1
|
Hwang S, Yoon B, Jo SH. Inhibitory effects of N-methyl-D-aspartate (NMDA) and α 1-adrenergic receptor antagonist ifenprodil on human Kv1.5 channel. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3149-3161. [PMID: 37166464 DOI: 10.1007/s00210-023-02521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Ifenprodil has been known to reduce cardiac contractility and cerebral vasodilation by antagonizing α1-adrenergic and N-methyl D-aspartate receptor-mediated intracellular signals. This study aimed to investigate the direct effect of ifenprodil on the human voltage-gated Kv1.5 channel (hKv1.5) by using a Xenopus oocyte expression system and a two-microelectrode voltage clamp technique. The amplitudes of hKv1.5 currents, including peak and steady state, were suppressed in a concentration-dependent manner (IC50; 43.1 and 35.5 μM, respectively) after 6 min of ifenprodil treatment. However, these effects were ~ 80% reversed by washout, suggesting that ifenprodil directly inhibited the hKv1.5 independent of membrane receptors or intracellular signals. The inhibition rate of steady state showed voltage dependence, wherein the rates increased according to test voltage depolarization. Ifenprodil reduced the time constants of hKv1.5 inactivation but has higher effects on activation. hKv1.5 inhibition by ifenprodil showed use dependency because the drug more rapidly reduced the current at the higher activation frequencies, and subsequent reduction in frequency after high activation frequency caused a partial channel block relief. Therefore, ifenprodil directly blocked the hKv1.5 in an open state and accelerated the time course of the channel inactivation, which provided a biophysical mechanism for the hKv1.5 blocking effects of ifenprodil.
Collapse
Affiliation(s)
- Soobeen Hwang
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea
| | - Byeongjun Yoon
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea.
| |
Collapse
|
2
|
Richter-Laskowska M, Trybek P, Delfino DV, Wawrzkiewicz-Jałowiecka A. Flavonoids as Modulators of Potassium Channels. Int J Mol Sci 2023; 24:1311. [PMID: 36674825 PMCID: PMC9861088 DOI: 10.3390/ijms24021311] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Potassium channels are widely distributed integral proteins responsible for the effective and selective transport of K+ ions through the biological membranes. According to the existing structural and mechanistic differences, they are divided into several groups. All of them are considered important molecular drug targets due to their physiological roles, including the regulation of membrane potential or cell signaling. One of the recent trends in molecular pharmacology is the evaluation of the therapeutic potential of natural compounds and their derivatives, which can exhibit high specificity and effectiveness. Among the pharmaceuticals of plant origin, which are potassium channel modulators, flavonoids appear as a powerful group of biologically active substances. It is caused by their well-documented anti-oxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic, and antidiabetic effects on human health. Here, we focus on presenting the current state of knowledge about the possibilities of modulation of particular types of potassium channels by different flavonoids. Additionally, the biological meaning of the flavonoid-mediated changes in the activity of K+ channels will be outlined. Finally, novel promising directions for further research in this area will be proposed.
Collapse
Affiliation(s)
- Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network—Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | | | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Mazola Y, Márquez Montesinos JCE, Ramírez D, Zúñiga L, Decher N, Ravens U, Yarov-Yarovoy V, González W. Common Structural Pattern for Flecainide Binding in Atrial-Selective K v1.5 and Na v1.5 Channels: A Computational Approach. Pharmaceutics 2022; 14:1356. [PMID: 35890252 PMCID: PMC9318806 DOI: 10.3390/pharmaceutics14071356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.
Collapse
Affiliation(s)
- Yuliet Mazola
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - José C. E. Márquez Montesinos
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca, Talca 3460000, Chile;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts-Herzzentrum Freiburg Bad Krotzingen, 79110 Freiburg im Breisgau, Germany;
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA;
| | - Wendy González
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca 3530000, Chile
| |
Collapse
|
4
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
5
|
Darkow E, Nguyen TT, Stolina M, Kari FA, Schmidt C, Wiedmann F, Baczkó I, Kohl P, Rajamani S, Ravens U, Peyronnet R. Small Conductance Ca 2 +-Activated K + (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front Physiol 2021; 12:650964. [PMID: 33868017 PMCID: PMC8047327 DOI: 10.3389/fphys.2021.650964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thong T Nguyen
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Fabian A Kari
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Alvarado D, Cardoso-Arenas S, Corrales-García LL, Clement H, Arenas I, Montero-Dominguez PA, Olamendi-Portugal T, Zamudio F, Csoti A, Borrego J, Panyi G, Papp F, Corzo G. A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Front Pharmacol 2021; 11:563858. [PMID: 33597864 PMCID: PMC7883638 DOI: 10.3389/fphar.2020.563858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Spider venoms include various peptide toxins that modify the ion currents, mainly of excitable insect cells. Consequently, scientific research on spider venoms has revealed a broad range of peptide toxins with different pharmacological properties, even for mammal species. In this work, thirty animal venoms were screened against hKv1.5, a potential target for atrial fibrillation therapy. The whole venom of the spider Oculicosa supermirabilis, which is also insecticidal to house crickets, caused voltage-gated potassium ion channel modulation in hKv1.5. Therefore, a peptide from the spider O. supermirabilis venom, named Osu1, was identified through HPLC reverse-phase fractionation. Osu1 displayed similar biological properties as the whole venom; so, the primary sequence of Osu1 was elucidated by both of N-terminal degradation and endoproteolytic cleavage. Based on its primary structure, a gene that codifies for Osu1 was constructed de novo from protein to DNA by reverse translation. A recombinant Osu1 was expressed using a pQE30 vector inside the E. coli SHuffle expression system. recombinant Osu1 had voltage-gated potassium ion channel modulation of human hKv1.5, and it was also as insecticidal as the native toxin. Due to its novel primary structure, and hypothesized disulfide pairing motif, Osu1 may represent a new family of spider toxins.
Collapse
Affiliation(s)
- Diana Alvarado
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Samuel Cardoso-Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Ligia-Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pavel Andrei Montero-Dominguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jesús Borrego
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
7
|
Yu Y, Luo D, Li Z, Zhang J, Li F, Qiao J, Yu F, Li M. Inhibitory Effects of Dronedarone on Small Conductance Calcium Activated Potassium Channels in Patients with Chronic Atrial Fibrillation: Comparison to Amiodarone. Med Sci Monit 2020; 26:e924215. [PMID: 32470968 PMCID: PMC7282350 DOI: 10.12659/msm.924215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dysfunction of small conductance calcium activated potassium (SK) channels plays a vital role in atrial arrhythmogenesis. Amiodarone and dronedarone are the most effective class III antiarrhythmic drugs. It is unclear whether the antiarrhythmic effect of amiodarone and dronedarone is related to SK channel inhibition. MATERIAL AND METHODS Tissue samples were obtained from the right atria of 46 patients with normal sinus rhythm and 39 patients with chronic atrial fibrillation. Isolated atrial myocytes were obtained by enzymatic dissociation. KCNN2 (SK2) channels were transiently expressed in human embryonic kidney (HEK)-293 cells. SK currents were recorded using whole-cell conventional patch clamp techniques. RESULTS Amiodarone and dronedarone showed a concentration-dependent inhibitory effect on SK currents (IKAS) in atrial myocytes from normal sinus rhythm patients and chronic atrial fibrillation patients. The suppressed efficacy of dronedarone and amiodarone on IKAS was greater in atrial myocytes from chronic atrial fibrillation patients than that from normal sinus rhythm patients. Furthermore, in patients with chronic atrial fibrillation, the IC₅₀ value was 2.42 µM with dronedarone and 8.03 µM with amiodarone. In HEK-293 cells with transiently transfected SK2 channels, both dronedarone and amiodarone had a dose-dependent inhibitory effect on IKAS. The IC₅₀ value was 1.7 µM with dronedarone and 7.2 µM with amiodarone in cells from patients with chronic atrial fibrillation. Compared to amiodarone, dronedarone is more efficacy to inhibit IKAS and could be a potential intervention for patients with chronic atrial fibrillation. CONCLUSIONS Dronedarone provides a great degree of IKAS inhibition in atrial myocytes from chronic atrial fibrillation than amiodarone. IKAS might be a potential target of amiodarone and dronedarone for the management of chronic atrial fibrillation.
