1
|
Joyce JB, Grant CW, Liu D, MahmoudianDehkordi S, Kaddurah-Daouk R, Skime M, Biernacka J, Frye MA, Mayes T, Carmody T, Croarkin PE, Wang L, Weinshilboum R, Bobo WV, Trivedi MH, Athreya AP. Multi-omics driven predictions of response to acute phase combination antidepressant therapy: a machine learning approach with cross-trial replication. Transl Psychiatry 2021; 11:513. [PMID: 34620827 PMCID: PMC8497535 DOI: 10.1038/s41398-021-01632-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Combination antidepressant pharmacotherapies are frequently used to treat major depressive disorder (MDD). However, there is no evidence that machine learning approaches combining multi-omics measures (e.g., genomics and plasma metabolomics) can achieve clinically meaningful predictions of outcomes to combination pharmacotherapy. This study examined data from 264 MDD outpatients treated with citalopram or escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) and 111 MDD outpatients treated with combination pharmacotherapies in the Combined Medications to Enhance Outcomes of Antidepressant Therapy (CO-MED) study to predict response to combination antidepressant therapies. To assess whether metabolomics with functionally validated single-nucleotide polymorphisms (SNPs) improves predictability over metabolomics alone, models were trained/tested with and without SNPs. Models trained with PGRN-AMPS' and CO-MED's escitalopram/citalopram patients predicted response in CO-MED's combination pharmacotherapy patients with accuracies of 76.6% (p < 0.01; AUC: 0.85) without and 77.5% (p < 0.01; AUC: 0.86) with SNPs. Then, models trained solely with PGRN-AMPS' escitalopram/citalopram patients predicted response in CO-MED's combination pharmacotherapy patients with accuracies of 75.3% (p < 0.05; AUC: 0.84) without and 77.5% (p < 0.01; AUC: 0.86) with SNPs, demonstrating cross-trial replication of predictions. Plasma hydroxylated sphingomyelins were prominent predictors of treatment outcomes. To explore the relationship between SNPs and hydroxylated sphingomyelins, we conducted multi-omics integration network analysis. Sphingomyelins clustered with SNPs and metabolites related to monoamine neurotransmission, suggesting a potential functional relationship. These results suggest that integrating specific metabolites and SNPs achieves accurate predictions of treatment response across classes of antidepressants. Finally, these results motivate functional investigation into how sphingomyelins might influence MDD pathophysiology, antidepressant response, or both.
Collapse
Affiliation(s)
- Jeremiah B. Joyce
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Caroline W. Grant
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Duan Liu
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Siamak MahmoudianDehkordi
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC USA
| | - Rima Kaddurah-Daouk
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC USA
| | - Michelle Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Joanna Biernacka
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Mark A. Frye
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Taryn Mayes
- grid.267313.20000 0000 9482 7121Peter O’Donnell Jr. Brain Institute and The Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Thomas Carmody
- grid.267313.20000 0000 9482 7121Department of Population and Data Sciences at the University of Texas Southwestern Medical Center in Dallas, Dallas, TX USA
| | - Paul E. Croarkin
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Liewei Wang
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Richard Weinshilboum
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - William V. Bobo
- grid.417467.70000 0004 0443 9942Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL USA
| | - Madhukar H. Trivedi
- grid.267313.20000 0000 9482 7121Peter O’Donnell Jr. Brain Institute and The Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Arjun P. Athreya
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
2
|
Verboom MC, Kloth JSL, Swen JJ, Sleijfer S, Reyners AKL, Steeghs N, Mathijssen RHJ, Gelderblom H, Guchelaar HJ. Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors. THE PHARMACOGENOMICS JOURNAL 2019; 19:473-479. [PMID: 30713339 DOI: 10.1038/s41397-019-0079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022]
Abstract
Imatinib has a mild toxicity profile, although severe adverse events may develop. In this pharmacogenetic pathway analysis the need for dose reduction and cessation of therapy was tested for an association with single nucleotide polymorphisms (SNPs) in genes related to imatinib pharmacology. Retrospective data from 315 patients with a gastrointestinal stromal tumor who received imatinib 400 mg o.d. was associated with 36 SNPs. SNPs that showed a trend in univariate testing were tested in a multivariate model with clinical factors and correction for multiple testing was performed. Dose reduction was associated with carriership of the A-allele in rs2231137 in ABCG2 (OR 7.35, p = 0.0002) and two C-alleles in rs762551 in CYP1A2 (OR 7.12, p = 0.001). Results remained significant after correction for multiple testing. Therapy cessation did not show an association with any of the tested SNPs. These results may help identifying patients at increased risk for toxicity who could benefit from intensified follow-up.
