1
|
Lee R, Kim G, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction and prevent fear memory loss in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation and synaptic dysfunction in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction and fear memory loss in the amyloid pathology model mice. We thus suggest that co-activation of PV+ and SST+ cells is a novel strategy to reverse hippocampal dysfunction and cognitive decline in AD.
Collapse
|
2
|
Ogunsuyi OB, Ogunruku OO, Umar HI, Oboh G. Effect of curcumin-donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats. Mol Biol Rep 2024; 51:864. [PMID: 39073463 DOI: 10.1007/s11033-024-09712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, School of Basic Medical Sciences, The Federal University of Technology, Akure, Nigeria.
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria.
| | | | - Haruna Isiyaku Umar
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
3
|
Singh B, Day CM, Abdella S, Garg S. Alzheimer's disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release 2024; 367:402-424. [PMID: 38286338 DOI: 10.1016/j.jconrel.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD), is a neurodegenerative disorder that escalates with time, exerting a significant impact on physical and mental health and leading to death. The prevalence of AD is progressively rising along with its associated economic burden and necessitates effective therapeutic approaches in the near future. This review paper aims to offer an insightful overview of disease pathogenesis, current FDA-approved drugs, and drugs in different clinical phases. It also explores innovative formulations and drug delivery strategies, focusing on nanocarriers and long-acting medications (LAMs) to enhance treatment efficacy and patient adherence. The review also emphasizes preclinical evidence related to nanocarriers and their potential to improve drug bioavailability, pharmacokinetics, and pharmacodynamics parameters, while also highlighting their ability to minimize systemic side effects. By providing a comprehensive analysis, this review furnishes valuable insights into different pathophysiological mechanisms for future drug development. It aims to inform the development of treatment strategies and innovative formulation approaches for delivering existing molecules in Alzheimer's disease, ultimately striving to improve patient compliance.
Collapse
Affiliation(s)
- Baljinder Singh
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Ogunsuyi OB, Aro OP, Oboh G, Olagoke OC. Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and cnc/Nrf2-redox systems. Drug Chem Toxicol 2023; 46:1035-1043. [PMID: 36069210 DOI: 10.1080/01480545.2022.2119995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
One of the well-established models for examining neurodegeneration and neurotoxicity is the Drosophila melanogaster model of aluminum-induced toxicity. Anti-cholinesterase drugs have been combined with other neuroprotective agents to improve Alzheimer's disease management, but there is not much information on the combination of anti-cholinesterases with dietary polyphenols to combat memory impairment. Here, we assess how curcumin influences some of the critical therapeutic effects of donepezil (a cholinesterase inhibitor) in AlCl3-treated Drosophila melanogaster. Harwich strain flies were exposed to 40 mM AlCl3 - alone or in combination with curcumin (1 mg/g) and/or donepezil (12.5 µg/g and 25 µg/g) - for seven days. The flies' behavioral evaluations (memory index and locomotor performance) were analyzed. Thereafter, the flies were processed into homogenates for the quantification of acetylcholinesterase (AChE), catalase, total thiol, and rate of lipid peroxidation, as well as the mRNA levels of acetylcholinesterase (ACE1) and cnc/NRF2. Results showed that AlCl3-treated flies presented impaired memory and increased activities of acetylcholinesterase and lipid peroxidation, while there were decrease in total thiol levels and catalase activity when compared to the control. Also, the expression of ACE1 was significantly increased while that of cnc/NRF2 was significantly decreased. However, combinations of curcumin and donepezil, especially at lower dose of donepezil, significantly improved the memory index and biochemical parameters compared to donepezil alone. Thus, curcumin plus donepezil offers unique therapeutic effects during memory impairment in the D. melanogaster model of neurotoxicity.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Olawande Chinedu Olagoke
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Castner SA, Gupta S, Wang D, Moreno AJ, Park C, Chen C, Poon Y, Groen A, Greenberg K, David N, Boone T, Baxter MG, Williams GV, Dubal DB. Longevity factor klotho enhances cognition in aged nonhuman primates. NATURE AGING 2023; 3:931-937. [PMID: 37400721 PMCID: PMC10432271 DOI: 10.1038/s43587-023-00441-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Cognitive dysfunction in aging is a major biomedical challenge. Whether treatment with klotho, a longevity factor, could enhance cognition in human-relevant models such as in nonhuman primates is unknown and represents a major knowledge gap in the path to therapeutics. We validated the rhesus form of the klotho protein in mice showing it increased synaptic plasticity and cognition. We then found that a single administration of low-dose, but not high-dose, klotho enhanced memory in aged nonhuman primates. Systemic low-dose klotho treatment may prove therapeutic in aging humans.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cana Park
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Chen Chen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yan Poon
- Unity Biotechnology, Brisbane, CA, USA
| | | | | | | | - Tom Boone
- Tom Boone Consulting, Newbury Park, CA, USA
| | - Mark G Baxter
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Graham V Williams
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Alsikhan RS, Aldubayan MA, Almami IS, Alhowail AH. Protective Effect of Galantamine against Doxorubicin-Induced Neurotoxicity. Brain Sci 2023; 13:971. [PMID: 37371449 DOI: 10.3390/brainsci13060971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND AIMS Doxorubicin (DOX) causes cognitive impairment (chemobrain) in patients with cancer. While DOX damages the cholinergic system, few studies have focused on the protective effects of cholinergic function on chemobrain. The acetylcholinesterase inhibitor galantamine (GAL) demonstrates neuroprotective properties. We investigated the mechanisms associated with DOX-induced cognitive impairments and the potential protective role of GAL in preventing chemobrain. MAIN METHODS Female Wistar rats were divided into control, DOX, GAL, and DOX + GAL groups. The rats in the DOX group were administered DOX (5 mg/kg intraperitoneally twice weekly for two weeks), while those in the GAL group were orally administered GAL (2.5 mg/kg) via oral gavage once daily for 15 days. The combination group (DOX + GAL) received GAL (once daily) and DOX (two times per week) concurrently. The body weights and survival rates were monitored daily. The animals were subjected to behavioral tests to assess the memory function followed by the biochemical estimation of inflammatory markers, including tumor necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6) in rat brain tissue and RT-qPCR. KEY FINDINGS DOX caused a reduction in the body weight and survival rate, which was alleviated by GAL concomitant treatment with DOX (DOX + GAL). These groups had reduced body weights and survival rates. DOX-treated animals exhibited an impairment of short-term spatial working memory, manifested as a behavioral alteration in the Y-maze test, the novel object recognition (NOR) test, and the elevated plus-maze (EPM) test. Concurrent treatment with GAL (DOX + GAL) showed improved memory function, as evidenced by an increase in the number of entries and time spent in the novel arm, the time spent exploring the novel object, and the transfer latency in the Y-maze, NOR test, and EPM test, respectively. These findings were also supported by biochemical observations showing the reversal of DOX-induced changes in IL-1β, IL-6, and TNF-α, as well as their relative expression of mRNA in brain tissue following concurrent GAL treatment. CONCLUSION GAL appeared to be a neuroprotective agent against neuroinflammation caused by DOX by reducing inflammatory markers in the brain.
