1
|
Zudeh G, Franca R, Lucafò M, Bonten EJ, Bramuzzo M, Sgarra R, Lagatolla C, Franzin M, Evans WE, Decorti G, Stocco G. PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells. Life Sci Alliance 2023; 6:e202201610. [PMID: 36596605 PMCID: PMC9811133 DOI: 10.26508/lsa.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.
Collapse
Affiliation(s)
- Giulia Zudeh
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Erik J Bonten
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Matteo Bramuzzo
- Department of Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Martina Franzin
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - William E Evans
- Department of Pharmaceutical Sciences, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Zhang L, Sarangi V, Liu D, Ho MF, Grassi AR, Wei L, Moon I, Vierkant RA, Larson NB, Lazaridis KN, Athreya AP, Wang L, Weinshilboum R. ACE2 and TMPRSS2 SARS-CoV-2 infectivity genes: deep mutational scanning and characterization of missense variants. Hum Mol Genet 2022; 31:4183-4192. [PMID: 35861636 PMCID: PMC9759330 DOI: 10.1093/hmg/ddac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 01/21/2023] Open
Abstract
The human angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) proteins play key roles in the cellular internalization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for the coronavirus disease of 2019 (COVID-19) pandemic. We set out to functionally characterize the ACE2 and TMPRSS2 protein abundance for variant alleles encoding these proteins that contained non-synonymous single-nucleotide polymorphisms (nsSNPs) in their open reading frames (ORFs). Specifically, a high-throughput assay, deep mutational scanning (DMS), was employed to test the functional implications of nsSNPs, which are variants of uncertain significance in these two genes. Specifically, we used a 'landing pad' system designed to quantify the protein expression for 433 nsSNPs that have been observed in the ACE2 and TMPRSS2 ORFs and found that 8 of 127 ACE2, 19 of 157 TMPRSS2 isoform 1 and 13 of 149 TMPRSS2 isoform 2 variant proteins displayed less than ~25% of the wild-type protein expression, whereas 4 ACE2 variants displayed 25% or greater increases in protein expression. As a result, we concluded that nsSNPs in genes encoding ACE2 and TMPRSS2 might potentially influence SARS-CoV-2 infectivity. These results can now be applied to DNA sequence data for patients infected with SARS-CoV-2 to determine the possible impact of patient-based DNA sequence variation on the clinical course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivekananda Sarangi
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela R Grassi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lixuan Wei
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Irene Moon
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert A Vierkant
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas B Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Arjun P Athreya
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA,Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA,Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Weinshilboum
- To whom correspondence should be addressed at: Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA. Tel: +1 5072842246;
| |
Collapse
|
3
|
Zhang L, Sarangi V, Ho MF, Moon I, Kalari KR, Wang L, Weinshilboum RM. SLCO1B1: Application and Limitations of Deep Mutational Scanning for Genomic Missense Variant Function. Drug Metab Dispos 2021; 49:395-404. [PMID: 33658230 PMCID: PMC8042483 DOI: 10.1124/dmd.120.000264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
SLCO1B1 (solute carrier organic anion transporter family member 1B1) is an important transmembrane hepatic uptake transporter. Genetic variants in the SLCO1B1 gene have been associated with altered protein folding, resulting in protein degradation and decreased transporter activity. Next-generation sequencing (NGS) of pharmacogenes is being applied increasingly to associate variation in drug response with genetic sequence variants. However, it is difficult to link variants of unknown significance with functional phenotypes using "one-at-a-time" functional systems. Deep mutational scanning (DMS) using a "landing pad cell-based system" is a high-throughput technique designed to analyze hundreds of gene open reading frame (ORF) missense variants in a parallel and scalable fashion. We have applied DMS to analyze 137 missense variants in the SLCO1B1 ORF obtained from the Exome Aggregation Consortium project. ORFs containing these variants were fused to green