Collapse
Affiliation(s)
- Michiel C Verboom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jacqueline S L Kloth
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, Antoni van Leeuwenhoek - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Abstract
OBJECTIVE Promoter single-nucleotide polymorphisms (SNPs) of the ABCB1 gene, encoding the placental efflux transporter P-glycoprotein, can affect its expression and alter xenobiotic transfer from the maternal to the fetal circulation. Because SNPs are arranged in specific combinations as defined haplotypes, the aims of this study were to: (i) determine the placental haplotype structure of the ABCB1 promoter and (ii) determine the differential effect of these haplotypes on placental ABCB1 promoter activity. MATERIALS AND METHODS DNA samples from 100 healthy placentas were PCR-amplified and sequenced to identify existing SNPs in the proximal ABCB1 promoter. The haplotype structure encompassing these SNPs was inferred by PHASE analysis. Luciferase reporter constructs representing these haplotypes were generated and transfected into human placental 3A cells and their effect on ABCB1 promoter activity was determined using a dual-luciferase assay. RESULTS We identified 12 ABCB1 promoter SNPs. These SNPs were predicted by PHASE to segregate into 28 haplotypes with frequencies ranging between 0.019 and 0.88. We found 12 of these haplotypes in our population in addition to two haplotypes not predicted by PHASE. We also generated two haplotypes to determine individual SNP effects for a total of 16 studied. Compared with the ancestral haplotype, three haplotypes significantly up-regulated (107-266% increase; P<0.05), one significantly down-regulated (95.4% decrease; P<0.01), and 12 had no statistically significant effect on ABCB1 promoter activity. DISCUSSION AND CONCLUSION Our data show that the effect of SNPs on promoter activity depends on their presence in a specific haplotype. This indicates that haplotypes, rather than individual SNPs, could play a significant role in regulating placental P-glycoprotein expression and affect placental transfer and fetal exposure to xenobiotics.
Collapse
|
4
|
Saiz-Rodríguez M, Belmonte C, Derqui-Fernández N, Cabaleiro T, Román M, Ochoa D, Talegón M, Ovejero-Benito MC, Abad-Santos F. Pharmacogenetics of trazodone in healthy volunteers: association with pharmacokinetics, pharmacodynamics and safety. Pharmacogenomics 2017; 18:1491-1502. [DOI: 10.2217/pgs-2017-0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim was to evaluate the effect of polymorphisms in metabolizing enzymes and transporters on the pharmacokinetics, pharmacodynamics and adverse effects of trazodone in healthy volunteers. Materials & methods: 36 healthy volunteers receiving a single 100-mg oral dose of trazodone were genotyped for 11 variants in CYP3A4, CYP3A5, CYP2D6 and ABCB1 by real-time PCR. Plasma concentrations were measured using liquid chromatography-tandem mass spectrometry method. Results & conclusion: Sex affected the pharmacokinetics of trazodone with higher clearance in women. Polymorphisms in ABCB1, but not in CYP3A or CYP2D6, influenced trazodone pharmacokinetics. Trazodone decreased blood pressure and prolonged the corrected QT interval interval. CYP2D6 and ABCB1 polymorphisms were associated with the incidence of dizziness and prolonged corrected QT interval, respectively. Subjects with adverse drug reactions had lower concentrations of trazodone suggesting its metabolite (m-chlorophenylpiperazine) could be responsible for these effects.
