1
|
Ferdinand KC, Dunn J, Nicolay C, Sam F, Blue EK, Wang H. Weight-dependent and weight-independent effects of dulaglutide on blood pressure in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:49. [PMID: 36894938 PMCID: PMC9999488 DOI: 10.1186/s12933-023-01775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes (T2D) treated with glucagon-like peptide-1 receptor agonists may experience reductions in weight and blood pressure. The primary objective of the current study was to determine the weight-dependent and weight-independent effects of ~ 6 months treatment with dulaglutide 1.5 mg treatment in participants with T2D. METHODS Mediation analysis was conducted for five randomized, placebo-controlled trials of dulaglutide 1.5 mg to estimate the weight-dependent (i.e., mediated by weight) and weight-independent effects from dulaglutide vs. placebo on change from baseline for systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure. A random-effects meta-analysis combined these results. To investigate a dose response between dulaglutide 4.5 mg and placebo, mediation analysis was first conducted in AWARD-11 to estimate the weight-dependent and weight-independent effects of dulaglutide 4.5 mg vs. 1.5 mg, followed by an indirect comparison with the mediation result for dulaglutide 1.5 mg vs. placebo. RESULTS Baseline characteristics were largely similar across the trials. In the mediation meta-analysis of placebo-controlled trials, the total treatment effect of dulaglutide 1.5 mg after placebo-adjustment on SBP was - 2.6 mmHg (95% CI - 3.8, - 1.5; p < 0.001) and was attributed to both a weight-dependent effect (- 0.9 mmHg; 95% CI: - 1.4, - 0.5; p < 0.001) and a weight-independent effect (- 1.5 mmHg; 95% CI: - 2.6, - 0.3; p = 0.01), accounting for 36% and 64% of the total effect, respectively. For pulse pressure, the total treatment effect of dulaglutide (- 2.5 mmHg; 95% CI: - 3.5, - 1.5; p < 0.001) was 14% weight-dependent and 86% weight-independent. For DBP there was limited impact of dulaglutide treatment, with only a small weight-mediated effect. Dulaglutide 4.5 mg demonstrated an effect on reduction in SBP and pulse pressure beyond that of dulaglutide 1.5 mg which was primarily weight mediated. CONCLUSIONS Dulaglutide 1.5 mg reduced SBP and pulse pressure in people with T2D across the placebo-controlled trials in the AWARD program. While up to one third of the effect of dulaglutide 1.5 mg on SBP and pulse pressure was due to weight reduction, the majority was independent of weight. A greater understanding of the pleotropic effects of GLP-1 RA that contribute to reduction in blood pressure could support developing future approaches for treating hypertension. Trial registrations (clinicaltrials.gov) NCT01064687, NCT00734474, NCT01769378, NCT02597049, NCT01149421, NCT03495102.
Collapse
Affiliation(s)
| | - Julia Dunn
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Flora Sam
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Hui Wang
- TechData Service Company, King of Prussia, PA, USA
| |
Collapse
|
2
|
Winquist RJ, Gribkoff VK. Cardiovascular effects of GLP-1 receptor agonism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:213-254. [PMID: 35659373 DOI: 10.1016/bs.apha.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are extensively used in type 2 diabetic patients for the effective control of hyperglycemia. It is now clear from outcomes trials that this class of drugs offers important additional benefits to these patients due to reducing the risk of developing major adverse cardiac events (MACE). This risk reduction is, in part, due to effective glycemic control in patients; however, the various outcomes trials, further validated by subsequent meta-analysis of the outcomes trials, suggest that the risk reduction in MACE is also dependent on glycemic-independent mechanisms operant in cardiovascular tissues. These glycemic-independent mechanisms are likely mediated by GLP-1 receptors found throughout the cardiovascular system and by the complex signaling cascades triggered by the binding of agonists to the G-protein coupled receptors. This heterogeneity of signaling pathways underlying different downstream effects of GLP-1 agonists, and the discovery of biased agonists favoring specific signaling pathways, may have import in the future treatment of MACE in these patients. We review the evidence supporting the glycemic-independent evidence for risk reduction of MACE by the GLP-1 receptor agonists and highlight the putative mechanisms underlying these benefits. We also comment on the different signaling pathways which appear important for mediating these effects.