fluorescent protein and were integrated into "landing pad" cells. Florescence-activated cell sorting was performed to separate the cells into four groups based on fluorescence readout indicating protein expression at the single cell level. NGS was then performed and SLCO1B1 variant frequencies were used to determine protein abundance. We found that six variants not previously characterized functionally displayed less than 25% and another 12 displayed approximately 50% of wild-type protein expression. These results were then functionally validated by transporter studies. Severely damaging variants identified by DMS may have clinical relevance for SLCO1B1-dependent drug transport, but we need to exercise caution since the relatively small number of severely damaging variants identified raise questions with regard to the application of DMS to intrinsic membrane proteins such as organic anion transporter protein 1B1. SIGNIFICANCE STATEMENT: The functional implications of a large numbers of open reading frame (ORF) "variants of unknown significance" (VUS) in transporter genes have not been characterized. This study applied deep mutational scanning to determine the functional effects of VUS that have been observed in the ORF of SLCO1B1(s olute carrier organic anion transporter family member 1B1). Several severely damaging variants were identified, studied, and validated. These observations have implications for both the application of deep mutational scanning to intrinsic membrane proteins and for the clinical effect of drugs and endogenous compounds transported by SLCO1B1.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Vivekananda Sarangi
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Irene Moon
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (L.Z., M.-F.H., I.M., L.W., R.M.W.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (V.S., K.R.K.), and Mayo Clinic Center for Individualized Medicine (L.W., R.M.W.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Wang T, Du H, Ma J, Shen L, Wei M, Zhao X, Chen L, Li M, Li G, Xing Q, He L, Qin S. Functional characterization of the chlorzoxazone 6-hydroxylation activity of human cytochrome P450 2E1 allelic variants in Han Chinese. PeerJ 2020; 8:e9628. [PMID: 32821545 PMCID: PMC7397980 DOI: 10.7717/peerj.9628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUNDS Cytochrome P450 (P450) 2E1 is one of the primary enzymes responsible for the metabolism of xenobiotics, such as drugs and environmental carcinogens. The genetic polymorphisms of the CYP2E1 gene in promoter and coding regions have been identified previously in the Han Chinese population from four different geographic areas of Mainland China. METHODS To investigate whether genetic variants identified in the CYP2E1 coding region affect enzyme function, the enzymes of four single nucleotide polymorphism (SNP) variants in the coding region (novel c.1009C>T, causing p.Arg337X, where X represents the translational stop codon; c.227G>A, causing p.Arg76His; c.517G>A, yielding p.Gly173Ser; and c.1263C>T, presenting the highest allele frequency), two novel alleles (c.[227G>A;1263C>T] and c.[517G>A;1263C>T]), and the wild-type CYP2E1 were heterologously expressed in COS-7 cells and functionally characterized in terms of expression level and chlorzoxazone 6-hydroxylation activity. The impact of the CYP2E1 variant sequence on enzyme activity was predicted with three programs: Polyphen 2, PROVEAN and SIFT. RESULTS The prematurely terminated p.Arg337X variant enzyme was undetectable by western blotting and inactive toward chlorzoxazone 6-hydroxylation. The c.1263C>T and c.[517G>A;1263C>T] variant enzymes exhibited properties similar to those of the wild-type CYP2E1. The CYP2E1 variants c.227G>A and c.[227G>A;1263C>T] displayed significantly reduced enzyme activity relative to that of the wild-type enzyme (decreased by 42.8% and 32.8%, respectively; P < 0.01). The chlorzoxazone 6-hydroxylation activity of the c.517G>A transfectant was increased by 31% compared with the wild-type CYP2E1 enzyme (P < 0.01). Positive correlations were observed between the protein content and enzyme activity for CYP2E1 (P = 0.0005, r 2 = 0.8833). The characterization of enzyme function allelic variants in vitro was consistent with the potentially deleterious effect of the amino acid changes as determined by prediction tools. CONCLUSIONS These findings indicate that the genetic polymorphisms of CYP2E1, i.e., c.1009C>T (p.Arg337X), c.227G>A (p.Arg76His), and c.517G>A (p.Gly173Ser), could influence the metabolism of CYP2E1 substrates, such as chlorzoxazone.
