1
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
2
|
Wei S, Li X, Wu H, Zhang Q, Wu Y, Zhao Z, Mei S, Feng W. UGT1A polymorphism rs4148324 associated with topiramate plasma concentration to dose ratio in children with epilepsy. Seizure 2024; 116:107-112. [PMID: 37858371 DOI: 10.1016/j.seizure.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE The objective of this study is to evaluate the association between genetic polymorphisms and the concentration to dose ratio of topiramate in children with epilepsy. METHODS A cohort of 163 pediatric patients with epilepsy receiving topiramate therapy were enrolled. The ultra-performance liquid chromatography-tandem mass spectrometry method was employed to measure the trough plasma concentration of topiramate at steady-state. These concentrations were normalized by dividing them by the ratio of total daily dose to body weight, yielding the concentration to dose ratio (CDR) of topiramate. MassArray system identified 30 single nucleotide polymorphisms associated with the pharmacokinetics and pharmacodynamics of topiramate. The CDR values were logarithmic transformed (lnCDR) for normal distribution. The association between the identified genetic polymorphisms and lnCDR was assessed using the PLINK software, employing linear regression analysis with adjustments by epilepsy types, estimated glomerular filtration rate, alanine aminotransferase, valproic acid, phenobarbital, and oxcarbazepine. RESULTS Variant rs4148324 (UGT1A1/3/4/5/6/7/8/9/10, BETA = 0.182, P = 0.010) was significantly associated with lnCDR of topiramate. Patients carrying the G allele exhibited higher normalized topiramate plasma concentrations. No other significant associations were found. CONCLUSIONS In pediatric patients receiving topiramate therapy, rs4148324 was associated with normalized topiramate plasma concentration. Further studies are warranted to validate and confirm the findings.
Collapse
Affiliation(s)
- Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingmeng Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Han Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
3
|
Krejčí V, Murínová I, Slanař O, Šíma M. Evidence for Therapeutic Drug Monitoring of Atypical Antipsychotics. Prague Med Rep 2024; 125:101-129. [PMID: 38761044 DOI: 10.14712/23362936.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024] Open
Abstract
Second-generation antipsychotics (SGAs), also known as atypical antipsychotics, are a newer class of antipsychotic drugs used to treat schizophrenia, bipolar disorder, and related psychiatric conditions. The plasma concentration of antipsychotic drugs is a valid measure of the drug at its primary target structure in the brain, and therefore determines the efficacy and safety of these drugs. However, despite the well-known high variability in pharmacokinetics of these substances, psychiatric medication is usually administered in uniform dosage schedules. Therapeutic drug monitoring (TDM), as the specific method that can help personalised medicine in dose adjustment according to the characteristics of the individual patient, minimizing the risk of toxicity, monitoring adherence, and increasing cost-effectiveness in the treatment, thus seems to be an elegant tool to solve this problem. Non-response to therapeutic doses, uncertain adherence to medication, suboptimal tolerability, or pharmacokinetic drug-drug interactions are typical indications for TDM of SGAs. This review aims to summarize an overview of the current knowledge and evidence of the possibilities to tailor the dosage of selected SGAs using TDM, including the necessary pharmacokinetic parameters for personalised pharmacotherapy.