Collapse
Affiliation(s)
| | - Valentin K Gribkoff
- Section on Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; TheraStat LLC, Weston, MA, United States
| |
Collapse
|
3
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
4
|
Cheng CK, Luo JY, Lau CW, Cho WCS, Ng CF, Ma RCW, Tian XY, Huang Y. A GLP-1 analog lowers ER stress and enhances protein folding to ameliorate homocysteine-induced endothelial dysfunction. Acta Pharmacol Sin 2021; 42:1598-1609. [PMID: 33495519 PMCID: PMC8463564 DOI: 10.1038/s41401-020-00589-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases and increases mortality in type 2 diabetic patients. HHcy induces endoplasmic reticulum (ER) stress and oxidative stress to impair endothelial function. The glucagon-like peptide 1 (GLP-1) analog exendin-4 attenuates endothelial ER stress, but the detailed vasoprotective mechanism remains elusive. The present study investigated the beneficial effects of exendin-4 against HHcy-induced endothelial dysfunction. Exendin-4 pretreatment reversed homocysteine-induced impairment of endothelium-dependent relaxations in C57BL/6 mouse aortae ex vivo. Four weeks subcutaneous injection of exendin-4 restored the impaired endothelial function in both aortae and mesenteric arteries isolated from mice with diet-induced HHcy. Exendin-4 treatment lowered superoxide anion accumulation in the mouse aortae both ex vivo and in vivo. Exendin-4 decreased the expression of ER stress markers (e.g., ATF4, spliced XBP1, and phosphorylated eIF2α) in human umbilical vein endothelial cells (HUVECs), and this change was reversed by cotreatment with compound C (CC) (AMPK inhibitor). Exendin-4 induced phosphorylation of AMPK and endothelial nitric oxide synthase in HUVECs and arteries. Exendin-4 increased the expression of endoplasmic reticulum oxidoreductase (ERO1α), an important ER chaperone in endothelial cells, and this effect was mediated by AMPK activation. Experiments using siRNA-mediated knockdown or adenoviral overexpression revealed that ERO1α mediated the inhibitory effects of exendin-4 on ER stress and superoxide anion production, thus ameliorating HHcy-induced endothelial dysfunction. The present results demonstrate that exendin-4 reduces HHcy-induced ER stress and improves endothelial function through AMPK-dependent ERO1α upregulation in endothelial cells and arteries. AMPK activation promotes the protein folding machinery in endothelial cells to suppress ER stress.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang-Yun Luo
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Lau
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Chi-Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Chi Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, and The Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Berndt J, Ooi SL, Pak SC. What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists?-A Mini Review. Molecules 2021; 26:4822. [PMID: 34443410 PMCID: PMC8400553 DOI: 10.3390/molecules26164822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are considered the standard of care for type 2 diabetes in many countries worldwide. These molecules have profound anti-hyperglycaemic actions with a favourable safety profile. They are now being considered for their robust cardiovascular (CV) protective qualities in diabetic patients. Most recent CV outcome trials have reported that GLP-1 RAs reduce major adverse cardiovascular events (MACE). Furthermore, the GLP-1 RAs seem to target the atherosclerotic CV disease processes preferentially. GLP-1 RAs also improve a wide range of routinely measured surrogate markers associated with CV risk. However, mediation analysis suggests these modest improvements may contribute indirectly to the overall anti-atherogenic profile of the molecules but fall short in accounting for the significant reduction in MACE. This review explores the body of literature to understand the possible mechanisms that contribute to the CV protective profile of GLP-1 RAs.