Collapse
Affiliation(s)
- Ting Wang
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Muyun Wei
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Xianglong Zhao
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Luan Chen
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Guorong Li
- School of Life Sciences, Shandong Normal University, Shandong, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
- Baoan Maternal and Child Health Hospital, Jinan University, Guangdong, China
| | - Shengying Qin
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
- Collaborative Innovation Center, Jining Medical University, Shandong, China
| |
Collapse
|
5
|
Zhang L, Sarangi V, Moon I, Yu J, Liu D, Devarajan S, Reid JM, Kalari KR, Wang L, Weinshilboum R. CYP2C9 and CYP2C19: Deep Mutational Scanning and Functional Characterization of Genomic Missense Variants. Clin Transl Sci 2020; 13:727-742. [PMID: 32004414 PMCID: PMC7359949 DOI: 10.1111/cts.12758] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 02/04/2023] Open
Abstract
Single nucleotide variants in the open reading frames (ORFs) of pharmacogenes are important causes of interindividual variability in drug response. The functional characterization of variants of unknown significance within ORFs remains a major challenge for pharmacogenomics. Deep mutational scanning (DMS) is a high-throughput technique that makes it possible to analyze the functional effect of hundreds of variants in a parallel and scalable fashion. We adapted a "landing pad" DMS system to study the function of missense variants in the ORFs of cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily C member 19 (CYP2C19). We studied 230 observed missense variants in the CYP2C9 and CYP2C19 ORFs and found that 19 of 109 CYP2C9 and 36 of 121 CYP2C19 variants displayed less than ~ 25% of the wild-type protein expression, a level that may have clinical relevance. Our results support DMS as an efficient method for the identification of damaging ORF variants that might have potential clinical pharmacogenomic application.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Vivekananda Sarangi
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Irene Moon
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Jia Yu
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Duan Liu
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Sandhya Devarajan
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Joel M. Reid
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Krishna R. Kalari
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Liewei Wang
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Richard Weinshilboum
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Devarajan S, Moon I, Ho MF, Larson NB, Neavin DR, Moyer AM, Black JL, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Reid JM. Pharmacogenomic Next-Generation DNA Sequencing: Lessons from the Identification and Functional Characterization of Variants of Unknown Significance in CYP2C9 and CYP2C19. Drug Metab Dispos 2019; 47:425-435. [PMID: 30745309 DOI: 10.1124/dmd.118.084269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
CYP2C9 and CYP2C19 are highly polymorphic pharmacogenes; however, clinically actionable genetic variability in drug metabolism due to these genes has been limited to a few common alleles. The identification and functional characterization of less-common open reading frame sequence variation might help to individualize therapy with drugs that are substrates for the enzymes encoded by these genes. The present study identified seven uncharacterized variants each in CYP2C9 and CYP2C19 using next-generation sequence data for 1013 subjects, and functionally characterized the encoded proteins. Constructs were created and transiently expressed in COS-1 cells for the assay of protein concentration and enzyme activities using fluorometric substrates and liquid chromatography- tandem mass spectrometry with tolbutamide (CYP2C9) and (S)-mephenytoin (CYP2C19) as prototypic substrates. The results were compared with the SIFT, Polyphen, and Provean functional prediction software programs. Cytochrome P450 oxidoreductase (CPR) activities were also determined. Positive correlations were observed between protein content and fluorometric enzyme activity for variants of CYP2C9 (P < 0.05) and CYP2C19 (P < 0.0005). However, CYP2C9 709G>C and CYP2C19 65A>G activities were much lower than predicted based on protein content. Substrate intrinsic clearance values for CYP2C9 218C>T, 343A>C, and CYP2C19 337G>A, 518C>T, 556C>T, and 557G>A were less than 25% of wild-type allozymes. CPR activity levels were similar for all variants. In summary, sequencing of CYP2C9 and CYP2C19 in 1013 subjects identified low-frequency variants that had not previously been functionally characterized. In silico predictions were not always consistent with functional assay results. These observations emphasize the need for high-throughput methods for pharmacogene variant mutagenesis and functional characterization.
Collapse
Affiliation(s)
- Sandhya Devarajan
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Irene Moon
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ming-Fen Ho
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Nicholas B Larson
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Drew R Neavin
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ann M Moyer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - John L Black
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Suzette J Bielinski
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Steven E Scherer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Liewei Wang
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Richard M Weinshilboum
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Joel M Reid
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| |
Collapse
|
7
|
Gong X, Mei S, Li X, Li X, Zhou H, Liu Y, Zhou A, Yang L, Zhao Z, Zhang X. WITHDRAWN: Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China. J Clin Neurosci 2018:S0967-5868(17)31443-1. [PMID: 29534852 DOI: 10.1016/j.jocn.2018.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaoqing Gong
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China; Department of Neurology, Beijing Shunyi District Hospital, Beijing 101300, PR China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, PR China
| | - Xindi Li
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China
| | - Xingang Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, PR China
| | - Heng Zhou
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China
| | - Yonghong Liu
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China
| | - Anna Zhou
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China
| | - Li Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, PR China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, PR China.
| | - Xinghu Zhang
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China.
| |
Collapse
|
8
|
Gong X, Mei S, Li X, Li X, Zhou H, Liu Y, Zhou A, Yang L, Zhao Z, Zhang X. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China. Int J Neurosci 2017; 128:549-553. [PMID: 29191122 DOI: 10.1080/00207454.2017.1401621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM OF THE STUDY Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. MATERIAL AND METHODS A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 108 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. RESULTS In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 108 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. CONCLUSIONS TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. ABBREVIATIONS TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.