Collapse
Affiliation(s)
- Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Carmen Belmonte
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Nieves Derqui-Fernández
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Teresa Cabaleiro
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María Talegón
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Genetic polymorphisms as predictive biomarker of survival in patients with gastrointestinal stromal tumors treated with sunitinib. THE PHARMACOGENOMICS JOURNAL 2017; 18:49-55. [DOI: 10.1038/tpj.2016.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
6
|
Abstract
P-glycoprotein (P-gp), the gene product of ABCB1, is a drug transporter at the blood–brain barrier and could be a limiting factor for entrance of antidepressants into the brain, the target site of antidepressant action. Animal studies showed that brain concentrations of many antidepressants depend on P-gp. In humans, ABCB1 genotyping in the treatment of depression rests on the assumption that genetic variations in ABCB1 explain individual differences in antidepressant response via their effects on P-gp expression at the blood–brain barrier. High P-gp expression is hypothesized to lead to lower and often insufficient brain concentrations of P-gp substrate antidepressants. In this review, we summarize 32 studies investigating the question of whether ABCB1 polymorphisms predict clinical efficacy and/or tolerability of antidepressants in humans and evaluate the clinical application status of ABCB1 genotyping in depression treatment.
Collapse
Affiliation(s)
- Tanja Maria Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Manfred Uhr
- Clinical Laboratory, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| |
Collapse
|
7
|
Myers MJ, Martinez M, Li H, Qiu J, Troutman L, Sharkey M, Yancy HF. Influence of ABCB1 Genotype in Collies on the Pharmacokinetics and Pharmacodynamics of Loperamide in a Dose-Escalation Study. Drug Metab Dispos 2015; 43:1392-407. [DOI: 10.1124/dmd.115.063735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
|
8
|
Sike Á, Nagy E, Vedelek B, Pusztai D, Szerémy P, Venetianer A, Boros IM. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells. PLoS One 2014; 9:e84915. [PMID: 24409311 PMCID: PMC3883685 DOI: 10.1371/journal.pone.0084915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.
Collapse
Affiliation(s)
- Ádám Sike
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Enikő Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Dávid Pusztai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | | | - Anikó Venetianer
- Institute of Genetics, Biological Research Center, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- * E-mail:
| |
Collapse
|
9
|
Rhodin A, Grönbladh A, Ginya H, Nilsson KW, Rosenblad A, Zhou Q, Enlund M, Hallberg M, Gordh T, Nyberg F. Combined analysis of circulating β-endorphin with gene polymorphisms in OPRM1, CACNAD2 and ABCB1 reveals correlation with pain, opioid sensitivity and opioid-related side effects. Mol Brain 2013; 6:8. [PMID: 23402298 PMCID: PMC3602034 DOI: 10.1186/1756-6606-6-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/03/2013] [Indexed: 11/17/2022] Open
Abstract
Background Opioids are associated with wide inter-individual variability in the analgesic response and a narrow therapeutic index. This may be partly explained by the presence of single nucleotide polymorphisms (SNPs) in genes encoding molecular entities involved in opioid metabolism and receptor activation. This paper describes the investigation of SNPs in three genes that have a functional impact on the opioid response: OPRM1, which codes for the μ-opioid receptor; ABCB1 for the ATP-binding cassette B1 transporter enzyme; and the calcium channel complex subunit CACNA2D2. The genotyping was combined with an analysis of plasma levels of the opioid peptide β-endorphin in 80 well-defined patients with chronic low back pain scheduled for spinal fusion surgery, and with differential sensitivity to the opioid analgesic remifentanil. This patient group was compared with 56 healthy controls. Results The plasma β-endorphin levels were significantly higher in controls than in pain patients. A higher incidence of opioid-related side effects and sex differences was found in patients with the minor allele of the ABCB1 gene. Further, a correlation between increased opioid sensitivity and the major CACNA2D2 allele was confirmed. A tendency of a relationship between opioid sensitivity and the minor allele of OPRM1 was also found. Conclusions Although the sample cohort in this study was limited to 80 patients it appears that it was possible to observe significant correlations between polymorphism in relevant genes and various items related to pain sensitivity and opioid response. Of particular interest is the new finding of a correlation between increased opioid sensitivity and the major CACNA2D2 allele. These observations may open for improved strategies in the clinical treatment of chronic pain with opioids.
Collapse
Affiliation(s)
- Annica Rhodin
- Department of Surgical Sciences, University Hospital, Uppsala, SE 75185, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Olbromski R, Siadkowska E, Zelazowska B, Zwierzchowski L. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary. Mol Biol Rep 2012. [PMID: 23184004 PMCID: PMC3538019 DOI: 10.1007/s11033-012-2161-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them—LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C–C motif ligand 2) showed allelic expression imbalance.