Collapse
Affiliation(s)
- Jared Berndt
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
- Eli Lilly Australia Pty. Ltd., West Ryde, NSW 2114, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| |
Collapse
|
6
|
Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. The Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol 2021; 12:720703. [PMID: 34354597 PMCID: PMC8329365 DOI: 10.3389/fphar.2021.720703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Harry van Goor
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - André P van Beek
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Peter R van Dijk
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Yaribeygi H, Farrokhi FR, Abdalla MA, Sathyapalan T, Banach M, Jamialahmadi T, Sahebkar A. The Effects of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptydilpeptidase-4 Inhibitors on Blood Pressure and Cardiovascular Complications in Diabetes. J Diabetes Res 2021; 2021:6518221. [PMID: 34258291 PMCID: PMC8263148 DOI: 10.1155/2021/6518221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are a class of newly introduced antidiabetic medications that potentially lower blood glucose by several molecular pathways. DPP-4 inhibitors are the other type of novel antidiabetic medications which act by preventing GLP-1 inactivation and thereby increasing the activity levels of GLP-1, leading to more glucose-induced insulin release from islet β-cells and suppression of glucagon release. Most patients with diabetes have concurrent hypertension and cardiovascular disorder. If antihyperglycemic agents can attenuate the risk of hypertension and cardiovascular disease, they will amplify their overall beneficial effects. There is conflicting evidence on the cardiovascular benefits of GLP-1R induction in laboratory studies and clinical trials. In this study, we have reviewed the main molecular mechanisms by which GLP-1R induction may modulate the cardiovascular function and the results of cardiovascular outcome clinical trials.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farin Rashid Farrokhi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Changes in endothelial function during educational hospitalization and the contributor to improvement of endothelial function in type 2 diabetes mellitus. Sci Rep 2020; 10:15384. [PMID: 32958851 PMCID: PMC7506545 DOI: 10.1038/s41598-020-72341-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Only a few reports have examined vascular endothelial function before and after educational hospitalization and the factors that affect it in patients with type 2 diabetes mellitus (T2DM). The aim of this study was to assess vascular endothelial function before and after educational hospitalization and identify factors that affect it. In 65 patients with T2DM who underwent peripheral arterial tonometry (EndoPAT) before and after hospitalization, vascular endothelial function (reactive hyperemia index [RHI]), glucose metabolism, lipid metabolism, and blood pressure were assessed before and after hospitalization. The primary endpoint was hospitalization-induced changes in vascular endothelial function. Educational hospitalization significantly improved the natural logarithmically scaled RHI (L_RHI) from 0.555 ± 0.212 to 0.625 ± 0.245 (p = 0.012). Multivariable logistic regression analysis identified hypoglycemia during hospitalization as the single factor that significantly altered vascular endothelial function (p = 0.019). The odds of achieving normal vascular endothelial function were 0.08 times lower (95% confidence interval, 0.01-0.67) for each episode of hypoglycemia. Furthermore, multivariable analysis identified hypoglycemia during hospitalization as the single factor that worsened L_RHI. Our study showed that educational hospitalization of patients with T2DM improved vascular endothelial function, and that the development of hypoglycemic episodes had a significant negative impact on normalization of vascular endothelial function.
