1
|
Sarmiento LF, Ríos-Flórez JA, Rincón Uribe FA, Rodrigues Lima R, Kalenscher T, Gouveia A, Nitsch FJ. Do stress hormones influence choice? A systematic review of pharmacological interventions on the HPA axis and/or SAM system. Soc Cogn Affect Neurosci 2024; 19:nsae069. [PMID: 39363151 PMCID: PMC11498176 DOI: 10.1093/scan/nsae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
The hypothalamus-pituitary-adrenal axis (HPA axis) and the sympathetic-adrenal-medullary system (SAM system), two neuroendocrine systems associated with the stress response, have often been implicated to modulate decision-making in various domains. This systematic review summarizes the scientific evidence on the effects of pharmacological HPA axis and SAM system modulation on decision-making. We found 6375 references, of which 17 studies fulfilled our inclusion criteria. We quantified the risk of bias in our results with respect to missing outcome data, measurements, and selection of the reported results. The included studies administered hydrocortisone, fludrocortisone (HPA axis stimulants), yohimbine, reboxetine (SAM system stimulants), and/or propranolol (SAM system inhibitor). Integrating the evidence, we found that SAM system stimulation had no impact on risk aversion, loss aversion or intertemporal choice, while SAM system inhibition showed a tentative reduction in sensitivity to losses. HPA axis stimulation had no effect on loss aversion or reward anticipation but likely a time-dependent effect on decision under risk. Lastly, combined stimulation of both systems exhibited inconsistent results that could be explained by dose differences (loss aversion) and sex differences (risk aversion). Future research should address time-, dose-, and sex-dependencies of pharmacological effects on decision-making.
Collapse
Affiliation(s)
- Luis Felipe Sarmiento
- BiotechMed Center, BME Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Jorge Alexander Ríos-Flórez
- Professor at the Faculty of Law and Forensic Sciences, Tecnológico de Antioquia University Institution, Medellín 050034, Colombia
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural and Biology, Federal University from Pará, Belém 66075-110, Brazil
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225, Germany
| | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, Federal University from Pará, Belém 66075-110, Brazil
| | - Felix Jan Nitsch
- Marketing Area, INSEAD, Fontainebleau 77300, France
- Paris Brain Institute (ICM), Sorbonne University, Paris 75013, France
| |
Collapse
|
2
|
Hindi J, Fréchette-Le Bel M, Rouleau JL, de Denus S. Influence of Weight and Body Size on the Pharmacokinetics of Heart Failure Pharmacotherapy: A Systematic Review. Ann Pharmacother 2024; 58:255-272. [PMID: 37338205 DOI: 10.1177/10600280231179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE To conduct a review of studies evaluating the influence of body size and weight (WT) on the pharmacokinetics (PK) of drugs recommended for heart failure (HF) treatment. DATA SOURCES A systematic search of the MEDLINE (1946 to April 2023) and EMBASE (1974 to April 2023) databases was conducted for articles that focused on the impact of WT or body size on the PK of drugs of interest used in HF patients. STUDY SELECTION AND DATA EXTRACTION Articles written in English or French related to the aim of our study were retained for analysis. DATA SYNTHESIS Of 6493 articles, 20 were retained for analysis. Weight was associated with the clearance of digoxin, carvedilol, enalapril, and candesartan as well as the volume of distribution of eplerenone and bisoprolol. There was no documented direct impact of WT on the PK of furosemide, valsartan, and metoprolol, although these studies were limited or confounded by the small sample size, adjustment of PK factors by WT, or the use of the Cockroff-Gault equation for the evaluation of creatinine clearance, which includes WT. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review highlights and summarizes the available data on the importance of WT on the PK of HF treatment. CONCLUSION Considering the significant impact of WT on most HF drugs in this review, it may be important to further investigate it in the context of personalized therapy, particularly in patients presenting extreme WTs.
Collapse
Affiliation(s)
- Jessica Hindi
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
- Beaulieu-Saucier Pharmacogenomics Center, Université de Montréal, Montreal, QC, Canada
| | | | - Jean Lucien Rouleau
- Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
- Beaulieu-Saucier Pharmacogenomics Center, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
3
|
Azzam O, Nejad SH, Carnagarin R, Nolde JM, Galindo-Kiuchi M, Schlaich MP. Taming resistant hypertension: The promise of novel pharmacologic approaches and renal denervation. Br J Pharmacol 2024; 181:319-339. [PMID: 37715452 DOI: 10.1111/bph.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023] Open
Abstract
Resistant hypertension is associated with an exceedingly high cardiovascular risk and there remains an unmet therapeutic need driven by pathophysiologic pathways unaddressed by guideline-recommended therapy. While spironolactone is widely considered as the preferable fourth-line drug, its broad application is limited by its side effect profile, especially off-target steroid receptor-mediated effects and hyperkalaemia in at-risk subpopulations. Recent landmark trials have reported promising safety and efficacy results for a number of novel compounds targeting relevant pathophysiologic pathways that remain unopposed by contemporary drugs. These include the dual endothelin receptor antagonist, aprocitentan, the aldosterone synthase inhibitor, baxdrostat and the nonsteroidal mineralocorticoid receptor antagonist finerenone. Furthermore, the evidence base for consideration of catheter-based renal denervation as a safe and effective adjunct therapeutic approach across the clinical spectrum of hypertension has been further substantiated. This review will summarise the recently published evidence on novel antihypertensive drugs and renal denervation in the context of resistant hypertension.