Collapse
Affiliation(s)
- Yiyan Yu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Department of Electrocardiography, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Dan Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhiyi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Fang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Qiao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Fengxu Yu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
8
|
Kambayashi R, Hagiwara-Nagasawa M, Ichikawa T, Goto A, Chiba K, Nunoi Y, Izumi-Nakaseko H, Matsumoto A, Takahara A, Sugiyama A. Analysis of electropharmacological effects of AVE0118 on the atria of chronic atrioventricular block dogs: characterization of anti-atrial fibrillatory action by atrial repolarization-delaying agent. Heart Vessels 2020; 35:1316-1322. [PMID: 32346771 DOI: 10.1007/s00380-020-01612-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/17/2020] [Indexed: 11/28/2022]
Abstract
AVE0118, an inhibitor of IKur, Ito and IK,ACh, was in the drug pipeline for atrial fibrillation. To investigate the limitation of AVE0118 as an anti-atrial fibrillatory drug, we studied its electropharmacological effects particularly focusing on the anti-atrial fibrillatory action as reverse translational research. We adopted the chronic atrioventricular block beagle dogs (n = 4), having a pathophysiology of bradycardia-associated, volume overload-induced chronic heart failure, in which the atrial fibrillation was induced by 10 s of burst pacing on atrial septum. AVE0118 in doses of 0.24 and 1.2 mg/kg, i.v. over 10 min hardly altered electrophysiological variables. Meanwhile, AVE0118 in a dose of 6 mg/kg, i.v. over 10 min delayed the inter-atrial conduction in a frequency-dependent manner and prolonged the atrial effective refractory period in a reverse frequency-dependent manner, whereas it did not significantly alter the duration of atrial fibrillation or its cycle length. The increment of atrial effective refractory period was 3.3 times greater compared with that of ventricular one at a basic cycle length of 400 ms. Torsade de pointes was not induced during the experimental period. Thus, AVE0118 may possess a favorable cardiac safety pharmacological profile, but its weak anti-atrial fibrillatory effect would indicate the limitation of atrial repolarization-delaying agents for suppressing atrial fibrillation.
Collapse
Affiliation(s)
- Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Tomoaki Ichikawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Koki Chiba
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Yamanashi Research Center of Clinical Pharmacology, 73-5 Hatta, Fuefuki, Yamanashi, 406-0023, Japan.
| |
Collapse
|
9
|
High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J Mol Cell Cardiol 2020; 140:10-21. [PMID: 32006532 DOI: 10.1016/j.yjmcc.2020.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Hypertension is an independent risk factor for atrial fibrillation (AF), although its specific mechanisms remain unclear. Previous research has been focused on cyclic stretch, ignoring the role of high hydrostatic pressure. The present study aimed to explore the effect of high hydrostatic pressure stimulation on electrical remodeling in atrial myocytes and its potential signaling pathways. Experiments were performed on left atrial appendages from patients with chronic AF or sinus rhythm, spontaneously hypertensive rats (SHRs) treated with or without valsartan (10 mg/kg/day) and HL-1 cells were exposed to high hydrostatic pressure using a self-developed device. Whole-cell patch-clamp recordings and western blots demonstrated that the amplitudes of ICa,L, Ito, and IKur were reduced in AF patients with corresponding changes in protein expression. Angiotensin protein levels increased and Ang1-7 decreased, while focal adhesion kinase (FAK) and Src kinase were enhanced in atrial tissue from AF patients and SHRs. After rapid atrial pacing, AF inducibility in SHR was significantly higher, accompanied by a decrease in ICa,L, upregulation of Ito and IKur, and a shortened action potential duration. Angiotensin upregulation and FAK/Src activation in SHR were inhibited by angiotensin type 1 receptor inhibitor valsartan, thus, preventing electrical remodeling and reducing AF susceptibility. These results were verified in HL-1 cells treated with high hydrostatic pressure, and demonstrated that electrical remodeling regulated by the FAK-Src pathway could be modulated by valsartan. The present study indicated that high hydrostatic pressure stimulation increases AF susceptibility by activating the renin-angiotensin system and FAK-Src pathway in atrial myocytes.
Collapse
|
10
|
Geng L, Wang S, Zhang F, Xiong K, Huang J, Zhao T, Shi D, Lv F, Li L, Liang D, Cui Y, Liu Y, Xie D, Chen YH. SNX17 (Sorting Nexin 17) Mediates Atrial Fibrillation Onset Through Endocytic Trafficking of the Kv1.5 (Potassium Voltage-Gated Channel Subfamily A Member 5) Channel. Circ Arrhythm Electrophysiol 2020; 12:e007097. [PMID: 30939909 DOI: 10.1161/circep.118.007097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Kv1.5 (Potassium voltage-gated channel subfamily A member 5) has been regarded as a promising target of interventions for atrial fibrillation (AF). SNX17 (sorting nexin 17), a member of the SNXs (sorting nexin family), regulates the intracellular trafficking of membrane proteins through its FERM (four-point-one, ezrin, radixin, moesin) domain. However, whether SNX17 regulates the trafficking process of Kv1.5 remains unknown. METHODS A SNX17 knockout rat line was generated to test the role of SNX17 in atrial electrophysiology. The protein expression of SNX17 and membrane ion channels was detected by Western blotting. Electrophysiology changes in the atrial tissue and myocytes were analyzed by optical mapping and patch clamp, respectively. Acetylcholine and electrical stimulation were used to induce AF, and ECG recording was adopted to assess the influence of SNX17 deficiency on AF susceptibility. The spatial relationship between Kv1.5 and SNX17 was evaluated by immunostaining and confocal scanning, and the functional region of SNX17 regulating Kv1.5 trafficking was identified using plasmids with truncated SNX17 domains. RESULTS Embryonic death occurred in homozygous SNX17 knockout rats. SNX17 heterozygous rats survived, and the level of the SNX17 protein in the atrium was decreased by ≈50%. SNX17 deficiency increased the membrane expression of Kv1.5 and atria-specific ultrarapid delayed rectifier outward potassium current ( IKur) density, resulting in a shortened action potential duration, and eventually contributing to AF susceptibility. Mechanistically, SNX17 facilitated the endocytic sorting of Kv1.5 from the plasma membrane to early endosomes via the FERM domain. CONCLUSIONS SNX17 mediates susceptibility to AF by regulating endocytic sorting of the Kv1.5 channel through the FERM domain. SNX17 could be a potential target for the development of new drugs for AF.
Collapse
Affiliation(s)
- Li Geng
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Shuo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Fulei Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Ke Xiong
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Jian Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Tingting Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Dan Shi
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Li Li
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Dandan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Yingyu Cui
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Duanyang Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,School of Life Science and Technology (D.X.), Tongji University, Shanghai, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China.,Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| |
Collapse
|
11
|
Peyronnet R, Ravens U. Atria-selective antiarrhythmic drugs in need of alliance partners. Pharmacol Res 2019; 145:104262. [PMID: 31059791 DOI: 10.1016/j.phrs.2019.104262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Atria-selective antiarrhythmic drugs in need of alliance partners. Guideline-based treatment of atrial fibrillation (AF) comprises prevention of thromboembolism and stroke, as well as antiarrhythmic therapy by drugs, electrical rhythm conversion, ablation and surgical procedures. Conventional antiarrhythmic drugs are burdened with unwanted side effects including a propensity of triggering life-threatening ventricular fibrillation. In order to solve this therapeutic dilemma, 'atria-selective' antiarrhythmic drugs have been developed for the treatment of supraventricular arrhythmias. These drugs are designed to aim at atrial targets, taking advantage of differences in atrial and ventricular ion channel expression and function. However it is not clear, whether such drugs are sufficiently antiarrhythmic or whether they are in need of an alliance partner for clinical efficacy. Atria-selective Na+ channel blockers display fast dissociation kinetics and high binding affinity to inactivated channels. Compounds targeting atria-selective K+ channels include blockers of ultra rapid delayed rectifier (Kv1.5) or acetylcholine-activated inward rectifier K+ channels (Kir3.x), inward rectifying K+ channels (Kir2.x), Ca2+-activated K+ channels of small conductance (SK), weakly rectifying two-pore domain K+ channels (K2P), and transient receptor potential channels (TRP). Despite good antiarrhythmic data from in-vitro and animal model experiments, clinical efficacy of atria-selective antiarrhythmic drugs remains to be demonstrated. In the present review we will briefly summarize the novel compounds and their proposed antiarrhythmic action. In addition, we will discuss the evidence for putative improvement of antiarrhythmic efficacy and potency by addressing multiple pathophysiologically relevant targets as possible alliance partners.