Collapse
|
9
|
Berra C, Manfrini R, Regazzoli D, Radaelli MG, Disoteo O, Sommese C, Fiorina P, Ambrosio G, Folli F. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol Res 2020; 160:105052. [PMID: 32650058 DOI: 10.1016/j.phrs.2020.105052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus and arterial hypertension are major cardiovascular risks factors which shares metabolic and haemodynamic abnormalities as well as pathophysiological mechanisms. The simultaneous presence of diabetes and arterial hypertension increases the risk of left ventricular hypertrophy, congestive heart failure, and stroke, as compared to either condition alone. A number of guidelines recommend lifestyle measures such as salt restriction, weight reduction and ideal body weight mainteinance, regular physical activity and smoking cessation, together with moderation of alcohol consumption and high intake of vegetables and fruits, as the basis for reduction of blood pressure and prevention of CV diseases. Despite the availability of multiple drugs effective for hypertension, BP targets are reached in only 50 % of patients, with even fewer individuals with T2DM-achieving goals. It is established that new emerging classes of type 2 diabetes mellitus treatment, SGLT2 inhibitors and GLP1-receptor agonists, are efficacious on glucose control, and safe in reducing HbA1c significantly, without increasing hypoglycemic episodes. Furthermore, in recent years, many CVOT trials have demonstrated, using GLP1-RA or SGLT2-inihibitors compared to placebo (in combination with the usual diabetes medications) important benefits on reducing MACE (cardio-cerebral vascular events) in the diabetic population. In this hypothesis-driven review, we have examined the anti-hypertensive effects of these novel molecules of the two different classes, in the diabetic population, and suggest that they could have an interesting ancillary role in controlling blood pressure in type 2 diabetic patients.
Collapse
Affiliation(s)
- C Berra
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy.
| | - R Manfrini
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy
| | - D Regazzoli
- Department of Cardiovascular Disease, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M G Radaelli
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - O Disoteo
- Endocrinology and Diabetology Service, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - C Sommese
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - P Fiorina
- University of Milano, Milan, Italy; TID International Center, Invernizzi Research Center, Milan, Italy; Endocrinology and Diabetology Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, Milan, Italy
| | - G Ambrosio
- University of Perugia School of Medicine, Perugia, Italy
| | - F Folli
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy; University of Milano, Milan, Italy; Endocrinology and Metabolism, Department of Health Science University of Milano, Italy
| |
Collapse
|
10
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
11
|
Le TD, Nguyen NPT, Nguyen ST, Nguyen HT, Tran HTT, Nguyen THL, Nguyen CD, Nguyen GT, Nguyen XT, Nguyen BD, Trinh ST, Ngo TA, Do BN, Luong TC. The Association Between Femoral Artery Intima-Media Thickness and Serum Glucagon-Like Peptide-1 Levels Among Newly Diagnosed Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:3561-3570. [PMID: 33116707 PMCID: PMC7548854 DOI: 10.2147/dmso.s264876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Endothelium dysfunction and decrease of incretin effects occur early in type 2 diabetes mellitus and these changes contribute to diabetic cardiovascular complications such as atherosclerosis, thick intima-media, coronary, and peripheral arterial diseases. In patients with diabetes, the femoral artery is a site of a high incidence of injury in peripheral vascular diseases, and atherosclerotic changes may appear earlier in the femoral artery compared to the carotid artery. This study was conducted to determine the prevalence of increased femoral artery intima-media thickness (IMT) and atherosclerotic plaque and their correlation with serum glucagon-like peptide-1 (GLP-1) levels in newly-diagnosed patients with type 2 diabetes mellitus. MATERIALS AND METHODS A cross-sectional study was conducted on 332 patients with nT2D in the National Endocrinology Hospital, Vietnam from January 2015 to May 2018. IMT was measured by Doppler ultrasound and GLP-1 by enzyme-linked immunosorbent assay (ELISA). All data were analyzed with SPSS version 26 for Windows (SPSS Inc, Chicago, IL). RESULTS Prevalence of thick femoral artery IMT and atherosclerotic plaque was 38.2 and 22.3%, respectively. There was a relationship between IMT and age, waist to hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting GLP-1, high sensitive CRP (hsCRP) and 24-hour microalbuminuria secretion (24-h MAUS). The fasting serum GLP-1 (fGLP-1) levels were reduced significantly in patients with thickness and atherosclerosis femoral artery (p = 0.001). After adjusting with other related factors, namely, DBP and estimated glomerular filtration rate (eGFR), whilst hsCRP and 24-h MAUS showed a significantly positive correlation to IMT (Standardized B and p of 0.242, 0.004 and 0.178, 0.043, respectively), fGLP-1 showed a significantly negative correlation to IMT (Standardized B = -0.288, p = 0.001). CONCLUSION Among n2TD, the percentage for femoral artery thick IMT and atherosclerosis was 38.2% and 22.3% respectively, and serum GLP-1 was negatively correlated with thick IMT and atherosclerosis.