Collapse
Affiliation(s)
- Omar Azzam
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Marcio Galindo-Kiuchi
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
5
|
Tanabe M, Sakate R, Nakabayashi J, Tsumura K, Ohira S, Iwato K, Kimura T. A novel in silico scaffold-hopping method for drug repositioning in rare and intractable diseases. Sci Rep 2023; 13:19358. [PMID: 37938624 PMCID: PMC10632405 DOI: 10.1038/s41598-023-46648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
In the field of rare and intractable diseases, new drug development is difficult and drug repositioning (DR) is a key method to improve this situation. In this study, we present a new method for finding DR candidates utilizing virtual screening, which integrates amino acid interaction mapping into scaffold-hopping (AI-AAM). At first, we used a spleen associated tyrosine kinase inhibitor as a reference to evaluate the technique, and succeeded in scaffold-hopping maintaining the pharmacological activity. Then we applied this method to five drugs and obtained 144 compounds with diverse structures. Among these, 31 compounds were known to target the same proteins as their reference compounds and 113 compounds were known to target different proteins. We found that AI-AAM dominantly selected functionally similar compounds; thus, these selected compounds may represent improved alternatives to their reference compounds. Moreover, the latter compounds were presumed to bind to the targets of their references as well. This new "compound-target" information provided DR candidates that could be utilized for future drug development.
Collapse
Affiliation(s)
- Mao Tanabe
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ryuichi Sakate
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Jun Nakabayashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Shino Ohira
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kaoru Iwato
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Tomonori Kimura
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-City, Osaka, Japan.
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Sarafidis P, Iatridi F, Ferro C, Alexandrou ME, Fernandez-Fernandez B, Kanbay M, Mallamaci F, Nistor I, Rossignol P, Wanner C, Cozzolino M, Ortiz A. Mineralocorticoid receptor antagonist use in chronic kidney disease with type 2 diabetes: a clinical practice document by the European Renal Best Practice (ERBP) board of the European Renal Association (ERA). Clin Kidney J 2023; 16:1885-1907. [PMID: 37915899 PMCID: PMC10616462 DOI: 10.1093/ckj/sfad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D) represents a major public health issue; it develops in about 30%-40% of patients with diabetes mellitus and is the most common cause of CKD worldwide. Patients with CKD and T2D are at high risk of both developing kidney failure and of cardiovascular events. Renin-angiotensin system (RAS) blockers were considered the cornerstone of treatment of albuminuric CKD in T2D for more than 20 years. However, the residual risk of progression to more advanced CKD stages under RAS blockade remains high, while in major studies with these agents in patients with CKD and T2D no significant reductions in cardiovascular events and mortality were evident. Steroidal mineralocorticoid receptor antagonists (MRAs) are known to reduce albuminuria in individuals on RAS monotherapy, but their wide clinical use has been curtailed by the significant risk of hyperkalemia and absence of trials with hard renal outcomes. In recent years, non-steroidal MRAs have received increasing interest due to their better pharmacologic profile. Finerenone, the first compound of this class, was shown to effectively reduce the progression of kidney disease and of cardiovascular outcomes in participants with T2D in phase 3 trials. This clinical practice document prepared from a task force of the European Renal Best Practice board summarizes current knowledge on the role of MRAs in the treatment of CKD in T2D aiming to support clinicians in decision-making and everyday management of patients with this condition.
Collapse
Affiliation(s)
- Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charles Ferro
- Department of Nephrology, University Hospitals Birmingham and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, Reggio Calabria, Italy
| | - Ionut Nistor
- Nephrology Department, University of Medicine and Pharmacy “Grigore T.Popa”, Iași, Romania
| | - Patrick Rossignol
- Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Department of Medical Specialties and Nephrology-Hemodialysis, Princess Grace Hospital, Monaco, and Centre d'Hémodialyse Privé de Monaco, Monaco
| | - Christoph Wanner
- Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
7
|
Martínez-Hernández SL, Muñoz-Ortega MH, Ávila-Blanco ME, Medina-Pizaño MY, Ventura-Juárez J. Novel Approaches in Chronic Renal Failure without Renal Replacement Therapy: A Review. Biomedicines 2023; 11:2828. [PMID: 37893201 PMCID: PMC10604533 DOI: 10.3390/biomedicines11102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-β, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.
Collapse
Affiliation(s)
- Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Mariana Yazmin Medina-Pizaño
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| |
Collapse
|
8
|
Pérez-Gordillo FL, Serrano-Morillas N, Acosta-García LM, Aranda MT, Passeri D, Pellicciari R, Pérez de Vega MJ, González-Muñiz R, Alvarez de la Rosa D, Martín-Martínez M. Novel 1,4-Dihydropyridine Derivatives as Mineralocorticoid Receptor Antagonists. Int J Mol Sci 2023; 24:ijms24032439. [PMID: 36768761 PMCID: PMC9917360 DOI: 10.3390/ijms24032439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor subfamily of nuclear receptors. MR is a transcription factor key in regulating blood pressure and mineral homeostasis. In addition, it plays an important role in a broad range of biological and pathological conditions, greatly expanding its interest as a pharmacological target. Non-steroidal MR antagonists (MRAs) are of particular interest to avoid side effects and achieve tissue-specific modulation of the receptor. The 1,4-dihydropyridine (1,4-DHP) ring has been identified as an appropriate scaffold to develop non-steroidal MRAs. We report the identification of a novel series of 1,4-DHP that has been guided by structure-based drug design, focusing on the less explored DHP position 2. Interestingly, substituents at this position might interfere with MR helix H12 disposition, which is essential for the recruitment of co-regulators. Several of the newly synthesized 1,4-DHPs show interesting properties as MRAs and have a good selectivity profile. These 1,4-DHPs promote MR nuclear translocation with less efficiency than the natural agonist aldosterone, which explains, at least in part, its antagonist character. Molecular dynamic studies are suggestive of several derivatives interfering with the disposition of H12 in the agonist-associated conformation, and thus, they might stabilize an MR conformation unable to recruit co-activators.