Collapse
Affiliation(s)
- Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Institute of Physiology, Medical Faculty TU Dresden, Dresden, Germany.
| |
Collapse
|
12
|
A double-blind, randomised, placebo-controlled, cross-over study assessing the use of XEN-D0103 in patients with paroxysmal atrial fibrillation and implanted pacemakers allowing continuous beat-to-beat monitoring of drug efficacy. J Interv Card Electrophysiol 2018; 51:191-197. [PMID: 29460236 DOI: 10.1007/s10840-018-0318-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/24/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE The ultrarapid delayed rectifier current (IKur) carried by Kv1.5 channels, which are solely expressed in the atrium, is a potential target for safer treatment of paroxysmal atrial fibrillation (PAF). XEN-D0103 is a nanomolar ion channel blocker that selectively inhibits potassium ion flux through the Kv1.5 ion channel. The efficacy of XEN-D0103 in reducing AF burden was assessed in patients with DDDRp permanent pacemakers (PPMs) and PAF. METHODS A double-blind, placebo-controlled, cross-over study was performed in patients with PAF and DDDRp PPMs with advanced atrial and ventricular Holters allowing beat-to-beat arrhythmia follow-up. All anti-arrhythmic drugs were withdrawn before randomised treatment. After baseline assessment, patients were randomly assigned to two treatment periods of placebo then XEN-D0103 50 mg bd, or XEN-D0103 50 mg bd then placebo. RESULTS Fifty-four patients were screened and 21 patients were eligible and included in the randomised trial. All 21 patients completed both treatment periods. The primary endpoint was change in AF burden assessed by PPM. There was no significant difference in AF burden on treatment with XEN-D0103 versus placebo. There was a reduction in the mean frequency of AF episodes (relative reduction 0.72, 95% CI 0.66 to 0.77; p < 0.0001). XEN-D0103 was safe and well tolerated, and there were no serious adverse events. XEN-D0103 did not have any apparent effect on heart rate compared to placebo. CONCLUSIONS XEN-D0103 did not reduce AF burden in patients with PAF and dual chamber pacemakers providing beat-to-beat monitoring. XEN-D0103 was well tolerated and did not have any apparent effect on heart rate. Although single-ion channel blockade with XEN-D0103 did not affect AF in this study, there might be a potential for this agent to be used in combination with other atrially specific drugs in the treatment of AF. EUDRACT TRIAL REGISTRATION NUMBER 2013-004456-38.
Collapse
|
13
|
Streit J, Kleinlogel S. Dynamic all-optical drug screening on cardiac voltage-gated ion channels. Sci Rep 2018; 8:1153. [PMID: 29348631 PMCID: PMC5773578 DOI: 10.1038/s41598-018-19412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated ion channels (VGCs) are prime targets for the pharmaceutical industry, but drug profiling on VGCs is challenging, since drug interactions are confined to specific conformational channel states mediated by changes in transmembrane potential. Here we combined various optogenetic tools to develop dynamic, high-throughput drug profiling assays with defined light-step protocols to interrogate VGC states on a millisecond timescale. We show that such light-induced electrophysiology (LiEp) yields high-quality pharmacological data with exceptional screening windows for drugs acting on the major cardiac VGCs, including hNav1.5, hKv1.5 and hERG. LiEp-based screening remained robust when using a variety of optogenetic actuators (ChR2, ChR2(H134R), CatCh, ChR2-EYFP-βArchT) and different types of organic (RH421, Di-4-ANBDQPQ, BeRST1) or genetic voltage sensors (QuasAr1). The tractability of LiEp allows a versatile and precise alternative to state-of-the-art VGC drug screening platforms such as automated electrophysiology or FLIPR readers.
Collapse
Affiliation(s)
- Jonas Streit
- Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
| |
Collapse
|
14
|
Schmidt C, Peyronnet R. Voltage-gated and stretch-activated potassium channels in the human heart : Pathophysiological and clinical significance. Herzschrittmacherther Elektrophysiol 2018; 29:36-42. [PMID: 29305705 DOI: 10.1007/s00399-017-0541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Ion channels are essential for electrical signaling and contractility in cardiomyocytes. Detailed knowledge about the molecular function and regulation of cardiac ion channels is crucial for understanding cardiac physiology and pathophysiology especially in the field of arrhythmias. This review aims at providing a general overview on the identity, functional characteristics, and roles of voltage-gated as well as stretch-activated potassium selective channels in the heart. In particular, we will highlight potential therapeutic targets as well as the emerging fields of future investigations.
Collapse
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany.
| |
Collapse
|
15
|
Ellinwood N, Dobrev D, Morotti S, Grandi E. In Silico Assessment of Efficacy and Safety of I Kur Inhibitors in Chronic Atrial Fibrillation: Role of Kinetics and State-Dependence of Drug Binding. Front Pharmacol 2017; 8:799. [PMID: 29163179 PMCID: PMC5681918 DOI: 10.3389/fphar.2017.00799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Current pharmacological therapy against atrial fibrillation (AF), the most common cardiac arrhythmia, is limited by moderate efficacy and adverse side effects including ventricular proarrhythmia and organ toxicity. One way to circumvent the former is to target ion channels that are predominantly expressed in atria vs. ventricles, such as KV1.5, carrying the ultra-rapid delayed-rectifier K+ current (IKur). Recently, we used an in silico strategy to define optimal KV1.5-targeting drug characteristics, including kinetics and state-dependent binding, that maximize AF-selectivity in human atrial cardiomyocytes in normal sinus rhythm (nSR). However, because of evidence for IKur being strongly diminished in long-standing persistent (chronic) AF (cAF), the therapeutic potential of drugs targeting IKur may be limited in cAF patients. Here, we sought to simulate the efficacy (and safety) of IKur inhibitors in cAF conditions. To this end, we utilized sensitivity analysis of our human atrial cardiomyocyte model to assess the importance of IKur for atrial cardiomyocyte electrophysiological properties, simulated hundreds of theoretical drugs to reveal those exhibiting anti-AF selectivity, and compared the results obtained in cAF with those in nSR. We found that despite being downregulated, IKur contributes more prominently to action potential (AP) and effective refractory period (ERP) duration in cAF vs. nSR, with ideal drugs improving atrial electrophysiology (e.g., ERP prolongation) more in cAF than in nSR. Notably, the trajectory of the AP during cAF is such that more IKur is available during the more depolarized plateau potential. Furthermore, IKur block in cAF has less cardiotoxic effects (e.g., AP duration not exceeding nSR values) and can increase Ca2+ transient amplitude thereby enhancing atrial contractility. We propose that in silico strategies such as that presented here should be combined with in vitro and in vivo assays to validate model predictions and facilitate the ongoing search for novel agents against AF.
Collapse
Affiliation(s)
- Nicholas Ellinwood
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Dobromir Dobrev
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Juhász V, Hornyik T, Benák A, Nagy N, Husti Z, Pap R, Sághy L, Virág L, Varró A, Baczkó I. Comparison of the effects of I K,ACh, I Kr, and I Na block in conscious dogs with atrial fibrillation and on action potentials in remodeled atrial trabeculae. Can J Physiol Pharmacol 2017; 96:18-25. [PMID: 28892643 DOI: 10.1139/cjpp-2017-0342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of morbidity and mortality. Traditional antiarrhythmic agents used for restoration of sinus rhythm have limited efficacy in long-term AF and they may possess ventricular proarrhythmic adverse effects, especially in patients with structural heart disease. The acetylcholine receptor-activated potassium channel (IK,ACh) represents an atrial selective target for future AF management. We investigated the effects of the IK,ACh blocker tertiapin-Q (TQ), a derivative of the honeybee toxin tertiapin, on chronic atrial tachypacing-induced AF in conscious dogs, without the influence of anesthetics that modulate a number of cardiac ion channels. Action potentials (APs) were recorded from right atrial trabeculae isolated from dogs with AF. TQ significantly and dose-dependently reduced AF incidence and AF episode duration, prolonged atrial effective refractory period, and prolonged AP duration. The reference drugs propafenone and dofetilide, both used in the clinical management of AF, exerted similar effects against AF in vivo. Dofetilide prolonged atrial AP duration, whereas propafenone increased atrial conduction time. TQ and propafenone did not affect the QT interval, whereas dofetilide prolonged the QT interval. Our results show that inhibition of IK,ACh may represent a novel, atrial-specific target for the management of AF in chronic AF.