Collapse
Affiliation(s)
- Tuan Dinh Le
- Department of Internal Medicine, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Nga Phi Thi Nguyen
- Department of Endocrinology, Military Hospital 103, Ha Noi, Vietnam
- Department of Rheumatology and Endocrinology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Son Tien Nguyen
- Department of Endocrinology, Military Hospital 103, Ha Noi, Vietnam
- Department of Rheumatology and Endocrinology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Hien Thi Nguyen
- Department of Physiology, Thai Binh university of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Hoa Thanh Thi Tran
- Department of Intensive Care Unit, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Thi Ho Lan Nguyen
- Department of Internal Medicine, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Cuong Duy Nguyen
- Department of Intensive Care Unit, Thai Binh university of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Giang Thi Nguyen
- Department of Internal Medicine, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Xuan Thanh Nguyen
- Department of Vascular Cardiology, Military Hospital 103, Ha Noi, Vietnam
| | - Bac Duy Nguyen
- Department of Anatomy, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Son The Trinh
- Military Institute of ClinicalEmbryology and Histology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Tuan Anh Ngo
- Department of Health Economic, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Binh Nhu Do
- Department of Infectious Disease, Vietnam Military Medical University, Ha Noi, Vietnam
- Division of Military Science, Military Hospital 103, Ha Noi, Vietnam
| | - Thuc Cong Luong
- Department of Vascular Cardiology, Military Hospital 103, Ha Noi, Vietnam
- Director Office, Military Hospital 103, Ha Noi, Vietnam
- Correspondence: Thuc Cong Luong; Son The Trinh Email ;
| |
Collapse
|
12
|
Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr Rev 2019; 40:1447-1467. [PMID: 31050706 PMCID: PMC7445419 DOI: 10.1210/er.2018-00141] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at high risk for macrovascular complications, which represent the major cause of mortality. Despite effective treatment of established cardiovascular (CV) risk factors (dyslipidemia, hypertension, procoagulant state), there remains a significant amount of unexplained CV risk. Insulin resistance is associated with a cluster of cardiometabolic risk factors known collectively as the insulin resistance (metabolic) syndrome (IRS). Considerable evidence, reviewed herein, suggests that insulin resistance and the IRS contribute to this unexplained CV risk in patients with T2DM. Accordingly, CV outcome trials with pioglitazone have demonstrated that this insulin-sensitizing thiazolidinedione reduces CV events in high-risk patients with T2DM. In this review the roles of insulin resistance and the IRS in the development of atherosclerotic CV disease and the impact of the insulin-sensitizing agents and of other antihyperglycemic medications on CV outcomes are discussed.
Collapse
Affiliation(s)
- Antonino Di Pino
- Diabetes Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, Texas
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, Texas
| |
Collapse
|
13
|
Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients 2019; 11:nu11081878. [PMID: 31412576 PMCID: PMC6724226 DOI: 10.3390/nu11081878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
This review aimed to describe the potential mechanisms by which incretin hormones could mediate the relationship between glycemic index and cardiometabolic diseases. A body of evidence from many studies suggests that low glycemic index (GI) diets reduces the risk for type 2 diabetes and coronary heart disease. In fact, despite the extensive literature on this topic, the mechanisms underlying unfavorable effects of high GI foods on health remain not well defined. The postprandial and hormonal milieu could play a key role in the relationship between GI and cardiovascular risk. Incretin hormones, glucagon-like peptide1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are important regulators of postprandial homeostasis by amplifying insulin secretory responses. Response of GIP and GLP-1 to GI have been studied more in depth, also by several studies on isomaltulose, which have been taken as an ideal model to investigate the kinetics of incretin secretion in response to foods’ GI. In addition, extrapancreatic effects of these incretin hormones were also recently observed. Emerging from this have been exciting effects on several targets, such as body weight regulation, lipid metabolism, white adipose tissue, cardiovascular system, kidney, and liver, which may importantly affect the health status.