Collapse
Affiliation(s)
- Rawan S Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibtesam S Almami
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Effects of 3 R, 16 S-2-hydroxyethyl apovincaminate (HEAPO), donepezil and galantamine on learning and memory retention in naïve Wistar rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:91-105. [PMID: 36692469 DOI: 10.2478/acph-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
The effects of 3R,16S-2-hydroxyethyl apovincaminate (HEAPO, RGH-10885) compared with those of two cholinesterase inhibitors, donepezil and galantamine, were examined in naïve Wistar rats using standard active and passive avoidance tests. The active avoidance test (shuttle box) and two passive avoidance tests (step-through and step-down) were performed according to the experimental design. There were 10 groups of rats (n = 8) and the substances studied were applied orally before each testing session. In the active avoidance test, the number of conditioned stimuli (avoidances), unconditioned stimuli (escapes) and intertrial crossings were observed. In step-down and step-through passive avoidance tests, the latencies of reactions were observed. All the studied compounds showed positive effects in the learning and memory tests, compared to the controls. It was concluded that HEAPO, donepezil and galantamine had a memory-enhancing effect in active and passive avoidance tests.
Collapse
|
8
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
9
|
Hussein A, Tielemans A, Baxter MG, Benson DL, Huntley GW. Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2 G2019S knockin mutation. Exp Neurol 2022; 355:114145. [PMID: 35732218 PMCID: PMC9338764 DOI: 10.1016/j.expneurol.2022.114145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023]
Abstract
Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2G2019S carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2G2019S knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation. In a visuospatial attention task, mutant mice exhibited significantly more omissions and longer response latencies than controls that could not be attributed to deficits in motivation, visual sensory perception per se or locomotion, thereby suggesting impairments in divided attention and/or action-selection as well as generally slower information processing speed. Pretreating mice with the acetylcholinesterase inhibitor donepezil normalized both higher omission rates and longer response latencies in the mutants, but did not affect any performance metric in controls. Strikingly, cholinergic fiber density in cortical areas PL/IL and DMS (dorsomedial striatum) was significantly sparser in mutants than in controls, while further behavioral interrogation of the mutants revealed significant impairments in action-outcome associations but preserved cognitive flexibility. These data suggest that the Lrrk2G2019S mutation negatively impacts cholinergic innervation anatomically and functionally by young adulthood, impairing corticostriatal network function in ways that may contribute to early PD-associated executive function deficits.
Collapse
|
10
|
Obafemi TO, Owolabi OV, Omiyale BO, Afolabi BA, Ojo OA, Onasanya A, Adu IAI, Rotimi D. Combination of donepezil and gallic acid improves antioxidant status and cholinesterases activity in aluminum chloride-induced neurotoxicity in Wistar rats. Metab Brain Dis 2021; 36:2511-2519. [PMID: 33978901 DOI: 10.1007/s11011-021-00749-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
The present study compared the effect of donepezil only and combination of donepezil and gallic acid on oxidative status and cholinesterase activity in the brain of Wistar rats administered AlCl3 for 60 days. Twenty-eight rats (180 - 200 g) were arbitrarily distributed into four groups of seven animals apiece. Group 1 served as normal control and received distilled water throughout the study. Group 2 animals received only AlCl3 throughout the study while animals in groups 3 and 4 were administered donepezil only (10 mg/kg) and combination of donepezil (10 mg/kg) and gallic acid (50 mg/kg), respectively, in addition to AlCl3. Treatments were administered orally by gavage. At the end of the study, animals were sacrificed and activities of acetylcholinesterase, butyrylcholinesterase, superoxide dismutase (SOD) and catalase as well as levels of malondialdehyde (MDA), total thiol and nitric oxide (NO) were evaluated in the brain. Histopathological study was conducted on the hippocampus of experimental animals. Results showed that AlCl3 significantly (p < 0.05) increased brain activities of cholinesterases and levels of MDA and NO with a concomitant decrease in total thiol level as well as activities of SOD and catalase. Donepezil only and combination of donepezil and gallic acid reversed these alterations. Also, combination of donepezil and gallic acid significantly (p < 0.05) improved antioxidant status better than donepezil only. It could be concluded that a synergy might exist between gallic acid and donepezil especially in ameliorating oxidative stress associated with AlCl3-induced neurotoxicity.
Collapse
Affiliation(s)
- Tajudeen O Obafemi
- Department of Biochemistry, Afe Babalola University, PMB, Ado-Ekiti, 5454, Nigeria.
| | - Olutumise V Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB, Ado-Ekiti, 5454, Nigeria
| | - Benjamin O Omiyale
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB, Ado-Ekiti, 5454, Nigeria
| | | | - Oluwafemi A Ojo
- Department of Biochemistry, Landmark University, PMB, Omu-aran, 1001, Nigeria
| | - Amos Onasanya
- Department of Biochemistry, Afe Babalola University, PMB, Ado-Ekiti, 5454, Nigeria
| | - Isaac A I Adu
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, PMB, Ado-Ekiti, 5454, Nigeria
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, PMB, Omu-aran, 1001, Nigeria
| |
Collapse
|
11
|
Mehrdad J, Leila E, Emsehgol N. The effect of vitamin B12 on synaptic plasticity of hippocampus in Alzheimer's disease model rats. Int J Neurosci 2021; 133:654-659. [PMID: 34347557 DOI: 10.1080/00207454.2021.1962863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hippocampus cells, responsible for learning and memory, are disturbed in Alzheimer's disease (AD), resulting in production of several inflammatory markers, such as neurexin 1 -neuroligin, cyclooxygenase-2 (COX-2), and caspase-3 proteins, used in measurement of AD's severity and development. Vitamin B12, which plays a role in brain functioning, has anti-inflammatory properties and its impairment is associated with apoptosis in Alzheimer's disease. This study aimed to investigate the effect of vitamin B12 on restoration of Synaptic Plasticity on scopolamine-induced AD in rats. METHODS To simulate AD, Rats, except the control group were i.p. injected with 3 mg/kg scopolamine. Before scopolamine the pretreatment group vitamin B12 (0.5, 2, and 4 mg/kg) was injected every day for the next 14 days. After 24 h, sectioning the rats' brains, the concentration of postsynaptic density protein 95 (PSD-95), neurexin 1-neurolgin, COX-2, and caspase-3 proteins in hippocampus were measured using immunoblotting. RESULTS B12 significantly enhanced molecular balance. PSD-95 and neurexin 1 and neuroligin concentrations were significantly reduced, whereas COX-2 and activated caspase-3 were enhanced in the hippocampus of scopolamine-injected subjects. Their alterations were decreased after B12 administration. CONCLUSIONS Vitamin B12 protected scopolamine-injected rats and inhibited hippocampal inflammation and apoptosis and preserved pre- and post-synaptic proteins and possibly synaptic integrity in hippocampus route.