Collapse
Affiliation(s)
- Viktor Juhász
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Benák
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- c MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Husti
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Róbert Pap
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- b 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Virág
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - András Varró
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,c MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Baczkó
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Ravens U. Atrial-selective K + channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol 2017; 95:1313-1318. [PMID: 28738160 DOI: 10.1139/cjpp-2017-0024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K+) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two-pore domain K+ (K2P) channels (tandem of P domains, weak inward-rectifying K+ channels (TWIK-1), TWIK-related acid-sensitive K+ channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
18
|
Gunaga P, Lloyd J, Mummadi S, Banerjee A, Dhondi NK, Hennan J, Subray V, Jayaram R, Rajugowda N, Umamaheshwar Reddy K, Kumaraguru D, Mandal U, Beldona D, Adisechen AK, Yadav N, Warrier J, Johnson JA, Sale H, Putlur SP, Saxena A, Chimalakonda A, Mandlekar S, Conder M, Xing D, Gupta AK, Gupta A, Rampulla R, Mathur A, Levesque P, Wexler RR, Finlay HJ. Selective I Kur Inhibitors for the Potential Treatment of Atrial Fibrillation: Optimization of the Phenyl Quinazoline Series Leading to Clinical Candidate 5-[5-Phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide. J Med Chem 2017; 60:3795-3803. [PMID: 28418664 DOI: 10.1021/acs.jmedchem.6b01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have recently disclosed 5-phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine 1 as a potent IKur current blocker with selectivity versus hERG, Na and Ca channels, and an acceptable preclinical PK profile. Upon further characterization in vivo, compound 1 demonstrated an unacceptable level of brain penetration. In an effort to reduce the level of brain penetration while maintaining the overall profile, SAR was developed at the C2' position for a series of close analogues by employing hydrogen bond donors. As a result, 5-[5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide (25) was identified as the lead compound in this series. Compound 25 showed robust effects in rabbit and canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile and was advanced as the clinical candidate. Further optimization of 25 to mitigate pH-dependent absorption resulted in identification of the corresponding phosphoramide prodrug (29) with an improved solubility and pharmacokinetic profile.
Collapse
Affiliation(s)
- Prashantha Gunaga
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - John Lloyd
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Somanadham Mummadi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Abhisek Banerjee
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Naveen Kumar Dhondi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James Hennan
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Veena Subray
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ramya Jayaram
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Nagendra Rajugowda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Kommuri Umamaheshwar Reddy
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Duraimurugan Kumaraguru
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Umasankar Mandal
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dasthagiri Beldona
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ashok Kumar Adisechen
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Navnath Yadav
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Jayakumar Warrier
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James A Johnson
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Harinath Sale
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Siva Prasad Putlur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ajay Saxena
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anjaneya Chimalakonda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sandhya Mandlekar
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - MaryLee Conder
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dezhi Xing
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arvind Mathur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Paul Levesque
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ruth R Wexler
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Heather J Finlay
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
19
|
Wolkenberg SE, Nolt MB, Bilodeau MT, Trotter BW, Manley PJ, Kett NR, Nanda KK, Wu Z, Cato MJ, Kane SA, Kiss L, Spencer RH, Wang J, Lynch JJ, Regan CP, Stump GL, Li B, White R, Yeh S, Dinsmore CJ, Lindsley CW, Hartman GD. Discovery of MK-1832, a Kv1.5 inhibitor with improved selectivity and pharmacokinetics. Bioorg Med Chem Lett 2017; 27:1062-1069. [PMID: 28131713 DOI: 10.1016/j.bmcl.2016.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Selective inhibition of Kv1.5, which underlies the ultra-rapid delayed rectifier current, IKur, has been pursued as a treatment for atrial fibrillation. Here we describe the discovery of MK-1832, a Kv1.5 inhibitor with improved selectivity versus the off-target current IKs, whose inhibition has been associated with ventricular proarrhythmia. MK-1832 exhibits improved selectivity for IKur over IKs (>3000-fold versus 70-fold for MK-0448), consistent with an observed larger window between atrial and ventricular effects in vivo (>1800-fold versus 210-fold for MK-0448). MK-1832 also exhibits an improved preclinical pharmacokinetic profile consistent with projected once daily dosing in humans.
Collapse
Affiliation(s)
- Scott E Wolkenberg
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA.
| | - M Brad Nolt
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Mark T Bilodeau
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - B Wesley Trotter
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Peter J Manley
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Nathan R Kett
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Kausik K Nanda
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Zhicai Wu
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Matthew J Cato
- Department of Molecular Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Stefanie A Kane
- Department of Molecular Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Laszlo Kiss
- Department of Molecular Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Robert H Spencer
- Department of Molecular Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Jixin Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Joseph J Lynch
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Christopher P Regan
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Gary L Stump
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Bing Li
- Department of Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Rebecca White
- Department of Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Suzie Yeh
- Department of Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Christopher J Dinsmore
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Craig W Lindsley
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - George D Hartman
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| |
Collapse
|
20
|
Abstract
Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K+) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two pore domain K+ (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Here, we briefly review the characteristics of these K+ channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Physiology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany.
| | - Katja E Odening
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany; Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| |
Collapse
|
21
|
Finlay HJ, Johnson JA, Lloyd JL, Jiang J, Neels J, Gunaga P, Banerjee A, Dhondi N, Chimalakonda A, Mandlekar S, Conder ML, Sale H, Xing D, Levesque P, Wexler RR. Discovery of 5-Phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine as a Potent I Kur Inhibitor. ACS Med Chem Lett 2016; 7:831-4. [PMID: 27660686 DOI: 10.1021/acsmedchemlett.6b00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022] Open
Abstract
A new series of phenylquinazoline inhibitors of Kv 1.5 is disclosed. The series was optimized for Kv 1.5 potency, selectivity versus hERG, pharmacokinetic exposure, and pharmacodynamic potency. 5-Phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine (13k) was identified as a potent and ion channel selective inhibitor with robust efficacy in the preclinical rat ventricular effective refractory period (VERP) model and the rabbit atrial effective refractory period (AERP) model.
Collapse
Affiliation(s)
- Heather J. Finlay
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - James A. Johnson
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - John L. Lloyd
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Ji Jiang
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - James Neels
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Prashantha Gunaga
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Abhisek Banerjee
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Naveen Dhondi
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Anjaneya Chimalakonda
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Sandhya Mandlekar
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Mary Lee Conder
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Harinath Sale
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Dezhi Xing
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Paul Levesque
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| | - Ruth R. Wexler
- Departments of Discovery Chemistry, ‡Biology, and §Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
- Departments of Discovery Chemistry, ⊥Biology, and #Preclinical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center (BBRC), Bangalore 560099, India
| |
Collapse
|
22
|
Abstract
Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms of proarrhythmic effects that arise as a response to blockers of cardiac K(+) channels. The largest and chemically most diverse groups of compound targets are Kv11.1 (hERG) and Kv7.1 (KvLQT1) channels. Finally, the proarrhythmic propensity of atrial-selective K(+) blockers inhibiting Kv1.5, Kir3.1/3.4, SK, and K2P channels is discussed.
Collapse
Affiliation(s)
- Lasse Skibsbye
- Danish Arrhythmia Research Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 3 Copenhagen N DK-2200, Denmark
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Institut für Pharmakologie und Toxikologie, TU Dresden, Fetscherstrasse 74, Dresden D-01307, Germany.
| |
Collapse
|
23
|
Abstract
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
24
|
Abstract
Atrial fibrillation (AF) is associated with increased morbidity and mortality. Atrial-selective potassium (K(+)) channel blockers may represent a novel therapeutic target. The best validated atrial-specific ion currents are the acetylcholine-activated inward-rectifier K(+) current IK,ACh and ultrarapidly activating delayed-rectifier K(+) current IKur. Two-pore domain and small-conductance Ca(2+)-activated K(+) channels and Kv1.1 channels may also contribute to the atrial repolarization. We review the molecular and electrophysiologic characteristics of atrial-selective K(+) channels and their potential pathophysiologic role in AF. We summarize currently available K(+) channel blockers focusing on the most important compounds.