Collapse
Affiliation(s)
- R Olbromski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences (IGAB PAS), Jastrzębiec, 05-552, Magdalenka, Poland.
| | | | | | | |
Collapse
|
11
|
Shou W, Wang D, Zhang K, Wang B, Wang Z, Shi J, Huang W. Gene-wide characterization of common quantitative trait loci for ABCB1 mRNA expression in normal liver tissues in the Chinese population. PLoS One 2012; 7:e46295. [PMID: 23050008 PMCID: PMC3458811 DOI: 10.1371/journal.pone.0046295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/29/2012] [Indexed: 01/11/2023] Open
Abstract
In order to comprehensively screen genetic variants leading to differential expression of the important human ABCB1 gene in the primary drug-metabolizing organ, ABCB1 mRNA expression levels were measured in 73 normal liver tissue samples from Chinese subjects. A set of Tag SNPs. were genotyped. In addition, imputation was performed within a 500 kb region around the ABCB1 gene using the reference panels of 1,000 Genome project and HapMap III. Bayesian regression was used to assess the strength of associations by compute Bayes Factors for imputed SNPs. Through imputation and linkage disequilibrium analysis, the imputed loci rs28373093, rs1002205, rs1029421, rs2285647, and rs10235835, may represent independent and strong association signals. rs28373093, a polymorphism 1.5 kb upstream from the ABCB1 transcription start site, has the strongest association. 2677 G>A/T and 3435C>T confer a clear gene-dosage effect on ABCB1 mRNA expression. The systematic characterization of gene-wide common quantitative trait loci associated with ABCB1 mRNA expression in normal liver tissues would provide the candidate markers to ABCB1-relevant clinical phenotypes in Chinese population.
Collapse
Affiliation(s)
- Weihua Shou
- Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
| | - Dazhi Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
| | - Kaiyue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
| | - Beilan Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
- * E-mail: (JXS); (WH)
| | - Wei Huang
- Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center, Shanghai, China
- * E-mail: (JXS); (WH)
| |
Collapse
|
12
|
Nothnagel M, Wolf A, Herrmann A, Szafranski K, Vater I, Brosch M, Huse K, Siebert R, Platzer M, Hampe J, Krawczak M. Statistical inference of allelic imbalance from transcriptome data. Hum Mutat 2011; 32:98-106. [PMID: 21120951 DOI: 10.1002/humu.21396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Next-generation sequencing and the availability of high-density genotyping arrays have facilitated an analysis of somatic and meiotic mutations at unprecedented level, but drawing sensible conclusions about the functional relevance of the detected variants still remains a formidable challenge. In this context, the study of allelic imbalance in intermediate RNA phenotypes may prove a useful means to elucidate the likely effects of DNA variants of unknown significance. We developed a statistical framework for the assessment of allelic imbalance in next-generation transcriptome sequencing (RNA-seq) data that requires neither an expression reference nor the underlying nuclear genotype(s), and that allows for allele miscalls. Using extensive simulation as well as publicly available whole-transcriptome data from European-descent individuals in HapMap, we explored the power of our approach in terms of both genotype inference and allelic imbalance assessment under a wide range of practically relevant scenarios. In so doing, we verified a superior performance of our methodology, particularly at low sequencing coverage, compared to the more simplistic approach of completely ignoring allele miscalls. Because the proposed framework can be used to assess somatic mutations and allelic imbalance in one and the same set of RNA-seq data, it will be particularly useful for the analysis of somatic genetic variation in cancer studies.