Collapse
Affiliation(s)
- Jahanshahi Mehrdad
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elyasi Leila
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nikmahzar Emsehgol
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Different cholinergic cell groups in the basal forebrain regulate social interaction and social recognition memory. Sci Rep 2021; 11:13589. [PMID: 34193944 PMCID: PMC8245640 DOI: 10.1038/s41598-021-93045-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
Social behaviour is a complex construct that is reported to include several components of social approach, interaction and recognition memory. Alzheimer's disease (AD) is mainly characterized by progressive dementia and is accompanied by cognitive impairments, including a decline in social ability. The cholinergic system is a potential constituent for the neural mechanisms underlying social behaviour, and impaired social ability in AD may have a cholinergic basis. However, the involvement of cholinergic function in social behaviour has not yet been fully understood. Here, we performed a selective elimination of cholinergic cell groups in the basal forebrain in mice to examine the role of cholinergic function in social interaction and social recognition memory by using the three-chamber test. Elimination of cholinergic neurons in the medial septum (MS) and vertical diagonal band of Broca (vDB) caused impairment in social interaction, whereas ablating cholinergic neurons in the nucleus basalis magnocellularis (NBM) impaired social recognition memory. These impairments were restored by treatment with cholinesterase inhibitors, leading to cholinergic system activation. Our findings indicate distinct roles of MS/vDB and NBM cholinergic neurons in social interaction and social recognition memory, suggesting that cholinergic dysfunction may explain social ability deficits associated with AD symptoms.
Collapse
|
13
|
El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS. Galantamine nanoparticles outperform oral galantamine in an Alzheimer's rat model: pharmacokinetics and pharmacodynamics. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:1281-1296. [PMID: 34013783 DOI: 10.2217/nnm-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Galantamine is an acetylcholinesterase inhibitor frequently used in Alzheimer's disease management. Its cholinergic adverse effects and rapid elimination limit its therapeutic outcomes. We investigated the pharmacodynamics and pharmacokinetics of 2-week intranasal galantamine-bound chitosan nanoparticles (G-NP) treatment in scopolamine-induced Alzheimer's disease rat model. Materials & methods: Behavioral, neurobiochemical and histopathological changes were assessed and compared with oral and nasal solutions. Brain uptake and pharmacokinetics were determined using a novel validated LC/MS assay. Results: G-NP enhanced spatial memory, exploring behavior and cholinergic transmission in rats. Beta-amyloid deposition and Notch signaling were suppressed and the histopathological degeneration was restored. G-NP potentiated galantamine brain delivery and delayed its elimination. Conclusion: G-NP hold promising therapeutic potentials and brain targeting, outperforming conventional galantamine therapy.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mahmoud Agami
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt
| | - Passant Mohamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Marwa Belal
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Beheira, 22511, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Amira S Hanafy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| |
Collapse
|
14
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a critical role in the neuropharmacology of learning and memory. As such, naturally occurring alkaloids that regulate nAChR activity have gained interest for understanding and potentially improving memory function. In this study, we tested the acute effects of three known nicotinic alkaloids, nicotine, cotinine, and anatabine, in suppressing scopolamine-induced memory deficit in rodents by using two classic memory paradigms, Y-maze and novel object recognition (NOR) in mice and rats, respectively. We found that all compounds were able to suppress scopolamine-induced spatial memory deficit in the Y-maze spontaneous alternation paradigm. However, only nicotine was able to suppress the short-term object memory deficit in NOR, despite the higher doses of cotinine and anatabine used to account for their potential differences in nAChR activity. These results indicate that cotinine and anatabine can uniquely regulate short-term spatial memory, while nicotine seems to have more robust and general role in memory regulation in rodents. Thus, nAChR-activating alkaloids may possess distinct procognitive properties in rodents, depending on the memory types examined.
Collapse
|
15
|
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2020; 190:108352. [PMID: 33035532 DOI: 10.1016/j.neuropharm.2020.108352] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), the most common cause of adult-onset dementia is characterized by a progressive decline of cognitive functions accompanied by behavioral manifestations. The main class of drugs currently used for the treatment of AD are acetylcholinesterase/cholinesterase inhibitors (ChE-Is). The first ChE-I licensed for symptomatic treatment of AD was tacrine. The ChE-Is currently available in the market are donepezil, rivastigmine and galantamine as tacrine is no longer in use, due to its hepatotoxicity. According to mechanism of action the ChE-Is are classified as short-acting or reversible agents such as tacrine, donepezil, and galantamine, as intermediate-acting or pseudo-irreversible agent such as rivastigmine. Overall, the efficacy of the three ChE-Is available in the market is similar and the benefit of administration of these compounds is mild and may not be clinically significant. Due to gastrointestinal side effects of these drugs, medicinal chemistry and pharmaceutical delivery studies have investigated solutions to improve the pharmacological activity of these compounds. In spite of the limited activity of ChE-Is, waiting for more effective approaches, these drugs still represent a pharmacotherapeutic resource for the treatment of AD. Other approaches in which ChE-Is were investigated is in their use in combination with other classes of drugs such as cholinergic precursors, N-methyl-d-aspartate (NMDA) receptor antagonists and antioxidant agents. After many years from the introduction in therapy of ChE-Is, the combination with other classes of drugs may represent the chance for a renewed interest of ChE-Is in the treatment of adult-onset dementia disorders.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, Telemedicine and Telepharmacy Center University of Camerino via Madonna delle Carceri 9, 62032, Camerino, Italy.