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, Essen 45122, Germany.
| |
Collapse
|
25
|
Hancox JC, James AF, Marrion NV, Zhang H, Thomas D. Novel ion channel targets in atrial fibrillation. Expert Opin Ther Targets 2016; 20:947-58. [DOI: 10.1517/14728222.2016.1159300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Andrew F. James
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Neil V. Marrion
- School of Physiology, Pharmacology and Neuroscience, University Walk, Bristol, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
|
27
|
Ford J, Milnes J, El Haou S, Wettwer E, Loose S, Matschke K, Tyl B, Round P, Ravens U. The positive frequency-dependent electrophysiological effects of the IKur inhibitor XEN-D0103 are desirable for the treatment of atrial fibrillation. Heart Rhythm 2015; 13:555-64. [PMID: 26455450 PMCID: PMC4768384 DOI: 10.1016/j.hrthm.2015.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/11/2022]
Abstract
Background Selective inhibitors of Kv1.5 channels are being developed for the treatment of atrial fibrillation (AF). Objectives The purpose of this study was to investigate the effects of the highly selective Kv1.5 inhibitor XEN-D0103 on human atrial action potentials (APs) at high excitation rates and to assess safety. Methods Intracellular APs (stimulation rates 1–5 Hz) were measured in right atrial trabeculae from patients in sinus rhythm (SR), chronic AF (cAF; AF of >6 months duration), and paroxysmal AF (pAF). The safety and tolerability of XEN-D0103 were tested in a double-blind, randomized, placebo-controlled phase 1 study. Results Depending on its concentration, XEN-D0103 elevated the plateau potential. At 1 Hz, XEN-D0103 (3 µM) shortened action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in SR preparations, but prolonged these parameters in cAF preparations. In SR and pAF preparations, the shortening effects on APD90 and ERP turned into prolongation at high rates. In cAF trabeculae, XEN-D0103 prolonged APD90 and ERP at 2 and 3 Hz. At high rates, more SR and pAF preparations failed to capture excitation in the presence of the drug than in its absence. XEN-D0103 (10 µM) did not significantly affect human ventricular APs. Even with plasma concentrations reaching 7000 ng/mL, XEN-D0103 did not increase ∆∆QTcF (QT interval corrected by the Fridericia formula) in the analysis of electrocardiograms of healthy volunteers, and no subjects receiving an active treatment had a QT or QTcF interval >450 ms, or increase in QTcF from baseline >30 ms. Conclusion APD prolongation and suppression of APs by XEN-D0103 at high stimulation rates in SR and pAF tissue, but not cAF, could be of therapeutic benefit for reducing AF burden. This concept needs to be confirmed in clinical trials.
Collapse
Affiliation(s)
- John Ford
- Xention Ltd, Cambridge, United Kingdom
| | | | | | - Erich Wettwer
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Simone Loose
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Klaus Matschke
- Clinic for Cardiac Surgery, Heart Center Dresden, Dresden, Germany
| | - Benoit Tyl
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden, Germany.
| |
Collapse
|
28
|
Abstract
Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype.
Collapse
|
29
|
Turnow K, Metzner K, Cotella D, Morales MJ, Schaefer M, Christ T, Ravens U, Wettwer E, Kämmerer S. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito. Basic Res Cardiol 2015; 110:5. [PMID: 25600224 DOI: 10.1007/s00395-014-0457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 11/21/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
The sustained component of the K(+) outward current in human atrial myocytes is believed to be due to the slowly inactivating ultra-rapid potassium current I Kur and not to the fast inactivating transient outward current Ito. Here we provide evidence for contribution of Ito to this late current due to the effects of dipeptidyl peptidase-like protein (DPP) 10 (DPP10a) interacting with Kv4.3 channels. We studied the late current component of Ito in human atrial myocytes and CHO cells co-expressing Kv4.3 or Kv4.3/KChIP2 (control) and DPP proteins using voltage-clamp technique and a pharmacological approach. A voltage dependent and slowly inactivating late current (43% of peak amplitude) could be observed in atrial myocytes. We found a similar current in CHO cells expressing Kv4.3/KChIP2 + DPP10a, but not in cells co-expressing Kv4.3 + DPP or Kv4.3/KChIP2 + DPP6-S. Assuming that DPP10a influences atrial Ito, we detected DPP10 expression of three alternatively spliced mRNAs, DPP10 protein and colocalization of Kv4.3 and DPP10 proteins in human atrial myocytes. DPP10a did not affect properties of expressed Kv1.5 excluding a contribution to the sustained IKur in atrial cells. To test for the contribution of Kv4-based Ito on sustained K(+) outward currents in human atrial myocytes, we used 4-AP to block IKur, in combination with Heteropoda toxin 2 to block Kv4 channels. We could clearly separate an Ito fraction of about 19% contributing to the late current in atrial myocytes. Thus, the interaction of DPP10a, expressed in human atrium, with Kv4.3 channels generates a sustained current component of Ito, which may affect late repolarization phase of atrial action potentials.
Collapse
Affiliation(s)
- K Turnow
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yu J, Park MH, Jo SH. Inhibitory effects of cortisone and hydrocortisone on human Kv1.5 channel currents. Eur J Pharmacol 2014; 746:158-66. [PMID: 25449034 DOI: 10.1016/j.ejphar.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 01/23/2023]
Abstract
Glucocorticoids are the primary hormones that respond to stress and protect organisms from dangerous situations. The glucocorticoids hydrocortisone and its dormant form, cortisone, affect the cardiovascular system with changes such as increased blood pressure and cardioprotection. Kv1.5 channels play a critical role in the maintenance of cellular membrane potential and are widely expressed in pancreatic β-cells, neurons, myocytes, and smooth muscle cells of the pulmonary vasculature. We examined the electrophysiological effects of both cortisone and hydrocortisone on human Kv1.5 channels expressed in Xenopus oocytes using a two-microelectrode voltage clamp technique. Both cortisone and hydrocortisone rapidly and irreversibly suppressed the amplitude of Kv1.5 channel current with IC50 values of 50.2±4.2μM and 33.4±3.2μM, respectively, while sustained the current trace shape of Kv1.5 current. The inhibitory effect of cortisone on Kv1.5 decreased progressively from -10mV to +30mV, while hydrocortisone׳s inhibition of the channel did not change across the same voltage range. Both cortisone and hydrocortisone blocked Kv1.5 channel currents in a non-use-dependent manner and neither altered the channel׳s steady-state activation or inactivation curves. These results show that cortisone and hydrocortisone inhibited Kv1.5 channel currents differently, and that Kv1.5 channels were more sensitive to hydrocortisone than to cortisone.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Mi-Hyeong Park
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
31
|
Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, Husti Z, Juhasz V, Klausz G, Pap R, Saghy L, Varro A, Dolinsky V, Wang S, Rauniyar V, Hall D, Dyck JR, Light PE. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol 2014; 171:92-106. [PMID: 24102184 DOI: 10.1111/bph.12409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC₅₀ of 0.36 and 0.11 μmol·L(-1) respectively. C1 inhibited I(KACh)(IC₅₀ of 1.9 μmol·L(-1)) and the Na(v)1.5 sodium channel current (IC₅₀s of 3 and 1 μmol·L(-1) for peak and late components respectively). C1 (1 μmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.
Collapse
Affiliation(s)
- Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
33
|
Wettwer E, Terlau H. Pharmacology of voltage-gated potassium channel Kv1.5--impact on cardiac excitability. Curr Opin Pharmacol 2014; 15:115-21. [PMID: 24632326 DOI: 10.1016/j.coph.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/24/2023]
Abstract
Voltage activated potassium (Kv) channels are intensely investigated targets within the pharmacological strategies to treat cardiac arrhythmia. For atrial fibrillation (AF) substances inhibiting the ultra rapid outward rectifying Kv current (IKur) and its underlying Kv1.5 channel have been developed. Here we describe potential limitations of this approach with respect to critical parameters of Kv channel pharmacology. In healthy tissue IKur/Kv1.5 inhibition can unexpectedly lead to action potential shortening with corresponding arrhythmogenic effects. In tissue with chronic AF, electrical remodeling occurs which is accompanied with changes in ion channel expression and composition. As a consequence atrial tissue exhibits a different pharmacological fingerprint. New strategies to obtain more mechanistic insight into drug target interaction are needed for better understanding the pharmacological potential of IKur/Kv1.5 inhibition for AF treatment.