Collapse
Affiliation(s)
- Veronika Krejčí
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Irena Murínová
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Pardiñas AF, Kappel DB, Roberts M, Tipple F, Shitomi-Jones LM, King A, Jansen J, Helthuis M, Owen MJ, O'Donovan MC, Walters JTR. Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: a longitudinal analysis and genome-wide association study using UK clinical monitoring data. Lancet Psychiatry 2023; 10:209-219. [PMID: 36804072 PMCID: PMC10824469 DOI: 10.1016/s2215-0366(23)00002-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND The antipsychotic, clozapine, is the only licensed drug against the treatment-resistant symptoms that affect 20-30% of people with schizophrenia. Clozapine is markedly underprescribed, partly because of concerns about its narrow therapeutic range and adverse drug reaction profile. Both concerns are linked to drug metabolism, which varies across populations globally and is partly genetically determined. Our study aimed to use a cross-ancestry genome-wide association study (GWAS) design to investigate variations in clozapine metabolism within and between genetically inferred ancestral backgrounds, to discover genomic associations to clozapine plasma concentrations, and to assess the effects of pharmacogenomic predictors across different ancestries. METHODS In this GWAS, we analysed data from the UK Zaponex Treatment Access System clozapine monitoring service as part of the CLOZUK study. We included all available individuals with clozapine pharmacokinetic assays requested by their clinicians. We excluded people younger than 18 years, or whose records contained clerical errors, or with blood drawn 6-24 h after dose, a clozapine or norclozapine concentration less than 50 ng/mL, a clozapine concentration of more than 2000 ng/mL, a clozapine-to-norclozapine ratio outside of the 0·5-3·0 interval, or a clozapine dose of more than 900 mg/day. Using genomic information, we identified five biogeographical ancestries: European, sub-Saharan African, north African, southwest Asian, and east Asian. We did pharmacokinetic modelling, a GWAS, and a polygenic risk score association analysis using longitudinal regression analysis with three primary outcome variables: two metabolite plasma concentrations (clozapine and norclozapine) and the clozapine-to-norclozapine ratio. FINDINGS 19 096 pharmacokinetic assays were available for 4760 individuals in the CLOZUK study. After data quality control, 4495 individuals (3268 [72·7%] male and 1227 [27·3%] female; mean age 42·19 years [range 18-85]) linked to 16 068 assays were included in this study. We found a faster average clozapine metabolism in people of sub-Saharan African ancestry than in those of European ancestry. By contrast, individuals with east Asian or southwest Asian ancestry were more likely to be slow clozapine metabolisers than those with European ancestry. Eight pharmacogenomic loci were identified in the GWAS, seven with significant effects in non-European groups. Polygenic scores generated from these loci were associated with clozapine outcome variables in the whole sample and within individual ancestries; the maximum variance explained was 7·26% for the metabolic ratio. INTERPRETATION Longitudinal cross-ancestry GWAS can discover pharmacogenomic markers of clozapine metabolism that, individually or as polygenic scores, have consistent effects across ancestries. Our findings suggest that ancestral differences in clozapine metabolism could be considered for optimising clozapine prescription protocols for diverse populations. FUNDING UK Academy of Medical Sciences, UK Medical Research Council, and European Commission.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Djenifer B Kappel
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Milly Roberts
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesca Tipple
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Lisa M Shitomi-Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Sangüesa E, Cirujeda C, Concha J, Padilla PP, García CB, Ribate MP. Pharmacokinetic interactions between clozapine and valproic acid in patients with treatment-resistant schizophrenia: Does UGT polymorphism affect these drug interactions? Chem Biol Interact 2022; 364:110042. [PMID: 35853541 DOI: 10.1016/j.cbi.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
The combination of valproic acid (VPA) and clozapine (CLZ) is regularly prescribed for augmentation therapy in treatment resistant schizophrenia. The VPA has been shown to reduce norclozapine (NCLZ) plasma levels, but the mechanism of this interaction remains unknown. The aim of this study is to examine the differences between patients treated with CLZ and patients treated with CLZ plus VPA. For it, various factors have been evaluated. The study was based on plasma samples from CLZ and CLZ plus VPA treated patients (n = 61) subjected to routine therapeutic drug monitoring considering clinical data, smoking status, daily dose of CLZ and VPA, concomitant medications, albumin, and renal and hepatic function. Genotyping of polymorphisms of CYP1A2, CYP3A4/5, CYP2C19, ABCB1, UGT2B10 and CYP2C19 were performed by real time PCR. CYP2D6 were genotyped using competitive allele-specific PCR and by a long PCR based method. Plasma CLZ and NCLZ concentrations were measured by Liquid Chromatography-Tandem masses (LC-MS/MS) and plasma VPA by Ultraviolet-Visible (UV-vis) spectrophotometric immunoassay. The patients presented adequate CLZ levels in relation to the dose. However, NCLZ levels were excessively low and the CLZ/NCLZ ratio very high. Patients with UGT2B10 GT (rs61750900) genotype showed lower NCLZ plasma levels and C/D NCLZ, and higher CLZ/NCLZ ratio versus patients with UGT2B10 GG genotype. VPA, smoking, the presence of UGT2B10 GT genotype and having low albumin levels indicate that the CLZ/NCLZ ratio is affected, mostly coinciding with decreased NCLZ levels and possibly with an increased risk of neutropenia.