| |
Collapse
|
16
|
van Onselen R, Scott LL, Downing TG. Evaluating amino acids as protectants against β-N-methylamino-l-alanine-induced developmental neurotoxicity in a rat model. Toxicol Appl Pharmacol 2020; 403:115140. [PMID: 32682829 DOI: 10.1016/j.taap.2020.115140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
With accumulating evidence that supports the role of β-N-methylamino-l-alanine (BMAA) in neurodegeneration, it is necessary to elucidate the mechanisms and modes of BMAA toxicity so as to facilitate the search for potential preventative/therapeutic strategies. Daily supplementation with l-serine was suggested as a possible therapy to treat BMAA-induced neurotoxicity, based on the hypothesized mechanism of BMAA misincorporation into proteins for l-serine. As an alternative to misincorporation, it was hypothesized that BMAA toxicity may, in part, be due to its high affinity for associating with hydroxyl group-containing amino acids, and that a dietary excess of the hydroxyl-containing l-serine might offer protection by binding to BMAA and reducing its toxicity. Additionally, l-serine can also reduce the uptake of BMAA into human cells by competitive uptake at ASCT2, and l-phenylalanine, by competitive uptake at LAT1, and l-alanine, by competitive uptake at SNAT2, can also reduce BMAA uptake into human cells. The aim of this study was therefore to determine the protective value of l-serine, l-phenylalanine and l-alanine in reducing the effects of neonatal exposure to BMAA in a Sprague Dawley rat model. Pre-treatment with l-phenylalanine reduced the observed behavioral abnormalities and neuropathologies by 60-70% in most cases. l-serine was also effective in reducing some of the behavioral abnormalities and neuropathologies, most markedly spinal cord neuronal loss. However, the protective effect of l-serine was obfuscated by neuropathies that were observed in l-serine-treated control male rats. l-alanine had no effect in protecting against BMAA-induced neurotoxicity, suggesting that competitive amino acid uptake plays a minor role in protecting against BMAA-induced neurotoxicity.
Collapse
Affiliation(s)
- Rianita van Onselen
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Tim G Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa..
| |
Collapse
|
17
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
18
|
Adedayo BC, Jesubowale OS, Adebayo AA, Oboh G. Effect of Andrographis paniculata leaves extract on neurobehavioral and biochemical indices in scopolamine-induced amnesic rats. J Food Biochem 2020; 45:e13280. [PMID: 32441354 DOI: 10.1111/jfbc.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Andrographis paniculata is a medicinal herb that is used to treat various disease conditions due to its pharmacological properties. Thus, this study sought to assess the effect of A. paniculata extract on neurobehavioral and some biochemical parameters in scopolamine-induced amnesic rats. Thirty-five male rats were divided into seven groups and treated with aqueous extract of A. paniculata (50 and 500 mg/kg) and donepezil (5 mg/kg) for 14 days before administration of scopolamine. Behavioral studies (Morris water maze and Y-maze) were carried out to evaluate cognitive dysfunction in scopolamine-induced rats. Biochemical assays such as cholinesterases (AChE and BChE), monoamine oxidase (MAO), and purinergic activities were determined. Results revealed the presence of orientin, quercetin, caffeic acid, apigenin, and gallic acid in A. paniculata. Also, findings from this study showed that aqueous extract of A. paniculata had a modulatory effect on scopolamine-induced cognitive impairment and could be used in the management of memory loss. PRACTICAL APPLICATIONS: Aqueous extract of A. paniculata characterized revealed the presence of polyphenols which are antioxidants. The inhibitory activity possessed by A. paniculata on some enzymes linked to neurodegeneration could be due to the antioxidant activity. Given this, we recommend that results gotten from this study could be used to develop treatment therapy for neurodegeneration. However, in-depth studies should be carried out on the toxic effect of A. paniculata to ascertain a safe dose for treatment.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwapelumi S Jesubowale
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi Abiodun Adebayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Chemical Sciences (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
19
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 DOI: 10.3389/fnins.2020.00458.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 04/04/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
20
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 PMCID: PMC7270331 DOI: 10.3389/fnins.2020.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner, ;
| |
Collapse
|
21
|
New procognitive enhancers acting at the histamine H3 and AMPA receptors reverse natural forgetting in mice: comparisons with donepezil and memantine in the object recognition task. Behav Pharmacol 2019; 30:351-357. [DOI: 10.1097/fbp.0000000000000418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Neuroprotective effects of 1`δ-1`-acetoxyeugenol acetate on Aβ(25-35) induced cognitive dysfunction in mice. Biomed Pharmacother 2019; 109:1454-1461. [DOI: 10.1016/j.biopha.2018.10.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
|
23
|
PDE3 Inhibitors Repurposed as Treatments for Age-Related Cognitive Impairment. Mol Neurobiol 2018; 56:4306-4316. [PMID: 30311144 DOI: 10.1007/s12035-018-1374-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
As the population of older individuals grows worldwide, researchers have increasingly focused their attention on identifying key molecular targets of age-related cognitive impairments, with the aim of developing possible therapeutic interventions. Two such molecules are the intracellular cyclic nucleotides, cAMP and cGMP. These second messengers mediate fundamental aspects of brain function relevant to memory, learning, and cognitive function. Consequently, phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, are promising targets for the development of cognition-enhancing drugs. Inhibitors that target PDEs work by elevating intracellular cAMP. In this review, we provide an overview of different PDE inhibitors, and then we focus on pharmacological and physiological effects of PDE3 inhibitors in the CNS and peripheral tissues. Finally, we discuss findings from experimental and preliminary clinical studies and the potential beneficial effects of the PDE3 inhibitor cilostazol on age-related cognitive impairments. In the innovation pipeline of pharmaceutical development, the antiplatelet agent cilostazol has come into the spotlight as a novel treatment for mild cognitive impairment. Overall, the repurposing of cilostazol may represent a potentially promising way to treat mild cognitive impairment, Alzheimer's disease, and vascular dementia. In this review, we present a brief summary of cAMP signaling and different PDE inhibitors, followed by a discussion of the pharmacological and physiological role of PDE3 inhibitors. In this context, we discuss the repurposing of a PDE3 inhibitor, cilostazol, as a potential treatment for age-related cognitive impairment based on recent research.