Collapse
Affiliation(s)
- Erich Wettwer
- Department of Pharmacology and Toxicology, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Heinrich Terlau
- Institute of Physiology, University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany.
| |
Collapse
|
34
|
Loose S, Mueller J, Wettwer E, Knaut M, Ford J, Milnes J, Ravens U. Effects of IKur blocker MK-0448 on human right atrial action potentials from patients in sinus rhythm and in permanent atrial fibrillation. Front Pharmacol 2014; 5:26. [PMID: 24624083 PMCID: PMC3940943 DOI: 10.3389/fphar.2014.00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/12/2014] [Indexed: 11/30/2022] Open
Abstract
Selective blockers of the Kv1.5 channel have been developed for the treatment of atrial fibrillation (AF), but little is known how these atrial-selective drugs affect human action potentials (APs). Therefore we have investigated the Kv1.5 blocker MK-0448 (N-{6-[(1S)-1-(4-fluorophenyl)-2,2-di(pyridin-3-yl)ethyl]pyridin-2-yl}methanesulfon- amide) in right atrial trabeculae from patients in sinus rhythm (SR), permanent AF (>6 months), and intermittent AF. MK-0448 blocked Kv1.5 current in an expression system and concentration-dependently elevated the plateau phase of atrial APs. In SR preparations stimulated at 1 Hz, MK-0448 (3 μM) shortened action potential duration at 90% of repolarization (APD90) and effective refractory period (ERP), but in permanent AF preparations, MK-0448 prolonged APD90 and ERP. The effects of MK-0448 in intermittent AF resembled those in SR preparations. Block of IKs is probably more prominent in AF because of reduced repolarization reserve due to AF-induced remodeling.
Collapse
Affiliation(s)
- Simone Loose
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Judith Mueller
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Erich Wettwer
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Michael Knaut
- Clinic for Cardiac Surgery, Heart Center Dresden Dresden, Germany
| | | | | | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| |
Collapse
|
35
|
Ravens U. [New developments in the antiarrhythmic therapy of atrial fibrillation]. Herzschrittmacherther Elektrophysiol 2014; 25:41-46. [PMID: 24496483 DOI: 10.1007/s00399-014-0302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Atrial fibrillation often affects elderly people with cardiovascular disease and takes a progressive course with increasing resistance to treatment. For the latter, electrical and structural changes (remodelling) seem to be responsible that are directly related to the high excitatory rate in the atria. Therapeutic strategies for atrial fibrillation consist of (i) treating the underlying cardiovascular disease, (ii) re-establishing sinus rhythm and (iii) reducing ventricular rate. Rapid pharmacological or electrical cardioversion is expected to prevent remodelling. Classical antiarrhythmic drugs are notoriously ineffective and burdened with serious cardiac and extracardiac side effects so that there is an urgent need for effective and safe novel compounds. In this review the three recently introduced drugs dronedarone, vernakalant and ranolazine are discussed with respect to the use in atrial fibrillation. Other new antiarrhythmic agents are still in the developmental phase and aim at atria-selective mechanisms thereby excluding ventricular proarrhythmic effects. The mechanisms of action will be discussed in the context of the present understanding of the pathophysiology of onset and maintenance of atrial fibrillation.
Collapse
Affiliation(s)
- Ursula Ravens
- Medizinische Fakultät Carl Gustav Carus, Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland,
| |
Collapse
|
36
|
Schumacher-Bass SM, Vesely ED, Zhang L, Ryland KE, McEwen DP, Chan PJ, Frasier CR, McIntyre JC, Shaw RM, Martens JR. Role for myosin-V motor proteins in the selective delivery of Kv channel isoforms to the membrane surface of cardiac myocytes. Circ Res 2014; 114:982-92. [PMID: 24508725 DOI: 10.1161/circresaha.114.302711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- From the Department of Pharmacology, University of Michigan, Ann Arbor (S.M.S.-B., E.D.V., L.Z., K.E.R., D.P.M., C.R.F., J.C.M., J.R.M.); Cardiovascular Research Institute Robin Shaw, Department of Medicine, University of California, San Francisco (P.J.C.); and Cedars-Sinai Medical Center, Los Angeles, CA (R.M.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Human electrophysiological and pharmacological properties of XEN-D0101: a novel atrial-selective Kv1.5/IKur inhibitor. J Cardiovasc Pharmacol 2013; 61:408-15. [PMID: 23364608 DOI: 10.1097/fjc.0b013e31828780eb] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human electrophysiological and pharmacological properties of XEN-D0101 were evaluated to assess its usefulness for treating atrial fibrillation (AF). XEN-D0101 inhibited Kv1.5 with an IC50 of 241 nM and is selective over non-target cardiac ion channels (IC50 Kv4.3, 4.2 μM; hERG, 13 μM; activated Nav1.5, >100 μM; inactivated Nav1.5, 34 μM; Kir3.1/3.4, 17 μM; Kir2.1, >>100 μM). In atrial myocytes from patients in sinus rhythm (SR) and chronic AF, XEN-D0101 inhibited non-inactivating outward currents (Ilate) with IC50 of 410 and 280 nM, respectively, and peak outward currents (Ipeak) with IC50 of 806 and 240 nM, respectively. Whereas Ilate is mainly composed of IKur, Ipeak consists of IKur and Ito. Therefore, the effects on Ito alone were estimated from a double-pulse protocol where IKur was inactivated (3.5 µM IC50 in SR and 1 µM in AF). Thus, inhibition of Ipeak is because of IKur reduction and not Ito. XEN-D0101 significantly prolonged the atrial action potential duration at 20%, 50%, and 90% of repolarization (AF tissue only) and significantly elevated the atrial action potential plateau phase and increased contractility (SR and AF tissues) while having no effect on human ventricular action potentials. In healthy volunteers, XEN-D0101 did not significantly increase baseline- and placebo-adjusted QTc up to a maximum oral dose of 300 mg. XEN-D0101 is a Kv1.5/IKur inhibitor with an attractive atrial-selective profile.
Collapse
|
38
|
|
39
|
Abstract
New antiarrhythmic drugs for treatment of atrial fibrillation should ideally be atrial selective in order to avoid pro-arrhythmic effects in the ventricles. Currently recognized atrial selective targets include atrial Nav1.5 channels, Kv1.5 channels and constitutively active Kir3.1/3.4 channels, each of which confers atrial selectivity by different mechanisms. Na(+) channel blockers with potential- and frequency-dependent action preferentially suppress atrial fibrillation because of the high excitation rate and less negative atrial resting potential, which promote drug binding in atria. Kv1.5 channels are truly atrial selective because they do not conduct repolarizing current IKur in ventricles. Constitutively active IK,ACh is predominantly observed in remodelled atria from patients in permanent atrial fibrillation (AF). A lot of effort has been invested to detect compounds which will selectively block Kir3.1/Kir3.4 in their remodelled constitutively active form. Novel drugs which have been and are being developed aim at atrial-selective targets. Vernakalant and ranolazine which mainly block atrial Na(+) channels are clinically effective. Newly designed selective IKur blockers and IK,ACh blockers are effective in animal models; however, clinical benefit in converting AF into sinus rhythm (SR) or reducing AF burden remains to be demonstrated. In conclusion, atrial-selective antiarrhythmic agents have a lot of potential, but a long way to go.
Collapse
Affiliation(s)
- Ursula Ravens
- U. Ravens: Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
40
|
Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol 2013; 162:1-58. [PMID: 21987061 DOI: 10.1007/112_2011_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.
