clarified. Recent studies have drawn attention to its central effects and its relationship with the endocannabinoid system. The endocannabinoid system plays important roles in processes such as anxiety, depression, fear, and learning-memory. In this study, we aimed to investigate whether endocannabinoid levels change in the amygdala in chronic unpredictable mild stress model in mice and whether cannabinoid and TRPV1 receptors mediate antidepressant and anxiolytic effects of dipyrone. Mice were submitted to chronic unpredictable mild stress protocol of 6-weeks, then behavioral test were performed. In the first part of the study, dipyrone was injected at doses of 150, 300, and 600 mg/kg (i.p.) during behavioral tests. In the second part, the CB1 antagonist AM 251 (1 mg/kg, i.p.), the CB2 antagonist AM630 (1 mg/kg, i.p.), and the TRPV1 antagonist capsazepine (3 mg/kg, i.p.) were administered alone or in combination with 300 mg/kg dipyrone to observe if these receptors mediate dipyrone effects. Endocannabinoid and N-acylethanolamines levels were measured by LC-MS/MS in amygdala. Our results showed that there were no changes in AEA, 2-AG, PEA, OAE levels in the amygdala in mice exposed to chronic unpredictable mild stress model; dipyrone exerted antidepressant and anxiolytic effects at doses of 300 and 600 mg/kg; its anxiolytic effect appears to be mediated via CB1 receptors, whereas TRPV1 receptors seems to mediate its antidepressant action.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey.
| | - Mehmet Zahid Cetinkaya
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Dilsat Erumit
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Kubra Duvan Aydemir
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Cetin Hakan Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|