Collapse
Affiliation(s)
- Xiaoqing Gong
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China.,b Department of Neurology, Beijing Shunyi District Hospital , Beijing , P. R. China
| | - Shenghui Mei
- c Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China.,d Department of Clinical Pharmacology, College of Pharmaceutical Sciences , Capital Medical University , Beijing , P. R. China
| | - Xindi Li
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China
| | - Xingang Li
- c Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China.,d Department of Clinical Pharmacology, College of Pharmaceutical Sciences , Capital Medical University , Beijing , P. R. China
| | - Heng Zhou
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China
| | - Yonghong Liu
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China
| | - Anna Zhou
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China
| | - Li Yang
- c Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China.,d Department of Clinical Pharmacology, College of Pharmaceutical Sciences , Capital Medical University , Beijing , P. R. China
| | - Zhigang Zhao
- c Department of Pharmacy, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China.,d Department of Clinical Pharmacology, College of Pharmaceutical Sciences , Capital Medical University , Beijing , P. R. China
| | - Xinghu Zhang
- a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University , Beijing , P. R. China
| |
Collapse
|
9
|
Chen XX, Shen SH. [Research advances in pharmacogenomics of mercaptopurine]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1027-1033. [PMID: 28899477 PMCID: PMC7403070 DOI: 10.7499/j.issn.1008-8830.2017.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Mercaptopurine is a common chemotherapeutic drug and immunosuppressive agent and plays an important role in the treatment of acute lymphoblastic leukemia and inflammatory bowel disease. It may cause severe adverse effects such as myelosuppression, which may result in the interruption of treatment or complications including infection or even threaten patients' lives. However, the adverse effects of mercaptopurine show significant racial and individual differences, which reveal the important role of genetic diversity. Recent research advances in pharmacogenomics have gradually revealed the genetic nature of such differences. This article reviews the recent research advances in the pharmacogenomics and individualized application of mercaptopurine.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Medical School of Shanghai Jiaotong University, Shanghai 200127, China.
| | | |
Collapse
|
10
|
Liu D, Ho MF, Schaid DJ, Scherer SE, Kalari K, Liu M, Biernacka J, Yee V, Evans J, Carlson E, Goetz MP, Kubo M, Wickerham DL, Wang L, Ingle JN, Weinshilboum RM. Breast cancer chemoprevention pharmacogenomics: Deep sequencing and functional genomics of the ZNF423 and CTSO genes. NPJ Breast Cancer 2017; 3:30. [PMID: 28856246 PMCID: PMC5566425 DOI: 10.1038/s41523-017-0036-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Our previous GWAS using samples from the NSABP P-1 and P-2 selective estrogen receptor modulator (SERM) breast cancer prevention trials identified SNPs in ZNF423 and near CTSO that were associated with breast cancer risk during SERM chemoprevention. We have now performed Next Generation DNA sequencing to identify additional SNPs that might contribute to breast cancer risk and to extend our observation that SNPs located hundreds of bp from estrogen response elements (EREs) can alter estrogen receptor alpha (ERα) binding in a SERM-dependent fashion. Our study utilized a nested case-control cohort selected from patients enrolled in the original GWAS, with 199 cases who developed breast cancer during SERM therapy and 201 matched controls who did not. We resequenced approximately 500 kb across both ZNF423 and CTSO, followed by functional genomic studies. We identified 4079 SNPs across ZNF423 and 3876 across CTSO, with 9 SNPs in ZNF423 and 12 in CTSO with p < 1E-02 that were within 500 bp of an ERE motif. The rs746157 (p = 8.44E-04) and rs12918288 SNPs (p = 3.43E-03) in intron 5 of ZNF423, were in linkage equilibrium and were associated with alterations in ER-binding to an ERE motif distant from these SNPs. We also studied all nonsynonymous SNPs in both genes and observed that one nsSNP in ZNF423 displayed decreased protein expression. In conclusion, we identified additional functional SNPs in ZNF423 that were associated with SNP and SERM-dependent alternations in ER binding and transcriptional regulation for an ERE at a distance from the SNPs, thus providing novel insight into mechanisms of SERM effect.