Collapse
|
24
|
Odubanjo VO, Ibukun EO, Oboh G, Adefegha SA. Aqueous extracts of two tropical ethnobotanicals (Tetrapleura tetraptera and Quassia undulata) improved spatial and non-spatial working memories in scopolamine-induced amnesic rats: Influence of neuronal cholinergic and antioxidant systems. Biomed Pharmacother 2018; 99:198-204. [DOI: 10.1016/j.biopha.2018.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023] Open
|
25
|
Chase TN, Farlow MR, Clarence-Smith K. Donepezil Plus Solifenacin (CPC-201) Treatment for Alzheimer's Disease. Neurotherapeutics 2017; 14:405-416. [PMID: 28138837 PMCID: PMC5398986 DOI: 10.1007/s13311-016-0511-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Available cholinergic drugs for treating Alzheimer's disease (AD) provide modest symptomatic benefit. We hypothesized that co-administration of a peripheral anticholinergic to reduce dose-limiting adverse effects (AEs) would enable the safe/tolerable use of higher cholinesterase inhibitor doses and thus improve their antidementia efficacy. A modified single-blind, ascending-dose, phase IIa study of donepezil plus solifenacin (CPC-201) lasting 26 weeks was conducted in 41 patients with probable AD of moderate severity. Entry criteria included the use of donepezil at a dose of 10 mg/day during the preceding 3 months. The primary outcome measure was the maximum tolerated dose (MTD) of donepezil achieved (to protocol limit of 40 mg/day) when administered with the anticholinergic solifenacin 15 mg/day. Secondary measures included assessments of cognitive and global function, as well as of AEs. The mean ± SD donepezil MTD increased to 38 ± 0.74 mg/day (median 40 mg/day; p < 0.001); 88% of the study population safely attained this dose at the end of titration. Markedly reduced donepezil AE frequency, especially gastrointestinal, allowed this dose increase. There were no drug-related serious AEs or clinically significant laboratory abnormalities. At 26 weeks, Alzheimer's Disease Assessment Scale Cognitive Component scores in the efficacy evaluable population improved by 0.35 ± 0.85 points over baseline (p < 0.05), an estimated 2.5 ± 0.84 points above 10 mg/day donepezil and 5.4 ± 0.84 points above historic placebo (both p < 0.05). Clinical Global Impression of Improvement scores improved by 0.94 ± 0.20 to 3.1 ± 0.20 points (p < 0.001). The findings suggest that limiting donepezil AEs by co-administration of solifenacin allows the safe administration of substantially higher cholinesterase inhibitors doses that may augment cognitive and global benefits in patients with AD.
Collapse
Affiliation(s)
- Thomas N Chase
- Chase Pharmaceuticals, Inc, 1825 K Street NW, Washington, DC, 20006, USA.
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, 541 Clinical Drive, CL299, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
26
|
Akinyemi AJ, Oboh G, Oyeleye SI, Ogunsuyi O. Anti-amnestic Effect of Curcumin in Combination with Donepezil, an Anticholinesterase Drug: Involvement of Cholinergic System. Neurotox Res 2017; 31:560-569. [DOI: 10.1007/s12640-017-9701-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
|
27
|
Maurice T, Goguadze N. Role of σ 1 Receptors in Learning and Memory and Alzheimer's Disease-Type Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:213-233. [PMID: 28315274 DOI: 10.1007/978-3-319-50174-1_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present chapter will review the role of σ1 receptor in learning and memory and neuroprotection , against Alzheimer's type dementia. σ1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ1 receptors on Ca2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer's disease . Several compounds, acting partly through the σ1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer's disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ1 receptor and α7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ1 receptor ligands, now developed as neuroprotectants in Alzheimer's disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, 34095, Montpellier, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, 34095, Montpellier, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, GA, USA
| |
Collapse
|
28
|
Cardona-Gómez GP, Lopera F. Dementia, Preclinical Studies in Neurodegeneration and its Potential for Translational Medicine in South America. Front Aging Neurosci 2016; 8:304. [PMID: 28066230 PMCID: PMC5167748 DOI: 10.3389/fnagi.2016.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Latin-American people with dementia will increase to an astounding 368% in 2050, higher than USA and Europe. In addition, to sporadic dementia type like Alzheimer, and vascular dementia (VaD) progression after Cerebrovascular disease is also found. These incidences are increased in Colombia by specific populations affected with pure Neurodegenerative and VaDs like Autosomical Dominant familial Alzheimer’s disease (AD) and Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). In spite of the enormous human effort with and economical effort and investment costs, neither sporadic nor genetic kinds of dementia progression have been prevented or blocked yet. Currently, there exist several animal models that partially solve the understanding of the neurodegenerative etiopathogenesis and its treatment. However, when the potential therapies are translated to humans, those do not work or present a limited action. Main difficulties are the diverse comorbility associated to the cause and/or several affected brain regions, reducing the efficacy of some therapies which are limited to a tissue-specific action or modulating a kind of neurotransmission. Global investigation suggests that a general prevention could be achieved with the improvement in the quality of lifestyle, including healthy diet, physical and mental activity, and avoiding mechanical or chemical pro-inflammatory events in an early stage in the most of non-communicable diseases. In this review article, we present some molecular targets and preclinical studies in animal models to propose strategies that could be useful in a future translation to prevent or block neurodegeneration: one is gene therapy; silencing pathogenic genes in critical brain areas where excitotoxicity arise and spread. Another is to take advantage of the natural source and its wide biodiversity of natural products that are capable of identifying, by the blocking and prevention of neurodegeneration. On the other side, the casuistic of pure dementias in the Latin-American region gives an exceptional opportunity to understand the pathogenesis in these human populations. Further, this is in support of the basic and clinical researchers working on an interaction for a better understanding and medical care of mixed dementias, which have more complex factors than pure ones. However, to promote the translation of any therapeutical alternative is necessary to clarify the normative and the protocols for developing clinical trials with original candidates or work upon strategies proposed from South-American countries.
Collapse
Affiliation(s)
- Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia Medellin, Colombia
| | - Francisco Lopera
- Clinical Neuroscience Area, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia Medellin, Colombia
| |
Collapse
|
29
|
Azimi L, Kachooeian M, Khodagholi F, Yans A, Heysieattalab S, Vakilzadeh G, Vosoughi N, Sanati M, Taghizadeh G, Sharifzadeh M. Protective effects of salicylate on PKA inhibitor (H-89)-induced spatial memory deficit via lessening autophagy and apoptosis in rats. Pharmacol Biochem Behav 2016; 150-151:158-169. [PMID: 27984096 DOI: 10.1016/j.pbb.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023]
|
30
|
Emik U, Unal Y, Arslan M, Demirel CB. [The effects of memantine on recovery, cognitive functions, and pain after propofol anesthesia]. Rev Bras Anestesiol 2016; 66:485-91. [PMID: 27445259 DOI: 10.1016/j.bjan.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/10/2015] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Postoperative cognitive dysfunction refers to the problems associated with thought and memory that are often experienced after major surgery. The aim of this study is to evaluate the effects of intraperitoneally administered memantine on recovery, cognitive functions, and pain after propofol anesthesia. METHODS The study was conducted in Gazi University Animal Research Laboratory, Ankara, Turkey in January 2012. Twenty-four adult female Wistar Albino rats weighing 170-270g were educated for 300s in the radial arm maze (RAM) over three days. Group P was administered 150mgkg(-1) of intraperitoneal (IP) propofol; Group M was given 1mgkg(-1) of IP memantine; and Group MP was given 1mgkg(-1) of IP memantine before being administered 150mgkg(-1) of IP propofol. The control group received only IP saline. RAM and hot plate values were obtained after recovery from the groups that received propofol anesthesia and 30min after the administration of drugs in other two groups. RESULTS The duration of recovery for Group MP was significantly shorter than Group P (p<0.001), and the number of entries and exits in the RAM by Group MP was significantly higher during the first hour when compared to Group P (p<0.0001). Hot plate values, on the other hand, were found to be significantly increased in all groups when compared to the control values, aside from Group C (p<0.0001). CONCLUSION In this study, memantine provided shorter recovery times, better cognitive functions, and reduced postoperative pain. From this study, we find that memantine has beneficial effects on recovery, cognitive functions, and pain after propofol anesthesia.