Collapse
|
41
|
Finlay HJ, Jiang J, Caringal Y, Kover A, Conder ML, Xing D, Levesque P, Harper T, Hsueh MM, Atwal K, Blanar M, Wexler R, Lloyd J. Triazolo and imidazo dihydropyrazolopyrimidine potassium channel antagonists. Bioorg Med Chem Lett 2013; 23:1743-7. [DOI: 10.1016/j.bmcl.2013.01.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
42
|
Electrophysiological Characterization and Antiarrhythmic Efficacy of the Mixed Potassium Channel-Blocking Antiarrhythmic Agent AZ13395438 In Vitro and In Vivo. J Cardiovasc Pharmacol Ther 2013; 18:290-300. [DOI: 10.1177/1074248412470512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: To examine the electrophysiological, hemodynamic, and antiarrhythmic effects of the novel antiarrhythmic agent AZ13395438. Methods: The ion channel-blocking potency of AZ13395438 was assessed in Chinese hamster ovary cells stably expressing various human cardiac ion channels and in human atrial myocytes. The in vivo electrophysiological, hemodynamic, and antiarrhythmic effects of intravenously administered AZ13395438 were examined in anesthetized rabbits, in anesthetized naive dogs, and in dogs subjected to rapid atrial pacing (RAP) for 8 weeks. Pharmacokinetic/pharmacodynamic (PKPD) modeling was applied to predict the potency of AZ13395438 in increasing atrial and ventricular refractoriness. Results: AZ13395438 potently and predominantly blocked the atrial repolarizing potassium currents IKur, IAch, and Ito in vitro. In vivo, AZ13395438 caused a concentration-dependent and selective increase in atrial refractoriness with no or small effects on ventricular refractoriness and repolarization and on hemodynamics in both rabbits and dogs. The PKPD modeling predicted unbound plasma concentrations of AZ13395438 of 0.20 ± 0.039, 0.38 ± 0.084, and 0.34 ± 0.057 µmol/L to increase the right atrial effective refractory period by 20 milliseconds in the rabbit and in the naive and the RAP dogs, respectively. In the RAP dog with atrial fibrillation (AF), AZ13395438 significantly increased AF cycle length and successfully converted AF to sinus rhythm in 12 of the 12 occasions at an unbound plasma concentration of 0.48 ± 0.076 µmol/L. During saline infusion, conversion was seen only in 4 of the 10 occasions ( P = .003 vs AZ13395438). Furthermore, AZ13395438 reduced AF inducibility by burst pacing from 100% to 25% ( P < .001). Conclusion: AZ13395438 can be characterized as a mixed potassium ion channel-blocking agent that selectively prolongs atrial versus ventricular refractoriness and shows promising antiarrhythmic efficacy in a clinically relevant animal model of AF.
Collapse
|
43
|
Pavri BB, Greenberg HE, Kraft WK, Lazarus N, Lynch JJ, Salata JJ, Bilodeau MT, Regan CP, Stump G, Fan L, Mehta A, Wagner JA, Gutstein DE, Bloomfield D. MK-0448, a Specific Kv1.5 Inhibitor. Circ Arrhythm Electrophysiol 2012; 5:1193-201. [DOI: 10.1161/circep.111.969782] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
We evaluated the viability of I
Kur
as a target for maintenance of sinus rhythm in patients with a history of atrial fibrillation through the testing of MK-0448, a novel I
Kur
inhibitor.
Methods and Results—
In vitro MK-0448 studies demonstrated strong inhibition of I
Kur
with minimal off-target activity. In vivo MK-0448 studies in normal anesthetized dogs demonstrated significant prolongation of the atrial refractory period compared with vehicle controls without affecting the ventricular refractory period. In studies of a conscious dog heart failure model, sustained atrial fibrillation was terminated with bolus intravenous MK-0448 doses of 0.03 and 0.1 mg/kg. These data led to a 2-part first-in-human study: Part I evaluated safety and pharmacokinetics, and part II was an invasive electrophysiological study in healthy subjects. MK-0448 was well-tolerated with mild adverse experiences, most commonly irritation at the injection site. During the electrophysiological study, ascending doses of MK-0448 were administered, but no increases in atrial or ventricular refractoriness were detected, despite achieving plasma concentrations in excess of 2 μmol/L. Follow-up studies in normal anesthetized dogs designed to assess the influence of autonomic tone demonstrated that prolongation of atrial refractoriness with MK-0448 was markedly attenuated in the presence of vagal nerve simulation, suggesting that the effects of I
Kur
blockade on atrial repolarization may be negated by enhanced parasympathetic neural tone.
Conclusions—
The contribution of I
Kur
to human atrial electrophysiology is less prominent than in preclinical models and therefore is likely to be of limited therapeutic value for the prevention of atrial fibrillation.
Collapse
Affiliation(s)
- Behzad B. Pavri
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Howard E. Greenberg
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Walter K. Kraft
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Nicole Lazarus
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Joseph J. Lynch
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Joseph J. Salata
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Mark T. Bilodeau
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Christopher P. Regan
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Gary Stump
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Li Fan
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Anish Mehta
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - John A. Wagner
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - David E. Gutstein
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| | - Daniel Bloomfield
- From the Department of Medicine, Division of Cardiology (B.B.P.), and Department of Pharmacology and Experimental Therapeutics (H.E.G., W.K.K.), Thomas Jefferson University, Philadelphia, PA; and Merck Sharp and Dohme Corp, Whitehouse Station, NJ (N.L., J.J.L., J.J.S., M.T.B., C.P.R., G.S., L.F., A.M., J.A.W., D.E.G., D.B.)
| |
Collapse
|
44
|
Atrial-selective prolongation of refractory period with AVE0118 is due principally to inhibition of sodium channel activity. J Cardiovasc Pharmacol 2012; 59:539-46. [PMID: 22370957 DOI: 10.1097/fjc.0b013e31824e1b93] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The action of AVE0118 to prolong effective refractory period (ERP) in atria but not in ventricles is thought to be due to its inhibition of IKur. However, in nonremodeled atria, AVE0118 prolongs ERP but not action potential duration (APD70-90), which can be explained with the inhibition of sodium but not potassium channel current. ERP, APD, and the maximum rate of increase of the AP upstroke (Vmax) were measured in the canine-isolated coronary-perfused right atrial and in superfused ventricular tissue preparations. Whole-cell patch-clamp techniques were used to measure sodium channel current in HEK293 cells stably expressing SCN5A. AVE0118 (5-10 μM) prolonged ERP (P < 0.001) but not APD70 and decreased Vmax (by 15%, 10 μM, P < 0.05; n = 10 for each). Ventricular ERP, APD90, and Vmax were not changed significantly by 10 μM AVE0118 (all P = ns; n = 7). AVE0118 effectively suppressed acetylcholine-mediated persistent atrial fibrillation. AVE0118 (10 μM) reduced peak current amplitude of SCN5A-WT current by 36.5% ± 6.6% (P < 0.01; n = 7) and shifted half-inactivation voltage (V0.5) of the steady-state inactivation curve from -89.9 ± 0.5 to -96.0 ± 0.9 mV (P < 0.01; n = 7). Our data suggest that AVE0118-induced prolongation of atrial, but not ventricular ERP, is due largely to atrial-selective depression of sodium channel current, which likely contributes to the effectiveness of AVE0118 to suppress atrial fibrillation.