Collapse
Affiliation(s)
| | - Natalia Serrano-Morillas
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Luz Marina Acosta-García
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
| | - María Teresa Aranda
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | | | | | | | | | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
- Correspondence: (D.A.d.l.R.); (M.M.-M.)
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (D.A.d.l.R.); (M.M.-M.)
| |
Collapse
|
9
|
Wynne BM, Samson TK, Moyer HC, van Elst HJ, Moseley AS, Hecht G, Paul O, Al-Khalili O, Gomez-Sanchez C, Ko B, Eaton DC, Hoover RS. Interleukin 6 mediated activation of the mineralocorticoid receptor in the aldosterone-sensitive distal nephron. Am J Physiol Cell Physiol 2022; 323:C1512-C1523. [PMID: 35912993 PMCID: PMC9662807 DOI: 10.1152/ajpcell.00272.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Hypertension is characterized by increased sodium (Na+) reabsorption along the aldosterone-sensitive distal nephron (ASDN) as well as chronic systemic inflammation. Interleukin-6 (IL-6) is thought to be a mediator of this inflammatory process. Interestingly, increased Na+ reabsorption within the ASDN does not always correlate with increases in aldosterone (Aldo), the primary hormone that modulates Na+ reabsorption via the mineralocorticoid receptor (MR). Thus, understanding how increased ASDN Na+ reabsorption may occur independent of Aldo stimulation is critical. Here, we show that IL-6 can activate the MR by activating Rac1 and stimulating the generation of reactive oxygen species (ROS) with a consequent increase in thiazide-sensitive Na+ uptake. Using an in vitro model of the distal convoluted tubule (DCT2), mDCT15 cells, we observed nuclear translocation of eGFP-tagged MR after IL-6 treatment. To confirm the activation of downstream transcription factors, mDCT15 cells were transfected with mineralocorticoid response element (MRE)-luciferase reporter constructs; then treated with vehicle, Aldo, or IL-6. Aldosterone or IL-6 treatment increased luciferase activity that was reversed with MR antagonist cotreatment, but IL-6 treatment was reversed by Rac1 inhibition or ROS reduction. In both mDCT15 and mpkCCD cells, IL-6 increased amiloride-sensitive transepithelial Na+ current. ROS and IL-6 increased 22Na+ uptake via the thiazide-sensitive sodium chloride cotransporter (NCC). These results are the first to demonstrate that IL-6 can activate the MR resulting in MRE activation and that IL-6 increases NCC-mediated Na+ reabsorption, providing evidence for an alternative mechanism for stimulating ASDN Na+ uptake during conditions where Aldo-mediated MR stimulation may not occur.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Internal Medicine, Nephrology & Hypertension, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Immunology, Inflammation and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| | - Trinity K Samson
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Hayley C Moyer
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Henrieke J van Elst
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Auriel S Moseley
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Gillian Hecht
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Oishi Paul
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Celso Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Mississippi
| | - Benjamin Ko
- Department of Medicine, Nephrology, University of Chicago, Chicago, Illinois
| | - Douglas C Eaton
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
- Section of Nephrology and Hypertension, Deming Department of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
10
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
11
|
Lin X, Ullah MHE, Wu X, Xu F, Shan SK, Lei LM, Yuan LQ, Liu J. Cerebro-Cardiovascular Risk, Target Organ Damage, and Treatment Outcomes in Primary Aldosteronism. Front Cardiovasc Med 2022; 8:798364. [PMID: 35187110 PMCID: PMC8847442 DOI: 10.3389/fcvm.2021.798364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
Primary aldosteronism (PA) is the most common type of endocrine hypertension, and numerous experimental and clinical evidence have verified that prolonged exposure to excess aldosterone is responsible for an increased risk of cerebro-cardiovascular events and target organ damage (TOD) in patients with PA. Therefore, focusing on restoring the toxic effects of excess aldosterone on the target organs is very important to reduce cerebro-cardiovascular events. Current evidence convincingly demonstrates that both surgical and medical treatment strategies would benefit cerebro-cardiovascular outcomes and mortality in the long term. Understanding cerebro-cardiovascular risk in PA would help clinical doctors to achieve both early diagnosis and treatment. Therefore, in this review, we will summarize the cerebro-cardiovascular risk in PA, focusing on the TOD of aldosterone, including brain, heart, vascular system, renal, adipose tissues, diabetes, and obstructive sleep apnea (OSA). Furthermore, the various treatment outcomes of adrenalectomy and medical treatment for patients with PA will also be discussed. We hope this knowledge will help improve cerebro-cardiovascular prognosis and reduce the incidence and mortality of cerebro-cardiovascular events in patients with PA.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Wu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Ling-Qing Yuan
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
- *Correspondence: Jun Liu
| |
Collapse
|
12
|
Licata NV, Cristofani R, Salomonsson S, Wilson KM, Kempthorne L, Vaizoglu D, D’Agostino VG, Pollini D, Loffredo R, Pancher M, Adami V, Bellosta P, Ratti A, Viero G, Quattrone A, Isaacs AM, Poletti A, Provenzani A. C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation. EMBO J 2022; 41:e105026. [PMID: 34791698 PMCID: PMC8724771 DOI: 10.15252/embj.2020105026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.