Collapse
Affiliation(s)
- Ulku Emik
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ancara, Turquia
| | - Yusuf Unal
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ancara, Turquia
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ancara, Turquia.
| | - Cengiz Bekir Demirel
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ancara, Turquia
| |
Collapse
|
31
|
Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression. Neuropharmacology 2016; 101:341-50. [DOI: 10.1016/j.neuropharm.2015.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023]
|
32
|
Emik U, Unal Y, Arslan M, Demirel CB. The effects of memantine on recovery, cognitive functions, and pain after propofol anesthesia. Braz J Anesthesiol 2016; 66:485-91. [PMID: 27591462 DOI: 10.1016/j.bjane.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/10/2015] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Postoperative cognitive dysfunction refers to the problems associated with thought and memory that are often experienced after major surgery. The aim of this study is to evaluate the effects of intraperitoneally administered memantine on recovery, cognitive functions, and pain after propofol anesthesia. METHODS The study was conducted in Gazi University Animal Research Laboratory, Ankara, Turkey in January 2012. Twenty-four adult female Wistar Albino rats weighing 170-270g were educated for 300s in the radial arm maze (RAM) over three days. Group P was administered 150mgkg(-1) of intraperitoneal (IP) propofol; Group M was given 1mgkg(-1) of IP memantine; and Group MP was given 1mgkg(-1) of IP memantine before being administered 150mgkg(-1) of IP propofol. The control group received only IP saline. RAM and hot plate values were obtained after recovery from the groups that received propofol anesthesia and 30min after the administration of drugs in other two groups. RESULTS The duration of recovery for Group MP was significantly shorter than Group P (p<0.001), and the number of entries and exits in the RAM by Group MP was significantly higher during the first hour when compared to Group P (p<0.0001). Hot plate values, on the other hand, were found to be significantly increased in all groups when compared to the control values, aside from Group C (p<0.0001). CONCLUSION In this study, memantine provided shorter recovery times, better cognitive functions, and reduced postoperative pain. From this study, we find that memantine has beneficial effects on recovery, cognitive functions, and pain after propofol anesthesia.
Collapse
Affiliation(s)
- Ulku Emik
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ankara, Turkey
| | - Yusuf Unal
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ankara, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ankara, Turkey.
| | - Cengiz Bekir Demirel
- Department of Anesthesiology and Reanimation, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
33
|
Zakirova Z, Crynen G, Hassan S, Abdullah L, Horne L, Mathura V, Crawford F, Ait-Ghezala G. A Chronic Longitudinal Characterization of Neurobehavioral and Neuropathological Cognitive Impairment in a Mouse Model of Gulf War Agent Exposure. Front Integr Neurosci 2016; 9:71. [PMID: 26793076 PMCID: PMC4709860 DOI: 10.3389/fnint.2015.00071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/21/2015] [Indexed: 12/24/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian Gulf War conflict (1990-1991) exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and permethrin (PER), were key contributors to the etiology of GWI. For this study, we used our previously established mouse model of GW agent exposure (10 days PB+PER) and undertook an extensive lifelong neurobehavioral characterization of the mice from 11 days to 22.5 months post exposure in order to address the persistence and chronicity of effects suffered by the current GWI patient population, 24 years post-exposure. Mice were evaluated using a battery of neurobehavioral testing paradigms, including Open Field Test (OFT), Elevated Plus Maze (EPM), Three Chamber Testing, Radial Arm Water Maze (RAWM), and Barnes Maze (BM) Test. We also carried out neuropathological analyses at 22.5 months post exposure to GW agents after the final behavioral testing. Our results demonstrate that PB+PER exposed mice exhibit neurobehavioral deficits beginning at the 13 months post exposure time point and continuing trends through the 22.5 month post exposure time point. Furthermore, neuropathological changes, including an increase in GFAP staining in the cerebral cortices of exposed mice, were noted 22.5 months post exposure. Thus, the persistent neuroinflammation evident in our model presents a platform with which to identify novel biological pathways, correlating with emergent outcomes that may be amenable to therapeutic targeting. Furthermore, in this work we confirmed our previous findings that GW agent exposure causes neuropathological changes, and have presented novel data which demonstrate increased disinhibition, and lack of social preference in PB+PER exposed mice at 13 months after exposure. We also extended upon our previous work to cover the lifespan of the laboratory mouse using a battery of neurobehavioral techniques.
Collapse
Affiliation(s)
- Zuchra Zakirova
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | - Gogce Crynen
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
| | | | - Laila Abdullah
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | | | - Venkatarajan Mathura
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| | - Ghania Ait-Ghezala
- The Roskamp InstituteSarasota, FL, USA
- Life, Health and Chemical Sciences, The Open UniversityWalton Hall, Milton Keynes, UK
- James A. Haley Veteran's HospitalTampa, FL, USA
| |
Collapse
|
34
|
Okada K, Nishizawa K, Kobayashi T, Sakata S, Kobayashi K. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory. Sci Rep 2015; 5:13158. [PMID: 26246157 PMCID: PMC4526880 DOI: 10.1038/srep13158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Collapse
Affiliation(s)
- Kana Okada
- Department of Behavioural Sciences, Graduate School of Integrated Arts &Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoko Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shogo Sakata
- Department of Behavioural Sciences, Graduate School of Integrated Arts &Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Kazuto Kobayashi
- 1] Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan [2] Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan
| |
Collapse
|
35
|
Patel SS, Parashar A, Udayabanu M. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 2015; 30:803-11. [PMID: 25514862 DOI: 10.1007/s11011-014-9646-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India
| | | | | |
Collapse
|
36
|
Gardiner KJ. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 2014; 9:103-25. [PMID: 25552901 PMCID: PMC4277121 DOI: 10.2147/dddt.s51476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program, Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
37
|
Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 2014; 20:54-63. [PMID: 25462293 DOI: 10.1016/j.coph.2014.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
Abstract
The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine.