Collapse
|
14
|
Remm F, Kränkel N, Lener D, Drucker DJ, Sopper S, Brenner C. Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling. Stem Cells Int 2018; 2018:5284963. [PMID: 29531541 PMCID: PMC5822806 DOI: 10.1155/2018/5284963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION DPP4 inhibitors (gliptins) are commonly used antidiabetic drugs for the treatment of type 2 diabetes. Gliptins also act in a glucose-independent manner and show vasoregenerative effects. We have shown that gliptins can remarkably accelerate vascular healing after vascular injury. However, the underlying mechanisms remain unclear. Here, we examined potential signaling pathways linking gliptins to enhanced endothelial regeneration. METHODS AND RESULTS We used wild-type and GLP1 receptor knockout (Glp1r-/-) mice to investigate the underlying mechanisms of gliptin-induced reendothelialization. The prototype DPP4 inhibitor sitagliptin accelerated endothelial healing in both animal models. Improved endothelial growth was associated with gliptin-mediated progenitor cell recruitment into the diseased vascular wall via the SDF1-CXCR4 axis independent of GLP1R-dependent signaling pathways. Furthermore, SDF1 showed direct proproliferative effects on endothelial cells. Excessive neointimal formation was not observed in gliptin- or placebo-treated Glp1r-/- mice. CONCLUSION We identified the SDF1-CXCR4 axis as a crucial signaling pathway for endothelial regeneration after acute vascular injury. Furthermore, SDF1 can directly increase endothelial cell proliferation. Gliptin-mediated potentiation of endothelial regeneration was preserved in Glp1r-/- animals. Thus, gliptin-mediated endothelial regeneration proceeds through SDF-1/CXCR4 in a GLP1R-independent manner after acute vascular injury.
Collapse
Affiliation(s)
- Friederike Remm
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Lener
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Sieghart Sopper
- Department of Internal Medicine V, Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Brenner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Cardiology, Reha Zentrum Muenster, Münster, Tirol, Austria
| |
Collapse
|
15
|
Mathews L, Iantorno M, Schär M, Bonanno G, Gerstenblith G, Weiss RG, Hays AG. Coronary endothelial function is better in healthy premenopausal women than in healthy older postmenopausal women and men. PLoS One 2017; 12:e0186448. [PMID: 29073168 PMCID: PMC5657991 DOI: 10.1371/journal.pone.0186448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Premenopausal women have fewer cardiovascular disease (CVD) events than postmenopausal women and age-matched men, but the reasons are not fully understood. Coronary endothelial function (CEF), a barometer of coronary vascular health, promises important insights into age and sex differences in atherosclerotic CVD risk, but has not been well characterized in healthy individuals because of the invasive nature of conventional CEF measurements. Recently developed magnetic resonance imaging (MRI) methods were used to quantify CEF (coronary area and flow changes in response to isometric handgrip exercise (IHE), an endothelial-dependent stressor) to test the hypothesis that healthy women have better CEF compared to men particularly at a younger age. METHODS The study participants were 50 healthy women and men with no history of coronary artery disease (CAD) or traditional CV risk factors and Agatston coronary calcium score (on prior CT) <10 for those ≥ 50 years. Coronary cross-sectional area (CSA) measurements and flow-velocity encoded images (CBF) were obtained at baseline and during continuous IHE using 3T breath-hold cine MRI-IHE. CEF (%change in CSA and CBF with IHE) comparisons were made according to age and sex, and all women ≥50 years were post-menopausal. RESULTS In the overall population, there were no differences in CEF between men and women. However, when stratified by age and sex the mean changes in CSA and CBF during IHE were higher in younger premenopausal women than older postmenopausal women (%CSA: 15.2±10.6% vs. 7.0±6.8%, p = 0.03 and %CBF: 59.0±37.0% vs. 30.5±24.5% p = 0.02). CBF change was also nearly two-fold better in premenopausal women than age-matched men (59.0±37.0% vs. 33.6±12.3%, p = 0.03). CONCLUSIONS Premenopausal women have nearly two-fold better mean CEF compared to postmenopausal women. CEF, measured by CBF change is also better in premenopausal women than age-matched men but there are no sex differences in CEF after menopause. Fundamental age and sex differences in CEF exist and may contribute to differences in the development and clinical manifestations of atherosclerotic CVD, and guide future trials targeting sex-specific mechanisms of atherogenesis.