Collapse
Affiliation(s)
- Nausicaa V Licata
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Sally Salomonsson
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Katherine M Wilson
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Liam Kempthorne
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Deniz Vaizoglu
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Vito G D’Agostino
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Daniele Pollini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Rosa Loffredo
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Michael Pancher
- HTS Core Facility, Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Valentina Adami
- HTS Core Facility, Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
- Department of MedicineNYU at Grossman School of MedicineNYUSA
| | - Antonia Ratti
- Department of NeurologyStroke Unit and Laboratory of NeuroscienceIstituto Auxologico Italiano, IRCCSMilanItaly
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoMilanItaly
| | | | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Adrian M Isaacs
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| |
Collapse
|
13
|
Gomez-Sanchez CE, Gomez-Sanchez EP. The Mineralocorticoid Receptor and the Heart. Endocrinology 2021; 162:6310157. [PMID: 34175946 DOI: 10.1210/endocr/bqab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 01/30/2023]
Affiliation(s)
- Celso E Gomez-Sanchez
- Medical Service, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Medical Service, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
14
|
Clarisse D, Deng L, de Bosscher K, Lother A. Approaches towards tissue-selective pharmacology of the mineralocorticoid receptor. Br J Pharmacol 2021; 179:3235-3249. [PMID: 34698367 DOI: 10.1111/bph.15719] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are highly effective therapies for cardiovascular and renal disease. However, the widespread clinical use of currently available MRAs in cardiorenal medicine is hampered by an increased risk of hyperkalemia. The mineralocorticoid receptor (MR) is a nuclear receptor responsible for fluid and electrolyte homeostasis in epithelial tissues, whereas pathophysiological MR activation in nonepithelial tissues leads to undesirable pro-inflammatory and pro-fibrotic effects. Therefore, new strategies that selectively target the deleterious effects of MR but spare its physiological function are needed. In this review, we discuss recent pharmacological developments starting from novel non-steroidal MRAs that are now entering clinical use, such as finerenone or esaxerenone, to concepts arising from the current knowledge of the MR signaling pathway, aiming at receptor-coregulator interaction, epigenetics, or downstream effectors of MR.
Collapse
Affiliation(s)
- Dorien Clarisse
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karolien de Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Angiology I, University Heart Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Vodošek Hojs N, Bevc S, Ekart R, Piko N, Petreski T, Hojs R. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2021; 14:561. [PMID: 34208285 PMCID: PMC8230766 DOI: 10.3390/ph14060561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a global health issue and main cause of chronic kidney disease. Both diseases are also linked through high cardiovascular morbidity and mortality. Diabetic kidney disease (DKD) is present in up to 40% of diabetic patients; therefore, prevention and treatment of DKD are of utmost importance. Much research has been dedicated to the optimization of DKD treatment. In the last few years, mineralocorticoid receptor antagonists (MRA) have experienced a renaissance in this field with the development of non-steroidal MRA. Steroidal MRA have known cardiorenal benefits, but their use is limited by side effects, especially hyperkalemia. Non-steroidal MRA still block the damaging effects of mineralocorticoid receptor overactivation (extracellular fluid volume expansion, inflammation, fibrosis), but with fewer side effects (hormonal, hyperkalemia) than steroidal MRA. This review article summarizes the current knowledge and newer research conducted on MRA in DKD.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (S.B.); (T.P.); (R.H.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia;
| |
Collapse
|
16
|
Ito S, Itoh H, Rakugi H, Okuda Y, Iijima S. Antihypertensive effects and safety of esaxerenone in patients with moderate kidney dysfunction. Hypertens Res 2020; 44:489-497. [PMID: 33323991 PMCID: PMC8099724 DOI: 10.1038/s41440-020-00585-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Renin–angiotensin system inhibitors are recommended for treating hypertension with chronic kidney disease. The addition of a mineralocorticoid receptor blocker may be one option to achieve target blood pressure. We investigated the efficacy and safety of esaxerenone, a mineralocorticoid receptor blocker, in Japanese hypertensive patients with moderate kidney dysfunction. Two multicenter, open-label, nonrandomized dose escalation studies were conducted to investigate esaxerenone monotherapy and add-on therapy to renin–angiotensin system inhibitor treatment. Esaxerenone therapy was initiated at 1.25 mg/day and titrated to 2.5 and then 5 mg/day for a treatment duration of 12 weeks. Primary endpoints were changes from baseline in sitting systolic and diastolic blood pressure. Safety, pharmacokinetics, and urinary albumin-to-creatinine ratios were also assessed. Thirty-three patients received monotherapy, and 58 received add-on therapy; the mean baseline estimated glomerular filtration rates were 51.9 and 50.9 mL/min/1.73 m2, respectively. The esaxerenone dosage was increased to ≥2.5 mg/day in 100% (n = 33) and 93.1% (n = 54) of patients receiving monotherapy and add-on therapy, respectively. Reductions in sitting blood pressure from baseline to the end of treatment were similar (monotherapy: −18.5/−8.8 mmHg; add-on therapy: −17.8/−8.1 mmHg; both P < 0.001). The antihypertensive effects of esaxerenone were consistent across patient subgroups. A serum K+ level ≥5.5 mEq/L was observed in seven patients (12.1%) receiving add-on therapy but in none receiving monotherapy. All increases in serum K+ levels were transient, and no patient met predefined serum K+ level criteria for dose reduction or therapy discontinuation. No patient discontinued treatment owing to kidney function decline. Esaxerenone was effective and well tolerated in hypertensive patients with moderate kidney dysfunction.
Collapse
Affiliation(s)
- Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University School of Medicine, Sendai, Japan. .,Katta General Hospital, Shiroishi, Japan.