Collapse
|
45
|
Svoboda LK, Reddie KG, Zhang L, Vesely ED, Williams ES, Schumacher SM, O'Connell RP, Shaw R, Day SM, Anumonwo JM, Carroll KS, Martens JR. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. Circ Res 2012; 111:842-53. [PMID: 22843785 DOI: 10.1161/circresaha.111.263525] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE Kv1.5 (KCNA5) is expressed in the heart, where it underlies the I(Kur) current that controls atrial repolarization, and in the pulmonary vasculature, where it regulates vessel contractility in response to changes in oxygen tension. Atrial fibrillation and hypoxic pulmonary hypertension are characterized by downregulation of Kv1.5 protein expression, as well as with oxidative stress. Formation of sulfenic acid on cysteine residues of proteins is an important, dynamic mechanism for protein regulation under oxidative stress. Kv1.5 is widely reported to be redox-sensitive, and the channel possesses 6 potentially redox-sensitive intracellular cysteines. We therefore hypothesized that sulfenic acid modification of the channel itself may regulate Kv1.5 in response to oxidative stress. OBJECTIVE To investigate how oxidative stress, via redox-sensitive modification of the channel with sulfenic acid, regulates trafficking and expression of Kv1.5. METHODS AND RESULTS Labeling studies with the sulfenic acid-specific probe DAz and horseradish peroxidase-streptavidin Western blotting demonstrated a global increase in sulfenic acid-modified proteins in human patients with atrial fibrillation, as well as sulfenic acid modification to Kv1.5 in the heart. Further studies showed that Kv1.5 is modified with sulfenic acid on a single COOH-terminal cysteine (C581), and the level of sulfenic acid increases in response to oxidant exposure. Using live-cell immunofluorescence and whole-cell voltage-clamping, we found that modification of this cysteine is necessary and sufficient to reduce channel surface expression, promote its internalization, and block channel recycling back to the cell surface. Moreover, Western blotting demonstrated that sulfenic acid modification is a trigger for channel degradation under prolonged oxidative stress. CONCLUSIONS Sulfenic acid modification to proteins, which is elevated in diseased human heart, regulates Kv1.5 channel surface expression and stability under oxidative stress and diverts channel from a recycling pathway to degradation. This provides a molecular mechanism linking oxidative stress and downregulation of channel expression observed in cardiovascular diseases.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109-5632, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Finlay HJ, Lloyd J, Vaccaro W, Kover A, Yan L, Bhave G, Prol J, Huynh T, Bhandaru R, Caringal Y, DiMarco J, Gan J, Harper T, Huang C, Conder ML, Sun H, Levesque P, Blanar M, Atwal K, Wexler R. Discovery of ((S)-5-(Methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4,7-dihydropyrazolo[1,5-a]pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl)pyrrolidin-1-yl)methanone As a Potent and Selective IKur Inhibitor. J Med Chem 2012; 55:3036-48. [DOI: 10.1021/jm201386u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heather J. Finlay
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - John Lloyd
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Wayne Vaccaro
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Alexander Kover
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Lin Yan
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Gauri Bhave
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Joseph Prol
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Tram Huynh
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Rao Bhandaru
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Yolanda Caringal
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - John DiMarco
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Jinping Gan
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Tim Harper
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Christine Huang
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Mary Lee Conder
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Huabin Sun
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Paul Levesque
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Michael Blanar
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Karnail Atwal
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| | - Ruth Wexler
- Departments of Discovery Chemistry, ‡Crystallography, §Biology and ∥Preclinical Candidate
Optimization, Bristol-Myers Squibb, Research and Development, P.O. Box 5400, Princeton, New Jersey
08543-5400, United States
| |
Collapse
|
47
|
Burashnikov A, Pourrier M, Gibson JK, Lynch JJ, Antzelevitch C. Rate-dependent effects of vernakalant in the isolated non-remodeled canine left atria are primarily due to block of the sodium channel: comparison with ranolazine and dl-sotalol. Circ Arrhythm Electrophysiol 2012; 5:400-8. [PMID: 22322366 DOI: 10.1161/circep.111.968305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Several clinical trials have shown that vernakalant is effective in terminating recent onset atrial fibrillation (AF). The electrophysiological actions of vernakalant are not fully understood. METHODS AND RESULTS Here we report the results of a blinded study comparing the in vitro canine atrial electrophysiological effects of vernakalant, ranolazine, and dl-sotalol. Action potential durations (APD(50,75,90)), effective refractory period (ERP), post repolarization refractoriness (PRR), maximum rate of rise of the action potential (AP) upstroke (V(max)), diastolic threshold of excitation (DTE), conduction time (CT), and the shortest S(1)-S(1) permitting 1:1 activation (S(1)-S(1)) were measured using standard stimulation and microelectrode recording techniques in isolated normal, non-remodeled canine arterially perfused left atrial preparations. Vernakalant caused variable but slight prolongation of APD(90) (P=not significant), but significant prolongation of APD(50) at 30 μmol/L and rapid rates. In contrast, ranolazine and dl-sotalol produced consistent concentration- and reverse rate-dependent prolongation of APD(90). Vernakalant and ranolazine caused rate-dependent, whereas dl-sotalol caused reverse rate-dependent, prolongation of ERP. Significant rate-dependent PRR developed with vernakalant and ranolazine, but not with dl-sotalol. Other sodium channel-mediated parameters (ie, V(max), CT, DTE, and S(1)-S(1)) also were depressed significantly by vernakalant and ranolazine, but not by dl-sotalol. Only vernakalant elevated AP plateau voltage, consistent with blockade of ultrarapid delayed rectified potassium current and transient outward potassium current. CONCLUSIONS In isolated canine left atria, the effects of vernakalant and ranolazine were characterized by use-dependent inhibition of sodium channel-mediated parameters, and those of dl-sotalol by reverse rate-dependent prolongation of APD(90) and ERP. This suggests that during the rapid activation rates of AF, the I(Na) blocking action of the mixed ion channel blocker vernakalant takes prominence. This mechanism may explain vernakalant's anti-AF efficacy.
Collapse
|
48
|
Burashnikov A, Antzelevitch C. Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther 2011; 132:300-13. [PMID: 21867730 PMCID: PMC3205214 DOI: 10.1016/j.pharmthera.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF.
Collapse
|
49
|
Wu HJ, Wu W, Sun HY, Qin GW, Wang HB, Wang P, Yalamanchili HK, Wang J, Tse HF, Lau CP, Vanhoutte PM, Li GR. Acacetin causes a frequency- and use-dependent blockade of hKv1.5 channels by binding to the S6 domain. J Mol Cell Cardiol 2011; 51:966-73. [PMID: 21906601 DOI: 10.1016/j.yjmcc.2011.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/01/2011] [Accepted: 08/21/2011] [Indexed: 11/18/2022]
Abstract
We have demonstrated that the natural flavone acacetin selectively inhibits ultra-rapid delayed rectifier potassium current (I(Kur)) in human atria. However, molecular determinants of this ion channel blocker are unknown. The present study was designed to investigate the molecular determinants underlying the ability of acacetin to block hKv1.5 channels (coding I(Kur)) in human atrial myocytes using the whole-cell patch voltage-clamp technique to record membrane current in HEK 293 cells stably expressing the hKv1.5 gene or transiently expressing mutant hKv1.5 genes generated by site-directed mutagenesis. It was found that acacetin blocked hKv1.5 channels by binding to both closed and open channels. The blockade of hKv1.5 channels by acacetin was use- and frequency-dependent, and the IC(50) of acacetin for inhibiting hKv1.5 was 3.5, 3.1, 2.9, 2.1, and 1.7μM, respectively, at 0.2, 0.5, 1, 3, and 4Hz. The mutagenesis study showed that the hKv1.5 mutants V505A, I508A, and V512A in the S6-segment remarkably reduced the channel blocking properties by acacetin (IC(50), 29.5μM for V505A, 19.1μM for I508A, and 6.9μM for V512A). These results demonstrate the novel information that acacetin mainly blocks open hKv1.5 channels by binding to their S6 domain. The use- and rate-dependent blocking of hKv1.5 by acacetin is beneficial for anti-atrial fibrillation.
Collapse
Affiliation(s)
- Hui-Jun Wu
- Department and Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ravens U, Christ T. Atrial-selective drugs for treatment of atrial fibrillation. Herzschrittmacherther Elektrophysiol 2011; 21:217-21. [PMID: 21082185 DOI: 10.1007/s00399-010-0088-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atrial fibrillation (AF) is accompanied by a high risk of thromboembolic complications necessitating anticoagulation therapy. Arrhythmias have a high tendency to become persistent. Catheter ablation techniques are highly effective in the treatment of AF; however, these procedures are far too costly and time-consuming for the routine treatment of large numbers of AF patients. Moreover, many patients prefer drug treatment although conventional antiarrhythmic drugs are moderately effective and are burdened with severe cardiac and noncardiac side effects. New antifibrillatory drugs developed for the treatment of AF include multichannel blockers with a high degree of atrial selectivity. The rationale of this approach is to induce antiarrhythmic actions only in the atria without conferring proarrhythmic effects in the ventricles.Atrial selective drug action is expected with ion channel blockers targeting ion channels that are expressed predominantly in the atria, i.e., Kv1.5 (I(Kur)), or Kir 3.1 and Kir 3.4 (I(K,ACh)). Na(+) channel blockers that dissociate rapidly may exert atrial selectivity because of subtle differences in atrial and ventricular action potentials. Finally, atrial-selective targets may evolve due to disease-specific processes (e.g., rate-dependent Na(+) channel blockers, selective drugs against constitutively active I(K,ACh) channels).
Collapse
Affiliation(s)
- U Ravens
- Department of Pharmacology and Toxicology, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | | |
Collapse
|