Collapse
Affiliation(s)
- Lena Mathews
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Micaela Iantorno
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Schär
- Department of Radiology, Division of Magnetic Resonance Research, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Gabriele Bonanno
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Gary Gerstenblith
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Robert G. Weiss
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Allison G. Hays
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abdul-Ghani M, DeFronzo RA, Del Prato S, Chilton R, Singh R, Ryder RE. Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived? Diabetes Care 2017; 40:813-820. [PMID: 28637886 PMCID: PMC5481984 DOI: 10.2337/dc16-2736] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023]
Abstract
Hyperglycemia is the major risk factor for microvascular complications in patients with type 2 diabetes (T2D). However, cardiovascular disease (CVD) is the principal cause of death, and lowering HbA1c has only a modest effect on reducing CVD risk and mortality. The recently published LEADER and SUSTAIN-6 trials demonstrate that, in T2D patients with high CVD risk, the glucagon-like peptide 1 receptor agonists liraglutide and semaglutide reduce the primary major adverse cardiac events (MACE) end point (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke) by 13% and 24%, respectively. The EMPA-REG OUTCOME, IRIS (subjects without diabetes), and PROactive (second principal end point) studies also demonstrated a significant reduction in cardiovascular events in T2D patients treated with empagliflozin and pioglitazone. However, the benefit of these four antidiabetes agents (liraglutide, semaglutide, empagliflozin, and pioglitazone) on the three individual MACE end points differed, suggesting that different underlying mechanisms were responsible for the reduction in cardiovascular events. Since liraglutide, semaglutide, pioglitazone, and empagliflozin similarly lower the plasma glucose concentration but appear to reduce CVD risk by different mechanisms, there emerges the intriguing possibility that, if used in combination, the effects of these antidiabetes agents may be additive or even multiplicative with regard to cardiovascular benefit.
Collapse
Affiliation(s)
- Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
- Diabetes Clinical Research Center, Academic Health System, Hamad General Hospital, Doha, Qatar
| | - Ralph A. DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Robert Chilton
- Division of Cardiology, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
| | - Rajvir Singh
- Diabetes Clinical Research Center, Academic Health System, Hamad General Hospital, Doha, Qatar
| | - Robert E.J. Ryder
- Sandwell and West Birmingham Hospitals National Health Service Trust, Birmingham, U.K
| |
Collapse
|
17
|
Bhat NR. Vasculoprotection as a Convergent, Multi-Targeted Mechanism of Anti-AD Therapeutics and Interventions. J Alzheimers Dis 2016; 46:581-91. [PMID: 26402511 DOI: 10.3233/jad-150098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a variety of animal models of Alzheimer's disease (AD), there have been a number of recent studies reporting varying degrees of success with anti-AD therapeutics. The efficacies are often discussed in terms of the modulatory effects of the compounds tested on identified or assumed targets among the known (or proposed) pathogenic and neuroprotective mechanisms, largely within the context of the dominant amyloid cascade hypothesis. However, it is clear that several of the relatively more efficacious treatments tend to be multifunctional and target multiple pathological processes associated with AD including most commonly, oxidative and metabolic stress and neuroinflammation. Increasing evidence suggests that vascular and neurodegenerative pathologies often co-exist and that neurovascular dysfunction plays a critical role in the development or progression of AD. In this review, we will discuss the significance of vasculoprotection or neurovascular unit integrity as a common, multi-targeted mechanism underlying the reported efficacy of a majority of anti-AD therapeutics--amyloid-targeted or otherwise--while providing a strong support for future neurovascular-based treatment strategies and interventions.