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
17
|
Doan TB, Cheung V, Clyne CD, Hilton HN, Eriksson N, Young MJ, Funder JW, Muscat GEO, Fuller PJ, Clarke CL, Graham JD. A tumour suppressive relationship between mineralocorticoid and retinoic acid receptors activates a transcriptional program consistent with a reverse Warburg effect in breast cancer. Breast Cancer Res 2020; 22:122. [PMID: 33148314 PMCID: PMC7641839 DOI: 10.1186/s13058-020-01355-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/13/2020] [Indexed: 03/11/2023] Open
Abstract
Background The role of nuclear receptors in both the aetiology and treatment of breast cancer is exemplified by the use of the oestrogen receptor (ER) as a prognostic marker and treatment target. Treatments targeting the oestrogen signalling pathway are initially highly effective for most patients. However, for the breast cancers that fail to respond, or become resistant, to current endocrine treatments, the long-term outlook is poor. ER is a member of the nuclear receptor superfamily, comprising 48 members in the human, many of which are expressed in the breast and could be used as alternative targets in cases where current treatments are ineffective. Methods We used sparse canonical correlation analysis to interrogate potential novel nuclear receptor expression relationships in normal breast and breast cancer. These were further explored using whole transcriptome profiling in breast cancer cells after combinations of ligand treatments. Results Using this approach, we discovered a tumour suppressive relationship between the mineralocorticoid receptor (MR) and retinoic acid receptors (RAR), in particular RARβ. Expression profiling of MR expressing breast cancer cells revealed that mineralocorticoid and retinoid co-treatment activated an expression program consistent with a reverse Warburg effect and growth inhibition, which was not observed with either ligand alone. Moreover, high expression of both MR and RARB was associated with improved breast cancer-specific survival. Conclusion Our study reveals a previously unknown relationship between MR and RAR in the breast, which is dependent on menopausal state and altered in malignancy. This finding identifies potential new targets for the treatment of breast cancers that are refractory to existing therapeutic options. Supplementary information Supplementary information accompanies this paper at 10.1186/s13058-020-01355-x.
Collapse
Affiliation(s)
- Tram B Doan
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia.
| | - Vanessa Cheung
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Heidi N Hilton
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia
| | - Natalie Eriksson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - John W Funder
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - George E O Muscat
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Christine L Clarke
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, PO Box 412, Westmead, NSW, 2145, Australia.,Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| |
Collapse
|
18
|
Nowacki J, Wingenfeld K, Kaczmarczyk M, Chae WR, Salchow P, Abu-Tir I, Piber D, Hellmann-Regen J, Otte C. Steroid hormone secretion after stimulation of mineralocorticoid and NMDA receptors and cardiovascular risk in patients with depression. Transl Psychiatry 2020; 10:109. [PMID: 32313032 PMCID: PMC7171120 DOI: 10.1038/s41398-020-0789-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is associated with altered mineralocorticoid receptor (MR) and glucocorticoid receptor function, and disturbed glutamatergic signaling. Both systems are closely intertwined and likely contribute not only to the pathophysiology of MDD, but also to the increased cardiovascular risk in MDD patients. Less is known about other steroid hormones, such as aldosterone and DHEA-S, and how they affect the glutamatergic system and cardiovascular disease risk in MDD. We examined salivary cortisol, aldosterone, and DHEA-S secretion after stimulation of MR and glutamatergic NMDA receptors in 116 unmedicated depressed patients, and 116 age- and sex-matched healthy controls. Patients (mean age = 34.7 years, SD = ±13.3; 78% women) and controls were randomized to four conditions: (a) control condition (placebo), (b) MR stimulation (0.4 mg fludrocortisone), (c) NMDA stimulation (250 mg D-cycloserine (DCS)), and (d) combined MR/NMDA stimulation (fludrocortisone + DCS). We additionally determined the cardiovascular risk profile in both groups. DCS had no effect on steroid hormone secretion, while cortisol secretion decreased in both fludrocortisone conditions across groups. Independent of condition, MDD patients showed (1) increased cortisol, increased aldosterone, and decreased DHEA-S concentrations, and (2) increased glucose levels and decreased high-density lipoprotein cholesterol levels compared with controls. Depressed patients show profound alterations in several steroid hormone systems that are associated both with MDD pathophysiology and increased cardiovascular risk. Prospective studies should examine whether modulating steroid hormone levels might reduce psychopathology and cardiovascular risk in depressed patients.