Collapse
Affiliation(s)
- Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Krishna Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Mohan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Joanna Biernacka
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Vivien Yee
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH USA
| | - Jared Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Erin Carlson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - D Lawrence Wickerham
- Section of Cancer Genetics and Prevention, Allegheny General Hospital and the National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, PA USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN USA
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
11
|
Iida T, Onodera K, Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2017; 23:1944-1953. [PMID: 28373760 PMCID: PMC5360635 DOI: 10.3748/wjg.v23.i11.1944] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. Recently, some studies provided strong evidence that the process of autophagy affects several aspects of mucosal immune responses. Autophagy is a cellular stress response that plays key roles in physiological processes, such as innate and adaptive immunity, adaptation to starvation, degradation of aberrant proteins or organelles, antimicrobial defense, and protein secretion. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including IBD. Autophagy plays multiple roles in IBD pathogenesis by altering processes that include intracellular bacterial killing, antimicrobial peptide secretion by Paneth cells, goblet cell function, proinflammatory cytokine production by macrophages, antigen presentation by dendritic cells, and the endoplasmic reticulum stress response in enterocytes. Recent studies have identified susceptibility genes involved in autophagy, such as NOD2, ATG16L1, and IRGM, and active research is ongoing all over the world. The aim of this review is a systematic appraisal of the current literature to provide a better understanding of the role of autophagy in the pathogenesis of IBD. Understanding these mechanisms will bring about new strategies for the treatment and prevention of IBD.
Collapse
|
12
|
Gupta M, Neavin D, Liu D, Biernacka J, Hall-Flavin D, Bobo WV, Frye MA, Skime M, Jenkins GD, Batzler A, Kalari K, Matson W, Bhasin SS, Zhu H, Mushiroda T, Nakamura Y, Kubo M, Wang L, Kaddurah-Daouk R, Weinshilboum RM. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry 2016; 21:1717-1725. [PMID: 26903268 PMCID: PMC5003027 DOI: 10.1038/mp.2016.6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
Abstract
Millions of patients suffer from major depressive disorder (MDD), but many do not respond to selective serotonin reuptake inhibitor (SSRI) therapy. We used a pharmacometabolomics-informed pharmacogenomics research strategy to identify genes associated with metabolites that were related to SSRI response. Specifically, 306 MDD patients were treated with citalopram or escitalopram and blood was drawn at baseline, 4 and 8 weeks for blood drug levels, genome-wide single nucleotide polymorphism (SNP) genotyping and metabolomic analyses. SSRI treatment decreased plasma serotonin concentrations (P<0.0001). Baseline and plasma serotonin concentration changes were associated with clinical outcomes (P<0.05). Therefore, baseline and serotonin concentration changes were used as phenotypes for genome-wide association studies (GWAS). GWAS for baseline plasma serotonin concentrations revealed a genome-wide significant (P=7.84E-09) SNP cluster on chromosome four 5' of TSPAN5 and a cluster across ERICH3 on chromosome one (P=9.28E-08) that were also observed during GWAS for change in serotonin at 4 (P=5.6E-08 and P=7.54E-07, respectively) and 8 weeks (P=1.25E-06 and P=3.99E-07, respectively). The SNPs on chromosome four were expression quantitative trait loci for TSPAN5. Knockdown (KD) and overexpression (OE) of TSPAN5 in a neuroblastoma cell line significantly altered the expression of serotonin pathway genes (TPH1, TPH2, DDC and MAOA). Chromosome one SNPs included two ERICH3 nonsynonymous SNPs that resulted in accelerated proteasome-mediated degradation. In addition, ERICH3 and TSPAN5 KD and OE altered media serotonin concentrations. Application of a pharmacometabolomics-informed pharmacogenomic research strategy, followed by functional validation, indicated that TSPAN5 and ERICH3 are associated with plasma serotonin concentrations and may have a role in SSRI treatment outcomes.