Collapse
|
18
|
Berglund LM, Lyssenko V, Ladenvall C, Kotova O, Edsfeldt A, Pilgaard K, Alkayyali S, Brøns C, Forsblom C, Jonsson A, Zetterqvist AV, Nitulescu M, McDavitt CR, Dunér P, Stancáková A, Kuusisto J, Ahlqvist E, Lajer M, Tarnow L, Madsbad S, Rossing P, Kieffer TJ, Melander O, Orho-Melander M, Nilsson P, Groop PH, Vaag A, Lindblad B, Gottsäter A, Laakso M, Goncalves I, Groop L, Gomez MF. Glucose-Dependent Insulinotropic Polypeptide Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB. Diabetes 2016; 65:239-54. [PMID: 26395740 DOI: 10.2337/db15-0122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 11/13/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the proatherogenic cytokine osteopontin (OPN) in mouse arteries via local release of endothelin-1 and activation of CREB. Infusion of GIP increases plasma OPN concentrations in healthy individuals. Plasma endothelin-1 and OPN concentrations are positively correlated in patients with critical limb ischemia. Fasting GIP concentrations are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared with control subjects. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients, and expression associates with parameters that are characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration, and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from humans, mice, rats, and pigs, remarkable upregulation is observed in endothelial and smooth muscle cells upon culture conditions, yielding a "vascular disease-like" phenotype. Moreover, the common variant rs10423928 in the GIPR gene is associated with increased risk of stroke in patients with type 2 diabetes.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Aorta/cytology
- Blotting, Western
- Cardiovascular Diseases/genetics
- Carotid Arteries/cytology
- Case-Control Studies
- Coronary Vessels/cytology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Endothelial Cells/metabolism
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique
- Gastric Inhibitory Polypeptide/metabolism
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Microvessels/cytology
- Middle Aged
- Myocytes, Smooth Muscle/metabolism
- Osteopontin/genetics
- Osteopontin/metabolism
- Peripheral Arterial Disease/metabolism
- Plaque, Atherosclerotic/metabolism
- Polymorphism, Single Nucleotide
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Real-Time Polymerase Chain Reaction
- Receptors, Gastrointestinal Hormone/genetics
- Stroke/complications
- Stroke/genetics
- Stroke/metabolism
- Sus scrofa
- Swine
Collapse
Affiliation(s)
- Lisa M Berglund
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Lund University, Malmö, Sweden Steno Diabetes Center A/S, Gentofte, Denmark
| | - Claes Ladenvall
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olga Kotova
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | - Sami Alkayyali
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Anna Jonsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Pontus Dunér
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Alena Stancáková
- Department of Medicine, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria Lajer
- Steno Diabetes Center A/S, Gentofte, Denmark
| | - Lise Tarnow
- Steno Diabetes Center A/S, Gentofte, Denmark HEALTH University of Aarhus, Aarhus, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Steno Diabetes Center A/S, Gentofte, Denmark HEALTH University of Aarhus, Aarhus, Denmark NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Peter Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Allan Vaag
- Department of Clinical Sciences, Lund University, Malmö, Sweden Steno Diabetes Center A/S, Gentofte, Denmark Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bengt Lindblad
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Isabel Goncalves
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Salles TA, dos Santos L, Barauna VG, Girardi ACC. Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 2015; 16:4226-49. [PMID: 25690036 PMCID: PMC4346954 DOI: 10.3390/ijms16024226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.
Collapse
Affiliation(s)
- Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| |
Collapse
|