Collapse
Affiliation(s)
- Jan Nowacki
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Woo Ri Chae
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Paula Salchow
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ikram Abu-Tir
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dominique Piber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
19
|
Gulyaeva NV. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. BIOCHEMISTRY (MOSCOW) 2019; 84:1306-1328. [PMID: 31760920 DOI: 10.1134/s0006297919110087] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Focal brain injuries (in particular, stroke and traumatic brain injury) induce with high probability the development of delayed (months, years) cognitive and depressive disturbances which are frequently comorbid. The association of these complications with hippocampal alterations (in spite of the lack of a primary injury of this structure), as well as the lack of a clear dependence between the probability of depression and dementia development and primary damage severity and localization served as the basis for a new hypothesis on the distant hippocampal damage as a key link in the pathogenesis of cognitive and psychiatric disturbances. According to this hypothesis, the excess of corticosteroids secreted after a focal brain damage, in particular in patients with abnormal stress-response due to hypothalamic-pituitary-adrenal axis (HPAA) dysfunction, interacts with corticosteroid receptors in the hippocampus inducing signaling pathways which stimulate neuroinflammation and subsequent events including disturbances in neurogenesis and hippocampal neurodegeneration. In this article, the molecular and cellular mechanisms associated with the regulatory role of the HPAA and multiple functions of brain corticosteroid receptors in the hippocampus are analyzed. Functional and structural damage to the hippocampus, a brain region selectively vulnerable to external factors and responding to them by increased cytokine secretion, forms the basis for cognitive function disturbances and psychopathology development. This concept is confirmed by our own experimental data, results of other groups and by prospective clinical studies of post-stroke complications. Clinically relevant biochemical approaches to predict the risks and probability of post-stroke/post-trauma cognitive and depressive disturbances are suggested using the evaluation of biochemical markers of patients' individual stress-response. Pathogenetically justified ways for preventing these consequences of focal brain damage are proposed by targeting key molecular mechanisms underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Moscow Research and Clinical Center for Neuropsychiatry, Healthcare Department of Moscow, Moscow, 115419, Russia
| |
Collapse
|
20
|
|
21
|
Bamberg K, William-Olsson L, Johansson U, Jansson-Löfmark R, Hartleib-Geschwindner J. The selective mineralocorticoid receptor modulator AZD9977 reveals differences in mineralocorticoid effects of aldosterone and fludrocortisone. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319827449. [PMID: 30813831 PMCID: PMC6396052 DOI: 10.1177/1470320319827449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: AZD9977 is a novel mineralocorticoid receptor (MR) modulator, which in preclinical studies demonstrated organ protection without affecting aldosterone-regulated urinary electrolyte excretion. However, when tested in humans, using fludrocortisone as an MR agonist, AZD9977 exhibited similar effects on urinary Na+/K+ ratio as eplerenone. The aim of this study is to understand whether the contradictory results seen in rats and humans are due to the mineralocorticoid used. Materials and methods: Rats were treated with single doses of AZD9977 or eplerenone in combination with either aldosterone or fludrocortisone. Urine was collected for five to six hours and total amounts excreted Na+ and K+ were assessed. Results: AZD9977 dose-dependently increased urinary Na+/K+ ratio in rats when tested against fludrocortisone, but not when tested against aldosterone. Eplerenone dose-dependently increased urinary Na+/K+ ratio when tested against fludrocortisone as well as aldosterone. Conclusions: The data suggest that the contrasting effects of AZD9977 on urinary electrolyte excretion observed in rats and humans are due to the use of the synthetic mineralocorticoid fludrocortisone. Future clinical studies are required to confirm the reduced electrolyte effects of AZD9977 and the subsequent lower predicted hyperkalemia risk.
Collapse
Affiliation(s)
- Krister Bamberg
- 1 Bioscience CKD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Sweden
| | - Lena William-Olsson
- 1 Bioscience CKD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Sweden
| | - Ulrika Johansson
- 1 Bioscience CKD, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Sweden
| | - Rasmus Jansson-Löfmark
- 2 Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Sweden
| | | |
Collapse
|
22
|
Abstract
The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.
Collapse
|
23
|
The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 2018; 29:231-243. [PMID: 30413906 DOI: 10.1007/s10286-018-0572-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Complex and bidirectional interactions between the renin-angiotensin system (RAS) and autonomic nervous system have been well established for cardiovascular regulation under both physiological and pathophysiological conditions. Most research to date has focused on deleterious effects of components of the vasoconstrictor arm of the RAS on cardiovascular autonomic control, such as renin, angiotensin II, and aldosterone. The recent discovery of prorenin and the prorenin receptor have further increased our understanding of RAS interactions in autonomic brain regions. Therapies targeting these RAS components, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are commonly used for treatment of hypertension and cardiovascular diseases, with blood pressure-lowering effects attributed in part to sympathetic inhibition and parasympathetic facilitation. In addition, a vasodilatory arm of the RAS has emerged that includes angiotensin-(1-7), ACE2, and alamandine, and promotes beneficial effects on blood pressure in part by reducing sympathetic activity and improving arterial baroreceptor reflex function in animal models. The role of the vasodilatory arm of the RAS in cardiovascular autonomic regulation in clinical populations, however, has yet to be determined. This review will summarize recent developments in autonomic mechanisms involved in the effects of the RAS on cardiovascular regulation, with a focus on newly discovered pathways and therapeutic targets for this hormone system.
Collapse
|
24
|
Abstract
Primary aldosteronism (PA) is now considered as one of leading causes of secondary hypertension, accounting for 5-10% of all hypertensive patients and more strikingly 20% of those with resistant hypertension. Importantly, those with the unilateral disease could be surgically cured when diagnosed appropriately. On the other hand, only a very limited portion of those suspected to have PA has been screened, diagnosed, or treated to date. With current advancement in medical technologies and genetic research, expanding knowledge of PA has been accumulated and recent achievements have also been documented in the care of those with PA. This review is aimed to have focused description on updated topics of the following; importance of PA screening both in the general and specialized settings and careful interpretation of screening data, recent achievements in hormone assays and sampling methods and their clinical relevance, and expanding knowledge on PA genetics. Improvement in workup processes and novel treatment options, as well as better understanding of the PA pathogenesis based on genetic research, might be expected to result in increased cure and better care of the patients.