Collapse
Affiliation(s)
- Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
L'Huillier AG, Ing Lorenzini K, Crisinel PA, Rebsamen MC, Fluss J, Korff CM, Barbe RP, Siegrist CA, Dayer P, Posfay-Barbe KM, Desmeules JA. ABCB1 polymorphisms and neuropsychiatric adverse events in oseltamivir-treated children during influenza H1N1/09 pandemia. Pharmacogenomics 2011; 12:1493-501. [PMID: 21902503 DOI: 10.2217/pgs.11.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS To examine the safety profile of oseltamivir in children and evaluate the impact of P-glycoprotein polymorphisms on the incidence of neuropsychiatric adverse events (NPAE) in oseltamivir-treated children. SUBJECTS & METHODS This prospective cohort study was conducted in our tertiary care pediatric hospital (University Hospitals of Geneva, Switzerland) during the H1N1 pandemia, between 1 October 2009 and 31 January 2010. All newborn to 18 year-old patients presenting at the emergency department with a flu-like illness were eligible for inclusion. Adverse events were systematically recorded by pediatricians and/or by parents at home using a diary card, with a 30-day follow-up period. The causality assessment of oseltamivir in NPAE was performed by two clinical pharmacologists. After informed consent, enrolled patients were also genotyped for ABCB1 3435C>T (rs1045642) and 2677G>T/A (rs2032582) polymorphisms. RESULTS Among the 42 H1N1-infected, oseltamivir-treated children who were genotyped for ABCB1 3435C>T and 2677G>T/A variants, 36% presented NPAE. When examining the association between the diplotype and the development of NPAE, we observed that the frequency of NPAE displayed a 'genotype-trend effect' with the variant and the wild-type subgroups at the two far ends. A total of 11% of the 2677GG-3435CC individuals (wild-type homozygous) presented NPAE, compared with 39% of the individuals being heterozygous for at least one variant allele and 67% of the 2677TT-3435TT individuals (homozygous variants) (p = 0.149, nonsignificant). CONCLUSION These observations suggest a potential influence of ABCB1 polymorphisms in oseltamivir-related NPAE, maybe as a result of an enhanced permeability of the blood-brain barrier to oseltamivir
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Geneva Medical Faculty & University Hospitals of Geneva, Department of Pediatrics, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics 2011; 20:467-75. [PMID: 20555295 DOI: 10.1097/fpc.0b013e32833b593a] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Variation in the ATP-binding cassette, subfamily B, member 1 transporter (ABCB1) (multidrug-resistance gene 1) gene has been investigated as a predictor of response to treatment with a variety of medications such as antiarrhythmics, chemotherapeutic agents, anti-HIV medications, and some psychotropics. The ABCB1 gene product, P-glycoprotein, affects the transport of drugs out of many cell types, including endothelial cells at the blood-brain barrier. We sought to determine if ABCB1 polymorphisms predict response to antidepressant treatment in geriatric patients. METHODS We compared the effects of ABCB1 genetic variation on the therapeutic response to paroxetine, a P-glycoprotein substrate, and to mirtazapine, which is not thought to be transported by ABCB1, in a sample of 246 elderly patients with major depression treated in a clinical trial setting. A total of 15 single nucleotide polymorphisms in the ABCB1 gene were assessed in each patient. Two of these ABCB1 single nucleotide polymorphisms were earlier reported to predict treatment response in patients prescribed with P-glycoprotein substrate antidepressants. RESULTS The two earlier identified ABCB1 markers for antidepressant response predicted time to remission in our paroxetine-treated patients, but not in the mirtazapine-treated patients. These results replicate the published findings of others. If a Bonferroni correction for type I error is made, our results do not reach the criteria for statistical significance. However, the Bonferroni correction may be too conservative given the strong linkage disequilibrium among some of the markers and our aim to replicate the earlier published findings. CONCLUSION Our study provides confirmation that certain ABCB1 polymorphisms predict response to substrate medications in geriatric patients.
Collapse
|
15
|
Santibanez Koref M, Wilson V, Cartwright N, Cunnington MS, Mathers JC, Bishop DT, Curtis A, Dunlop MG, Burn J. MLH1 Differential Allelic Expression in Mutation Carriers and Controls. Ann Hum Genet 2010; 74:479-88. [DOI: 10.1111/j.1469-1809.2010.00603.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Sun C, Southard C, Witonsky DB, Olopade OI, Di Rienzo A. Allelic imbalance (AI) identifies novel tissue-specific cis-regulatory variation for human UGT2B15. Hum Mutat 2010; 31:99-107. [PMID: 19847790 PMCID: PMC2922057 DOI: 10.1002/humu.21145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Allelic imbalance (AI) is a powerful tool to identify cis-regulatory variation for gene expression. UGT2B15 is an important enzyme involved in the metabolism of multiple endobiotics and xenobiotics. In this study, we measured the relative expression of two alleles at this gene by using SNP rs1902023:G>T. An excess of the G over the T allele was consistently observed in liver (P<0.001), but not in breast (P=0.06) samples, suggesting that SNPs in strong linkage disequilibrium with G253T regulate UGT2B15 expression in liver. Seven such SNPs were identified by resequencing the promoter and exon 1, which define two distinct haplotypes. Reporter gene assays confirmed that one haplotype displayed approximately 20% higher promoter activity compared to the other major haplotype in liver HepG2 (P<0.001), but not in breast MCF-7 (P=0.540) cells. Reporter gene assays with additional constructs pointed to rs34010522:G>T and rs35513228:C>T as the cis-regulatory variants; both SNPs were also evaluated in LNCaP and Caco-2 cells. By ChIP, we showed that the transcription factor Nrf2 binds to the region spanning rs34010522:G>T in all four cell lines. Our results provide a good example for how AI can be used to identify cis-regulatory variation and gain insights into the tissue specific regulation of gene expression.