Collapse
Affiliation(s)
- Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nadezhda V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
38
|
Cho WH, Park JC, Chung C, Jeon WK, Han JS. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task. Behav Brain Res 2014; 273:116-22. [DOI: 10.1016/j.bbr.2014.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
|
39
|
Ramakrishnan NK, Visser AKD, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with (11)C-SA4503 and microPET. Psychopharmacology (Berl) 2014; 231:3997-4006. [PMID: 24639047 DOI: 10.1007/s00213-014-3533-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Sigma-1 receptor agonists are under investigation as potential disease-modifying agents for several CNS disorders. Donepezil, an acetylcholinesterase inhibitor used for the symptomatic treatment of Alzheimer's disease, is also a high-affinity sigma-1 agonist. OBJECTIVES The objectives of the present study were to investigate if the sigma-1 agonist tracer (11)C-SA4503 and microPET can be used to determine sigma-1 receptor occupancy (RO) of donepezil in the rat brain; to establish RO of donepezil at doses commonly used in rodent behavioural studies; and to determine the effective plasma concentration of donepezil required for 50 % of max-min occupancy (EC50). METHODS Male Wistar rats were pre-treated with donepezil (0.1 to 10 mg/kg) for about 1 h before microPET scans using (11)C-SA4503. The total distribution volume (V T) of the tracer was determined by Logan graphical analysis using time activity curves from arterial plasma and regions of interest drawn around the entire brain and individual brain regions. RO by donepezil was calculated from a modified Lassen plot, and ED50 was estimated from the sigmoidal dose-response curves obtained when the RO was plotted against log donepezil dose. RESULTS A dose-dependent reduction was observed for V T in the whole brain as well as individual brain regions. RO increased dose-dependently and was 93 % at 10 mg/kg. ED50 was 1.29 mg/kg. CONCLUSIONS Donepezil, in the common dose range, was found to dose-dependently occupy a significant fraction of the sigma-1 receptor population. The data indicate that it is possible to determine sigma-1 RO by an agonist drug in rat brain, using (11)C-SA4503 and microPET.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment. Proc Natl Acad Sci U S A 2014; 111:E3825-30. [PMID: 25157130 DOI: 10.1073/pnas.1410315111] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RS67333 is a partial serotonin subtype 4 receptor (5-HT4R) agonist that has been widely studied for its procognitive effect. More recently, it has been shown that its ability to promote the nonamyloidogenic cleavage of the precursor of the neurotoxic amyloid-β peptide leads to the secretion of the neurotrophic protein sAPPα. This effect has generated great interest in RS67333 as a potential treatment for Alzheimer's disease (AD). We show herein that RS67333 is also a submicromolar acetylcholinesterase (AChE) inhibitor and therefore, could contribute, through this effect, to the restoration of the cholinergic neurotransmission that becomes altered in AD. We planned to pharmacomodulate RS67333 to enhance its AChE inhibitory activity to take advantage of this pleiotropic pharmacological profile in the design of a novel multitarget-directed ligand that is able to exert not only a symptomatic but also, a disease-modifying effect against AD. These efforts allowed us to select donecopride as a valuable dual (h)5-HT4R partial agonist (Ki = 10.4 nM; 48.3% of control agonist response)/(h)AChEI (IC50 = 16 nM) that further promotes sAPPα release (EC50 = 11.3 nM). Donecopride, as a druggable lead, was assessed for its in vivo procognitive effects (0.1, 0.3, 1, and 3 mg/kg) with an improvement of memory performances observed at 0.3 and 1 mg/kg on the object recognition test. On the basis of these in vitro and in vivo activities, donecopride seems to be a promising drug candidate for AD treatment.
Collapse
|
41
|
Yanai S, Semba Y, Ito H, Endo S. Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology (Berl) 2014; 231:2681-93. [PMID: 24464529 DOI: 10.1007/s00213-014-3442-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/31/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) play an important role in the regulation of intracellular signaling mediated by cyclic adenosine monophosphate (cAMP). Recently, several PDE inhibitors were assessed for their possible cognitive enhancing properties. However, little is known about the effect of PDE3 inhibitors on memory function. OBJECTIVES We examined how the PDE3 inhibitor cilostazol affects C57BL/6 J mice as they perform various behavioral tasks. After behavioral assessment, brains of the mice were analyzed immunohistochemically to quantify the phosphorylation of cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. RESULTS Oral administration of cilostazol significantly enhanced recollection of the exact platform location in the Morris water maze probe test. Cilostazol also improved context-dependent long-term fear memory, without affecting short-term memory. No apparent effect was observed in cue-dependent fear memory. The results suggest that cilostazol selectively improves hippocampus-dependent long-term memory in these tasks. Cilostazol also significantly increased the number of phosphorylated-CREB-positive cells in hippocampal dentate gyrus. CONCLUSIONS These results suggest that cilostazol may exert its beneficial effects on learning and memory by enhancing the cAMP system in hippocampus, where it increases intracellular cAMP activity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | | | | | | |
Collapse
|
42
|
Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Gardiner KJ. Protein profiles associated with context fear conditioning and their modulation by memantine. Mol Cell Proteomics 2014; 13:919-37. [PMID: 24469516 DOI: 10.1074/mcp.m113.035568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein responses and interactions following normal learning.
Collapse
|
43
|
Kotermanski SE, Johnson JW, Thiels E. Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats. Pharmacol Biochem Behav 2013; 109:67-76. [PMID: 23665480 DOI: 10.1016/j.pbb.2013.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023]
Abstract
Memantine and ketamine block N-methyl-D-aspartate (NMDA) receptors with similar affinity and kinetics, yet their behavioral consequences differ: e.g., memantine is used to alleviate symptoms of Alzheimer's disease, whereas ketamine reproduces symptoms of schizophrenia. The two drugs exhibit different pharmacokinetics, which may play a principal role in their differential behavioral effects. To gain insight into the drugs' behavioral consequences, we treated adult male rats acutely with varying doses (0-40 mg/kg i.p.) of memantine or ketamine and assessed exploratory behavior and spatial working memory. To examine the importance of pharmacokinetics, we assessed behavior either 15 or 45 min after drug administration. Both drugs decreased ambulation, fine movements, and rearing at the beginning of the exploratory activity test; however, at the end of the test, high doses of only memantine increased ambulation and fine movements. High doses of both drugs disrupted spontaneous alternation, a measure of working memory, but high doses of only memantine elicited perseverative behavior. Surprisingly, ketamine's effects were influenced by the delay between drug administration and testing no more frequently than were memantine's. Our findings show that, regardless of test delay, memantine and ketamine evoke similar behavioral effects at lower doses, consistent with NMDA receptors being both drugs' principal site of action, but can have divergent effects at higher doses. Our results suggest that the divergence of memantine's and ketamine's behavioral consequences is likely to result from differences in mechanisms of NMDA receptor antagonism or actions at other targets.