Collapse
Affiliation(s)
- M Gupta
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Neavin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - J Biernacka
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - D Hall-Flavin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - W V Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - G D Jenkins
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - A Batzler
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - K Kalari
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - W Matson
- Bedford VA Medical Center, Bedford, MA, USA
| | - S S Bhasin
- Bedford VA Medical Center, Bedford, MA, USA
| | - H Zhu
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - T Mushiroda
- RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - Y Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - M Kubo
- RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - L Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - R Kaddurah-Daouk
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
13
|
Fazel-Najafabadi E, Vahdat Ahar E, Fattahpour S, Sedghi M. Structural and functional impact of missense mutations in TPMT: An integrated computational approach. Comput Biol Chem 2015; 59 Pt A:48-55. [PMID: 26410243 DOI: 10.1016/j.compbiolchem.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thiopurine S-methyltransferase (TPMT) detoxifies thiopurine drugs which are used for treatment of various diseases including inflammatory bowel disease (IBD), and hematological malignancies. Individual variation in TPMT activity results from mutations in TPMT gene. In this study, the effects of all the known missense mutations in TPMT enzyme were studied at the sequence and structural level METHODS A broad set of bioinformatic tools was used to assess all the known missense mutations affecting enzyme activity. The effects of these mutations on protein stability, aggregation propensity, and residue interaction network were analyzed. RESULTS Our results indicate that the missense mutations have diverse effects on TPMT structure and function. Stability and aggregation propensities are affected by various mutations. Several mutations also affect residues in ligand binding site. CONCLUSIONS In vitro study of missense mutation is laborious and time-consuming. However, computational methods can be used to obtain information about effects of missense mutations on protein structure. In this study, the effects of most of the mutations on enzyme activity could be explained by computational methods. Thus, the present approach can be used for understanding the protein structure-function relationships.
Collapse
Affiliation(s)
- Esmat Fazel-Najafabadi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vahdat Ahar
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Shirin Fattahpour
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Nys K, Agostinis P, Vermeire S. Autophagy: a new target or an old strategy for the treatment of Crohn's disease? Nat Rev Gastroenterol Hepatol 2013; 10:395-401. [PMID: 23591407 DOI: 10.1038/nrgastro.2013.66] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 5 years much progress has been made in understanding the molecular basis of Crohn's disease, a multifactorial chronic inflammatory disease of the gastrointestinal tract. Data suggest that hampered autophagy--the major lysosomal pathway for recycling of cytoplasmic material--might contribute to an increased susceptibility to Crohn's disease. Consequently, intense investigations have started to evaluate the potential value of autophagy as a therapeutic target and as a highly needed diagnostic tool. Interestingly, as well as the promising introduction of direct autophagic modulators, several drugs already used in the treatment of Crohn's disease might exert at least part of their effect through the regulation of autophagy. However, whether this phenomenon contributes to or rather counteracts their therapeutic use, remains to be determined and might prove to be highly compound-specific. Here we review the complex and emerging role of autophagy modulation in the battle against Crohn's disease. Moreover, we discuss the potential benefits and deleterious effects of autophagic regulation by both new and clinically used drugs.
Collapse
Affiliation(s)
- Kris Nys
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, Box 701, 3000 Leuven, Belgium
| | | | | |
Collapse
|
15
|
Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, Londero M, Franca R, Rabusin M, Valsecchi MG, Pei D, Cheng C, Paugh SW, Ramsey LB, Diouf B, McCorkle JR, Jones TS, Pui CH, Relling MV, Evans WE. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet 2012; 21:4793-804. [PMID: 22846425 DOI: 10.1093/hmg/dds302] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment-related toxicity can be life-threatening and is the primary cause of interruption or discontinuation of chemotherapy for acute lymphoblastic leukemia (ALL), leading to an increased risk of relapse. Mercaptopurine is an essential component of continuation therapy in all ALL treatment protocols worldwide. Genetic polymorphisms in thiopurine S-methyltransferase (TPMT) are known to have a marked effect on mercaptopurine metabolism and toxicity; however, some patients with wild-type TPMT develop toxicity during mercaptopurine treatment for reasons that are not well understood. To identify additional genetic determinants of mercaptopurine toxicity, a genome-wide analysis was performed in a panel of human HapMap cell lines to identify trans-acting genes whose expression and/or single-nucleotide polymorphisms (SNPs) are related to TPMT activity, then validated in patients with ALL. The highest ranking gene with both mRNA expression and SNPs associated with TPMT activity in HapMap cell lines was protein kinase C and casein kinase substrate in neurons 2 (PACSIN2). The association of a PACSIN2 SNP (rs2413739) with TPMT activity was confirmed in patients and knock-down of PACSIN2 mRNA in human leukemia cells (NALM6) resulted in significantly lower TPMT activity. Moreover, this PACSIN2 SNP was significantly associated with the incidence of severe gastrointestinal (GI) toxicity during consolidation therapy containing mercaptopurine, and remained significant in a multivariate analysis including TPMT and SLCO1B1 as covariates, consistent with its influence on TPMT activity. The association with GI toxicity was also validated in a separate cohort of pediatric patients with ALL. These data indicate that polymorphism in PACSIN2 significantly modulates TPMT activity and influences the risk of GI toxicity associated with mercaptopurine therapy.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Milek M, Smid A, Tamm R, Kuzelicki NK, Metspalu A, Mlinaric-Rascan I. Post-translational stabilization of thiopurine S-methyltransferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and *3C allozymes. Biochem Pharmacol 2012; 83:969-76. [PMID: 22274639 DOI: 10.1016/j.bcp.2012.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Thiopurine S-methyltransferase (TPMT; EC 2.1.1.67) plays a pivotal role in thiopurine treatment outcomes. However, little has been known about its intracellular regulation. Here, we describe the effect of fluctuations in physiological levels of S-adenosyl-L-methionine (SAM) and related metabolites on TPMT activity levels in cell lines and erythrocytes from healthy donors. We determined higher TPMT activity in wild-type TPMT*1/*1 individuals with high SAM concentrations (n=96) compared to the low SAM level group (n=19; P<0.001). These findings confirm the results of our in vitro studies, which demonstrated that the restriction of L-methionine (Met) in cell growth media reversibly decreased TPMT activity and protein levels. Selective inhibition of distinct components of Met metabolism was used to demonstrate that SAM is implicitly responsible for direct post-translational TPMT stabilization. The greatest effect of SAM-mediated TPMT stabilization was observed in the case of wild-type TPMT*1 and variant *3C allozymes. In addition to TPMT genotyping, SAM may serve as an important biochemical marker in individualization of thiopurine therapy.
Collapse
Affiliation(s)
- Miha Milek
- Department of Clinical Biochemistry, Faculty of Pharmacy, Askerceva 7, SI-1000, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Individualized Therapy: Role of Thiopurine S-Methyltransferase Protein and Genetic Variants. J Med Biochem 2010. [DOI: 10.2478/v10011-010-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individualized Therapy: Role of Thiopurine S-Methyltransferase Protein and Genetic VariantsThiopurine S-methyltransferase (TPMT: EC 2.1.1.67) is an enzyme that metabolizes immunosuppressive thiopurine medications, used in the treatment of autoimmune diseases, cancer and in transplantation medicine. In some individuals, TPMT enzyme activity is significantly increased or decreased compared to the normal TPMT activity level. Structural and biochemical analyses of the TPMT protein revealed the existence of certain protein variants with altered activity. It has been shown that certain TPMT gene polymorphisms exist, that define different TPMT allozymes. Decreased TPMT enzyme activity can also be a consequence of lower protein synthesis, which depends on the promoter transcription activity. Promoter polymorphisms, such as variable number of tandem repeats (VNTR), can modulate the transcription. Administering thiopurine drugs in patients with certain genetic TPMT variants leads to severe hematologic toxicity. To avoid toxicity, therapy is being modified according to the TPMT genotype (pharmacogenetics). We investigated the polymorphisms in exons and regulatory elements (promoter) of the TPMT gene which affect TPMT enzyme activity in the Serbian population. We used PCR-based methodology and sequencing in the detection of genetic variants on TPMT gene. We showed that genetic variants in exons account for 7.5% of all TPMT variants with decreased enzyme activity. The therapy for patients with these pharmacogenetic markers was modified, which contributed to the efficiency of treatment. Functional assaysin vitroshowed that the TPMT promoter activity and, therefore, the quantity of TPMT protein synthesized, depended on the architecture of VNTRs (i.e. number and type) in the promoter. Promoter of the TPMT gene specifically responds to mercaptopurine treatment of K562 cells in a VNTR-dependent manner. Study of DNA-protein interactions revealed that Sp1 and Sp3 transcription factors interact with VNTRs. Our research pointed out that the VNTR promoter region of the TPMT gene could become a new pharmacogenetic marker, clinically significant for the individualization of thiopurine therapy.