Collapse
Affiliation(s)
- Chang Sun
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | | | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | | | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Benish RL, Rodriguez B, Zimmerman PA, Mehlotra RK. Comparative description of haplotype structure and genetic diversity of MDR1 (ABCB1) in HIV-positive and HIV-negative populations. INFECTION GENETICS AND EVOLUTION 2009; 10:60-7. [PMID: 19819348 DOI: 10.1016/j.meegid.2009.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 12/22/2022]
Abstract
Human P-glycoprotein (P-gp), encoded by MDR1 (ABCB1), is an efflux transporter with a wide specificity for substrates/drugs, including HIV protease inhibitors which are commonly used in HIV/AIDS treatment. Three single nucleotide polymorphisms (SNPs) in MDR1 have been shown to affect P-gp expression and function, and may affect HIV/AIDS treatment outcome: 1236C>T [G412G, exon-12], 2677G>T/A [A893S/T, exon-21] and 3435C>T [I1145I, exon-26]. In the present study, our aims were (i) to compare the 3-SNP MDR1 haplotype structure and genetic diversity between North American HIV-positive and HIV-negative individuals belonging to four major ethnic groups and (ii) to determine whether the haplotype structure and genetic diversity observed in these ethnically admixed populations differ from that in ethnically non-admixed populations. For these aims, we analyzed a cohort of 447 HIV/AIDS patients (White [n=193], Black [n=235], Hispanic [n=17], and Asian [n=2]). Results obtained for these patients were compared with the results for (i) HIV-negative individuals (n=356) and (ii) various HapMap and Environmental Genome Project populations. We observed that the genetic characteristics of MDR1 were largely consistent between HIV-positive and HIV-negative populations, but there were striking interethnic differences in the genetic characteristics of MDR1 in both populations. Although it appeared that the genetic characteristics of MDR1 were largely consistent between ethnically admixed and non-admixed populations, genetic characterization of the admixed populations remains to be done. Thus, our results provide useful comparative insights about the genetic characteristics of MDR1 that could be extrapolated across population groups worldwide. For a meaningful interpretation of these results regarding HIV/AIDS treatment outcome, MDR1 haplotype/diplotype structure data, genetic characterization of population admixture, and polymorphisms in other relevant drug transporter and/or metabolizing enzyme genes should be considered in future clinical studies.
Collapse
Affiliation(s)
- Rebekah L Benish
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Pyrosequencing is a real-time DNA sequencing method. It is based on the transformation of pyrophosphates, released during DNA elongation by DNA polymerase, into measurable light. During DNA elongation, a single pyrophosphate molecule is released following incorporation of a single nucleotide. In the pyrosequencing reaction, released pyrophosphates are then rapidly converted by sulfurylase to adenosine triphosphate, which in turn is utilized by luciferase to produce light. Within standardized conditions, this reaction is accomplished in a few milliseconds and the light produced can be registered with a CCD camera. Therefore, it becomes possible to quantitatively measure the nucleotides incorporated. This approach has been automated in different platforms and can be used for a wide variety of applications, such as single-nucleotide polymorphism (SNP) genotyping, DNA sequencing, loss of heterozygosity analysis, and CpG methylation studies. Here we describe the entire process, focusing our attention on SNP genotyping, and giving examples of some other applications.