Collapse
Affiliation(s)
- Shawn E Kotermanski
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
44
|
Kalemenev SV, Zubareva OE, Lukomskaya NY, Magazanik LG. Neuroprotective effect of noncompetitive NMDA receptor antagonists IEM-1957 and memantine in experimental focal cerebral ischemia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 443:78-80. [PMID: 22562673 DOI: 10.1134/s0012496612020184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 11/23/2022]
Affiliation(s)
- S V Kalemenev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
45
|
Araujo JA, Greig NH, Ingram DK, Sandin J, de Rivera C, Milgram NW. Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J Alzheimers Dis 2012; 26:143-55. [PMID: 21593569 DOI: 10.3233/jad-2011-110005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Similar to patients with Alzheimer's disease (AD), dogs exhibit age-dependent cognitive decline, amyloid-β (Aβ) pathology, and evidence of cholinergic hypofunction. The present study sought to further investigate the role of cholinergic hypofunction in the canine model by examining the effect of the cholinesterase inhibitors phenserine and donepezil on performance of two tasks, a delayed non-matching-to-position task (DNMP) designed to assess working memory, and an oddity discrimination learning task designed to assess complex learning, in aged dogs. Phenserine (0.5 mg/kg; PO) significantly improved performance on the DNMP at the longest delay compared to wash-out and partially attenuated scopolamine-induced deficits (15 μg/kg; SC). Phenserine also improved learning on a difficult version of an oddity discrimination task compared to placebo, but had no effect on an easier version. We also examined the effects of three doses of donepezil (0.75, 1.5, and 6 mg/kg; PO) on performance of the DNMP. Similar to the results with phenserine, 1.5 mg/kg of donepezil improved performance at the longest delay compared to baseline and wash-out, indicative of memory enhancement. These results further extend the findings of cholinergic hypofunction in aged dogs and provide pharmacological validation of the canine model with a cholinesterase inhibitor approved for use in AD. Collectively, these studies support utilizing the aged dog in future screening of therapeutics for AD, as well as for investigating the links among cholinergic function, Aβ pathology, and cognitive decline.
Collapse
Affiliation(s)
- Joseph A Araujo
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Abdel-Aal RA, Assi AAA, Kostandy BB. Memantine prevents aluminum-induced cognitive deficit in rats. Behav Brain Res 2011; 225:31-8. [DOI: 10.1016/j.bbr.2011.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/21/2011] [Accepted: 06/26/2011] [Indexed: 01/31/2023]
|
47
|
Smith JW, Gastambide F, Gilmour G, Dix S, Foss J, Lloyd K, Malik N, Tricklebank M. A comparison of the effects of ketamine and phencyclidine with other antagonists of the NMDA receptor in rodent assays of attention and working memory. Psychopharmacology (Berl) 2011; 217:255-69. [PMID: 21484239 DOI: 10.1007/s00213-011-2277-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 03/22/2011] [Indexed: 01/13/2023]
Abstract
RATIONALE N-methyl-D: -Aspartate receptor (NMDAR) antagonists such as ketamine induce cognitive symptoms in man similar to those of schizophrenia and therefore might be useful as models of the disease in animals. However, it is unclear which NMDAR antagonist(s) offer the best means to produce cognitive deficits in attention and working memory and to what extent those deficits can be measured selectively in rats. OBJECTIVES The present study systematically compared the effects of eight different NMDAR antagonists-MK-801, phencyclidine, (S)-(+)-ketamine, memantine, SDZ-220,581, Ro 25-6981, CP 101-606 and NVP-AAM077-in rats using standard tests of visual attention, the five-choice serial reaction time task (5CSRT), and working memory, the delayed matching to position task (DMTP). RESULTS Drug-induced responses varied qualitatively and quantitatively in both a compound- and a task-dependent manner. Effects were generally confounded by concomitant motor and motivational disruption, although individual doses of phencyclidine for example appeared to impair selectively cognitive functions. Interestingly, GluN2B selective antagonists were unique in their effects; inducing potential performance benefit in the 5CSRT. CONCLUSIONS Overall, the opportunity to induce a selective cognitive deficit in attention (5CSRT) or working memory (DMTP) in the rat is limited by both the NMDAR antagonist and the dose range used. The importance of a preclinical focus on ketamine, which is used more frequently in clinical settings, is limited by the extent to which cognitive effects can be both detected and quantified using this exposure regimen within these two operant assays.
Collapse
Affiliation(s)
- Janice W Smith
- Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Eli Lilly & Co. Ltd., Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM. Impaired attention in the 3xTgAD mouse model of Alzheimer's disease: rescue by donepezil (Aricept). J Neurosci 2011; 31:3500-7. [PMID: 21368062 PMCID: PMC3066152 DOI: 10.1523/jneurosci.5242-10.2011] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 01/11/2023] Open
Abstract
Several mouse models of Alzheimer's disease (AD) with abundant β-amyloid and/or aberrantly phosphorylated tau develop memory impairments. However, multiple non-mnemonic cognitive domains such as attention and executive control are also compromised early in AD individuals. Currently, it is unclear whether mutations in the β-amyloid precursor protein (APP) and tau are sufficient to cause similar, AD-like attention deficits in mouse models of the disease. To address this question, we tested 3xTgAD mice (which express APPswe, PS1M146V, and tauP301L mutations) and wild-type control mice on a newly developed touchscreen-based 5-choice serial reaction time test of attention and response control. The 3xTgAD mice attended less accurately to short, spatially unpredictable stimuli when the attentional demand of the task was high, and also showed a general tendency to make more perseverative responses than wild-type mice. The attentional impairment of 3xTgAD mice was comparable to that of AD patients in two aspects: first, although 3xTgAD mice initially responded as accurately as wild-type mice, they subsequently failed to sustain their attention over the duration of the task; second, the ability to sustain attention was enhanced by the cholinesterase inhibitor donepezil (Aricept). These findings demonstrate that familial AD mutations not only affect memory, but also cause significant impairments in attention, a cognitive domain supported by the prefrontal cortex and its afferents. Because attention deficits are likely to affect memory encoding and other cognitive abilities, our findings have important consequences for the assessment of disease mechanisms and therapeutics in animal models of AD.
Collapse
Affiliation(s)
- Carola Romberg
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | | | | | |
Collapse
|
49
|
Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol Biochem Behav 2011; 99:155-63. [PMID: 21236291 DOI: 10.1016/j.pbb.2010.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/24/2022]
Abstract
Biological research has unraveled many of the molecular and cellular mechanisms involved in the formation of long-lasting memory, providing new opportunities for the development of cognitive-enhancing drugs. Studies of drug enhancement of cognition have benefited from the use of pharmacological treatments given after learning, allowing the investigation of mechanisms regulating the consolidation phase of memory. Modulatory systems influencing consolidation processes include stress hormones and several neurotransmitter and neuropeptide systems. Here, we review some of the findings on memory enhancement by drug administration in animal models, and discuss their implications for the development of cognitive enhancers.
Collapse
|
50
|
Seigers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neurosci Biobehav Rev 2011; 35:729-41. [DOI: 10.1016/j.neubiorev.2010.09.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
|