Collapse
|
19
|
Wang L. Pharmacogenomics: a systems approach. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:3-22. [PMID: 20836007 PMCID: PMC3894835 DOI: 10.1002/wsbm.42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pharmacogenetics and pharmacogenomics involve the study of the role of inheritance in individual variation in drug response, a phenotype that varies from potentially life-threatening adverse drug reactions to equally serious lack of therapeutic efficacy. Pharmacogenetics-pharmacogenomics represents a major component of the movement to 'individualized medicine'. Pharmacogenetic studies originally focused on monogenic traits, often involving genetic variation in drug metabolism. However, contemporary studies increasingly involve entire 'pathways' that include both pharmacokinetics (PKs)--factors that influence the concentration of a drug reaching its target(s)--and pharmacodynamics (PDs), factors associated with the drug target(s), as well as genome-wide approaches. The convergence of advances in pharmacogenetics with rapid developments in human genomics has resulted in the evolution of pharmacogenetics into pharmacogenomics. At the same time, studies of drug response are expanding beyond genomics to encompass pharmacotranscriptomics and pharmacometabolomics to become a systems-based discipline. This discipline is also increasingly moving across the 'translational interface' into the clinic and is being incorporated into the drug development process and governmental regulation of that process. The article will provide an overview of the development of pharmacogenetics-pharmacogenomics, the scientific advances that have contributed to the continuing evolution of this discipline, the incorporation of transcriptomic and metabolomic data into attempts to understand and predict variation in drug response phenotypes as well as challenges associated with the 'translation' of this important aspect of biomedical science into the clinic.
Collapse
Affiliation(s)
- Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Feng Q, Vannaprasaht S, Peng Y, Angsuthum S, Avihingsanon Y, Yee VC, Tassaneeyakul W, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: functional characterization of a novel rapidly degraded variant allozyme. Biochem Pharmacol 2009; 79:1053-61. [PMID: 19945438 DOI: 10.1016/j.bcp.2009.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
Abstract
A novel human thiopurine S-methyltransferase (TPMT) variant allele, (319 T>G, 107Tyr>Asp, *27), was identified in a Thai renal transplantation recipient with reduced erythrocyte TPMT activity. The TPMT*27 variant allozyme showed a striking decrease in both immunoreactive protein level and enzyme activity after transient expression in a mammalian cell line. We set out to explore the mechanism(s) responsible for decreased expression of this novel variant of an important drug-metabolizing enzyme. We observed accelerated degradation of TPMT*27 protein in a rabbit reticulocyte lysate. TPMT*27 degradation was slowed by proteasome inhibition and involved chaperone proteins-similar to observations with regard to the degradation of the common TPMT*3A variant allozyme. TPMT*27 aggresome formation was also observed in transfected mammalian cells after proteasome inhibition. Inhibition of autophagy also decreased TPMT*27 degradation. Finally, structural analysis and molecular dynamics simulation indicated that TPMT*27 was less stable than was the wild type TPMT allozyme. In summary, TPMT*27 serves to illustrate the potential importance of protein degradation - both proteasome and autophagy-mediated degradation - for the pharmacogenetic effects of nonsynonymous SNPs.
Collapse
Affiliation(s)
- Qiping Feng
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic-Mayo Medical School, 200 First Street SW, Rochester, MN 55905, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang L, Weinshilboum RM. Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum Mol Genet 2008; 17:R174-9. [PMID: 18852207 PMCID: PMC2574004 DOI: 10.1093/hmg/ddn270] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/28/2008] [Indexed: 12/19/2022] Open
Abstract
Pharmacogenetics is the study of the role of inheritance in variation in drug response phenotypes. Those phenotypes can range from life-threatening adverse drugs reactions at one end of the spectrum to equally serious lack of therapeutic efficacy at the other. Over the past half century, pharmacogenetics has--like all of medical genetics--evolved from a discipline with a focus on monogenetic traits to become pharmacogenomics, with a genome-wide perspective. This article will briefly review recent examples of the application of genome-wide techniques to clinical pharmacogenomic studies and to pharmacogenomic model systems that vary from cell line-based model systems to yeast gene deletion libraries. Functional validation of candidate genes and the use of genome-wide techniques to gain mechanistic insights will be emphasized for the establishment of biological plausibility and as essential follow-up steps after the identification of candidate genes.
Collapse
Affiliation(s)
| | - Richard M. Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics and Medicine, Mayo Medical School-Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|