Collapse
Affiliation(s)
- Jose Luis Royo
- Department of Structural Genomics, Neocodex SL, Seville, Spain
| | | |
Collapse
|
19
|
Guo X, Chen XP, Cheng ZN, Luo X, Guo R, Chen L, Chen J, Chen B, Peng J, Li YJ. No effect of MDR1 C3435T polymorphism on oral pharmacokinetics of telmisartan in 19 healthy Chinese male subjects. Clin Chem Lab Med 2009; 47:38-43. [DOI: 10.1515/cclm.2009.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res 2008; 659:147-57. [PMID: 18565787 PMCID: PMC2676583 DOI: 10.1016/j.mrrev.2008.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 02/07/2023]
Abstract
The most common form of genetic variation, single nucleotide polymorphisms or SNPs, can affect the way an individual responds to the environment and modify disease risk. Although most of the millions of SNPs have little or no effect on gene regulation and protein activity, there are many circumstances where base changes can have deleterious effects. Non-synonymous SNPs that result in amino acid changes in proteins have been studied because of their obvious impact on protein activity. It is well known that SNPs within regulatory regions of the genome can result in disregulation of gene transcription. However, the impact of SNPs located in putative regulatory regions, or rSNPs, is harder to predict for two primary reasons. First, the mechanistic roles of non-coding genomic sequence remain poorly defined. Second, experimental validation of the functional consequences of rSNPs is often slow and laborious. In this review, we summarize traditional and novel methodologies for candidate rSNPs selection, in particular in silico techniques that aid in candidate rSNP selection. Additionally we will discuss molecular biological techniques that assess the impact of rSNPs on binding of regulatory machinery, as well as functional consequences on transcription. Standard techniques such as EMSA and luciferase reporter constructs are still widely used to assess effects of rSNPs on binding and gene transcription; however, these protocols are often bottlenecks in the discovery process. Therefore, we highlight novel and developing high-throughput protocols that promise to aid in shortening the process of rSNP validation. Given the large amount of genomic information generated from a multitude of re-sequencing and genome-wide SNP array efforts, future focus should be to develop validation techniques that will allow greater understanding of the impact these polymorphisms have on human health and disease.
Collapse
Affiliation(s)
- Brian N. Chorley
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Xuting Wang
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Michelle R. Campbell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Gary S. Pittman
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Maher A. Noureddine
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Douglas A. Bell
- Environmental Genomics Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| |
Collapse
|
21
|
Mosyagin I, Runge U, Schroeder HW, Dazert E, Vogelgesang S, Siegmund W, Warzok RW, Cascorbi I. Association of ABCB1 genetic variants 3435C>T and 2677G>T to ABCB1 mRNA and protein expression in brain tissue from refractory epilepsy patients. Epilepsia 2008; 49:1555-61. [PMID: 18494787 DOI: 10.1111/j.1528-1167.2008.01661.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE There is evidence from studies in rodents that P-glycoprotein (P-gp) overexpression is implicated in the causation of refractory epilepsy. Genetic variants in the human ABCB1 (MDR1) gene were shown to affect the expression levels of the transporter in various tissues and to be associated with refractory epilepsy. However, the effect of the genetic variants on the P-gp level in epileptogenic brain tissue is poorly investigated. In the present study, we examined the impact of putatively functional polymorphisms 3435C>T and 2677G>T in the ABCB1 gene on the ABCB1 mRNA expression and P-gp content in human brain tissue from epileptogenic foci of the patients with refractory epilepsy. METHODS Fresh brain tissue specimens were obtained from therapy-refractory epilepsy patients during neurosurgery of the epileptogenic focus. We determined the ABCB1 mRNA expression in 23 samples using 5' exonuclease-based real-time polymerase chain reaction (PCR) as well as the P-gp content in 32 samples determined by immunohistochemistry, genotyping was performed by PCR/restriction fragment length polymorphism (RFLP). RESULTS There was lack of association of 3435C>T and 2677G>T as well as diplotype configurations on ABCB1 mRNA expression and P-gp content in epileptogenic brain tissues. CONCLUSIONS We cannot exclude an association of ABCB1 variants on P-gp function, but our results suggest that brain ABCB1 mRNA and protein expression is not substantially influenced by major ABCB1 genetic variants thus explaining in part results from case-control studies obtaining lack of association of ABCB1 polymorphisms to the risk of refractory epilepsy.
Collapse
Affiliation(s)
- Igor Mosyagin
- Institute of Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|