Collapse
Affiliation(s)
- Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kei Omata
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Huang KH, Yu CC, Hu YH, Chang CC, Chan CK, Liao SC, Tsai YC, Jeff Chueh SC, Wu VC, Lin YH. Targeted treatment of primary aldosteronism - The consensus of Taiwan Society of Aldosteronism. J Formos Med Assoc 2018; 118:72-82. [PMID: 29506889 DOI: 10.1016/j.jfma.2018.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/PURPOSE Even with the increasing recognition of primary aldosteronism (PA) as a cause of refractory hypertension and an issue of public health, the consensus of its optimal surgical or medical treatment in Taiwan has not been reached. Our objective was to develop a clinical practice guideline that is feasible for real-world management of PA patients in Taiwan. METHODS The Taiwan Society of Aldosteronism (TSA) Task Force recognized the above-mentioned issues and reached this Taiwan PA consensus at its inaugural meeting, in order to provide updated information of internationally acceptable standards, and also to incorporate our local disease characteristics and constraints into PA management. RESULTS In patients with lateralized PA, including aldosterone producing adenoma (APA), laparoscopic adrenalectomy is the 'gold standard' of treatment. Mini-laparoscopic and laparoendoscopic single-site approaches are feasible only in highly experienced surgeons. Patients with bilateral adrenal hyperplasia or those not suitable for surgery should be treated by mineralocorticoid receptor antagonists. The outcome data of PA patient management from the literature, especially from PA patients in Taiwan, are reviewed. Mental health screening is helpful in early detection and management of psychopathology among PA patients. CONCLUSION We hope this consensus will provide a guideline to help medical professionals to manage PA patients in Taiwan to achieve a better quality of care.
Collapse
Affiliation(s)
- Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chin Yu
- Division of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan
| | - Ya-Hui Hu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taiwan
| | - Chin-Chen Chang
- Medical Imagine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin Chu Branch, Hsinchu County, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Cheng Liao
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Chou Tsai
- Division of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan; Department of Urology, Tzu Chi University, Hualien, Taiwan.
| | - Shih-Chieh Jeff Chueh
- Glickman Urological and Kidney Institute, and Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Vin-Cent Wu
- Division of Nephrology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
26
|
Bamberg K, Johansson U, Edman K, William-Olsson L, Myhre S, Gunnarsson A, Geschwindner S, Aagaard A, Björnson Granqvist A, Jaisser F, Huang Y, Granberg KL, Jansson-Löfmark R, Hartleib-Geschwindner J. Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. PLoS One 2018; 13:e0193380. [PMID: 29474466 PMCID: PMC5825103 DOI: 10.1371/journal.pone.0193380] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/11/2018] [Indexed: 11/23/2022] Open
Abstract
Excess mineralocorticoid receptor (MR) activation promotes target organ dysfunction, vascular injury and fibrosis. MR antagonists like eplerenone are used for treating heart failure, but their use is limited due to the compound class-inherent hyperkalemia risk. Here we present evidence that AZD9977, a first-in-class MR modulator shows cardio-renal protection despite a mechanism-based reduced liability to cause hyperkalemia. AZD9977 in vitro potency and binding mode to MR were characterized using reporter gene, binding, cofactor recruitment assays and X-ray crystallopgraphy. Organ protection was studied in uni-nephrectomised db/db mice and uni-nephrectomised rats administered aldosterone and high salt. Acute effects of single compound doses on urinary electrolyte excretion were tested in rats on a low salt diet. AZD9977 and eplerenone showed similar human MR in vitro potencies. Unlike eplerenone, AZD9977 is a partial MR antagonist due to its unique interaction pattern with MR, which results in a distinct recruitment of co-factor peptides when compared to eplerenone. AZD9977 dose dependently reduced albuminuria and improved kidney histopathology similar to eplerenone in db/db uni-nephrectomised mice and uni-nephrectomised rats. In acute testing, AZD9977 did not affect urinary Na+/K+ ratio, while eplerenone increased the Na+/K+ ratio dose dependently. AZD9977 is a selective MR modulator, retaining organ protection without acute effect on urinary electrolyte excretion. This predicts a reduced hyperkalemia risk and AZD9977 therefore has the potential to deliver a safe, efficacious treatment to patients prone to hyperkalemia.
Collapse
MESH Headings
- Administration, Oral
- Aldosterone
- Animals
- Benzoates/chemistry
- Benzoates/pharmacokinetics
- Benzoates/pharmacology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Eplerenone
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice, Mutant Strains
- Mineralocorticoid Receptor Antagonists/chemistry
- Mineralocorticoid Receptor Antagonists/pharmacokinetics
- Mineralocorticoid Receptor Antagonists/pharmacology
- Molecular Structure
- Oxazines/chemistry
- Oxazines/pharmacokinetics
- Oxazines/pharmacology
- Potassium/urine
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Sodium/urine
- Sodium, Dietary
- Spironolactone/analogs & derivatives
- Spironolactone/chemistry
- Spironolactone/pharmacokinetics
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Krister Bamberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ulrika Johansson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lena William-Olsson
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Myhre
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Aagaard
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM U1138 Team 1, Paris, France
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth L. Granberg
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Judith Hartleib-Geschwindner
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
27
|
Kuppusamy M, Gomez-Sanchez EP, Beloate LN, Plonczynski M, Naray-Fejes-Toth A, Fejes-Toth G, Gomez-Sanchez CE. Interaction of the Mineralocorticoid Receptor With RACK1 and Its Role in Aldosterone Signaling. Endocrinology 2017; 158:2367-2375. [PMID: 28472300 PMCID: PMC5505217 DOI: 10.1210/en.2017-00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid-thyroid hormone receptor superfamily of ligand-dependent transcription factors with diverse functions including the biological actions of aldosterone. Identification of the various transcriptional coregulators of MR is essential for understanding the complexity of MR signaling pathways under physiological and pathological conditions. We used a yeast two-hybrid system to find proteins that interact with a full-length MR and found, among other proteins, that MR interacted specifically with receptor for activated C kinase 1 (RACK1), a scaffolding protein. Overexpression of RACK1 using a tetracycline-inducible lentivirus in mouse cortical collecting duct M1 cells stably expressing the rat MR and a Gaussia luciferase gene reporter under a hormone-response element promoter resulted in enhanced agonist-dependent MR transactivation. Knockdown of RACK1 protein expression by short hairpin RNAs led to a significant reduction in MR activation of the reporter gene and the endogenous genes Ctla2α and Psca. We also demonstrated that RACK1 regulation of MR action is mediated through phosphorylation by the PKC-β signaling pathway. MR and RACK1 were coimmunoprecipitated using an MR antibody in male Sprague-Dawley brain tissue and M1-rMR cells, and colocalization in M1-rMR cells and male rat brains was confirmed by immunofluorescence and immunohistochemistry. The scaffolding protein RACK1 is associated with MR under basal and agonist-stimulated conditions and facilitates agonist-stimulated MR actions through PKC-β. These findings indicate that RACK1 is a newly described coactivator of MR.
Collapse
Affiliation(s)
- Maniselvan Kuppusamy
- Endocrine Service, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Elise P. Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Lauren N. Beloate
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Maria Plonczynski
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | | | - Geza Fejes-Toth
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03755
| | - Celso E. Gomez-Sanchez
- Endocrine Service, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
28
|
Kolkhof P, Bärfacker L. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol 2017; 234:T125-T140. [PMID: 28634268 PMCID: PMC5488394 DOI: 10.1530/joe-16-0600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
The cDNA of the mineralocorticoid receptor (MR) was cloned 30 years ago, in 1987. At that time, spirolactone, the first generation of synthetic steroid-based MR antagonists (MRAs), which was identified in preclinical in vivo models, had already been in clinical use for 30 years. Subsequent decades of research and development by Searle & Co., Ciba-Geigy, Roussel Uclaf and Schering AG toward identifying a second generation of much more specific steroidal MRAs were all based on the initial 17-spirolactone construct. The salient example is eplerenone, first described in 1987, coincidentally with the cloning of MR cDNA. Its launch on the market in 2003 paralleled intensive drug discovery programs for a new generation of non-steroidal MRAs. Now, 30 years after the cDNA cloning of MR and 60 years of clinical use of steroidal MRAs, novel non-steroidal MRAs such as apararenone, esaxerenone and finerenone are in late-stage clinical trials in patients with heart failure, chronic kidney disease (CKD), hypertension and liver disease. Finerenone has already been studied in over 2000 patients with heart failure plus chronic kidney disease and/or diabetes, and in patients with diabetic kidney disease, in five phase II clinical trials. Here, we reflect on the history of the various generations of MRAs and review characteristics of the most important steroidal and non-steroidal MRAs.
Collapse
Affiliation(s)
- Peter Kolkhof
- Drug DiscoveryCardiology Research, Bayer AG, Wuppertal, Germany
| | - Lars Bärfacker
- Drug DiscoveryMedicinal Chemistry, Bayer AG, Wuppertal, Germany
| |
Collapse
|
29
|
Martín-Martínez M, Pérez-Gordillo FL, Álvarez de la Rosa D, Rodríguez Y, Gerona-Navarro G, González-Muñiz R, Zhou MM. Modulating Mineralocorticoid Receptor with Non-steroidal Antagonists. New Opportunities for the Development of Potent and Selective Ligands without Off-Target Side Effects. J Med Chem 2017; 60:2629-2650. [DOI: 10.1021/acs.jmedchem.6b01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Diego Álvarez de la Rosa
- Institute
of Biomedical Technologies and Department of Physiology, Campus de
Ciencias de la Salud, Facultad de Medicina, Universidad de La Laguna, 38204 Tenerife, Spain
| | - Yoel Rodríguez
- Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States
- Department
of Natural Sciences, Hostos Community College of CUNY, 475 Grand Concourse, Bronx, New York 10451, United States
| | - Guillermo Gerona-Navarro
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | | | - Ming-Ming Zhou
- Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States
| |
Collapse
|
30
|
|
31
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
32
|
Romero DG, Yanes Cardozo LL. Clinical Practice Guideline for Management of Primary Aldosteronism: What is New in the 2016 Update? ACTA ACUST UNITED AC 2016; 2. [PMID: 28018978 PMCID: PMC5175479 DOI: 10.16966/2380-548x.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary Aldosteronism is the single most common cause of secondary hypertension and is associated with increased target organ injury. The Endocrine Society has recently released the updated Clinical Practice Guideline for Primary Aldosteronism entitled “The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline”. We review the updated Clinical Practice Guideline, highlighting the new recommendations and the implications that they may have in clinical practice. The recognition by the Endocrine Society’s Task Force that Primary Aldosteronism is a public health issue and that the population at risk for screening should be significantly expanded will surely have an impact in the clinical practice which hopefully will translate in better detection, diagnosis and treatment of patients with Primary Aldosteronism.
Collapse
Affiliation(s)
- Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center Jackson, USA; Women's Health Research Center, University of Mississippi Medical Center and Jackson, USA; Cardio-Renal Research Center, University of Mississippi Medical Center Jackson, USA
| | - Licy L Yanes Cardozo
- Women's Health Research Center, University of Mississippi Medical Center and Jackson, USA; Cardio-Renal Research Center, University of Mississippi Medical Center Jackson, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, USA; Department of Medicine, University of Mississippi Medical Center Jackson, USA
| |
Collapse
|
33
|
Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 2016; 1637:146-153. [DOI: 10.1016/j.brainres.2016.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|