Collapse
Affiliation(s)
- Estela Sangüesa
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| | - Christine Cirujeda
- Centro Neuropsiquiátrico Nuestra Señora del Carmen, Hermanas Hospitalarias, Zaragoza, Spain
| | - Julia Concha
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| | - Pedro Pablo Padilla
- Centro Neuropsiquiátrico Nuestra Señora del Carmen, Hermanas Hospitalarias, Zaragoza, Spain
| | - Cristina Belén García
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain.
| | - María Pilar Ribate
- Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego- Zaragoza, Spain
| |
Collapse
|
6
|
Dimunová D, Matoušková P, Podlipná R, Boušová I, Skálová L. The role of UDP-glycosyltransferases in xenobiotic-resistance. Drug Metab Rev 2022; 54:282-298. [DOI: 10.1080/03602532.2022.2083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6 - Lysolaje, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Smith RL, Wollmann BM, Kausberg M, Mæland S, Tveito M, Connell KO, Molden E, Kringen MK. Effects of a novel UGT2B haplotype and UGT1A4*3 allele variants on glucuronidation of clozapine in vivo. Curr Drug Metab 2022; 23:66-72. [PMID: 35105285 DOI: 10.2174/1389200223666220201152953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucuronidation is an important metabolic pathway of clozapine (CLZ), but the impact of various uridine 5'diphospho-glucuronosyltransferases (UGT) polymorphisms on the exposure and metabolism of CLZ in vivo is unclear. OBJECTIVE The objective of this study was to investigate the impact of UGT2B haplotype and UGT1A4*3 allele variants on the formation of CLZ glucuronide metabolites (5N- and N+-glucuronide) and CLZ exposure in patients' serum after adjusting for sex, age and smoking habits. METHODS The study was based on serum samples from CLZ-treated patients (n=79) subjected to routine therapeutic drug monitoring (TDM) at Diakonhjemmet Hospital, Oslo, Norway. From the same patients the following UGT variants were genotyped using Real-Time PCR: UGT2B:GA haplotype (defined as UGT2B:GA; rs1513559A>G and rs416593T>A) and UGT1A4*3 (rs2011425T>G). Serum concentrations of CLZ 5N- and N+-glucuronide were measured by UPLC high-resolution mass spectrometry. RESULTS None of the genotypes had significant impact on CLZ exposure (p>0.05). However, compared to UGT2B:AT/AT and UGT1A4*1/*1, the 5N-glucuronide exposure was reduced in UGT2B:GA/GA carriers (-75%, p=0.03) while the exposure was non-significantly increased in UGT1A4*3 carriers (+100%, p=0.14), respectively. The N+-glucuronide exposure was unchanged in UGT1A4*3 vs noncarriers (p=0.28), but significantly reduced in heterozygous (-50%, p=0.016) and homozygous carriers (-70%, p=0.021) of UGT2B:GA compared to UGT2B:AT/AT carriers, respectively. CONCLUSION The UGT2B:GA and UGT1A4*3 variants had no impact on CLZ exposure, but were associated with differences and preferences in CLZ glucuronidation. The latter might be of potential relevance for CLZ tolerability, since levels of the N+-glucuronide metabolite may reflect the generation and trapping of reactive metabolites involved in CLZ-induced toxicity.
Collapse
Affiliation(s)
- Robert Løvsletten Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
- NORMENT Center, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Birgit M Wollmann
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
| | - Marianne Kausberg
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
| | - Sondre Mæland
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
| | - Marit Tveito
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
- Norwegian National Advisory Unit on Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kevin O' Connell
- NORMENT Center, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Dep. of Pharmacy, University of Oslo, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
- Department of Life Science and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway #shared first authorship / $shared senior authorship
| |
Collapse
|
8
|
Metabolite Profiling of Clozapine in Patients Switching Versus Maintaining Treatment: A Retrospective Pilot Study. J Clin Psychopharmacol 2022; 42:470-474. [PMID: 35916581 PMCID: PMC9426748 DOI: 10.1097/jcp.0000000000001585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE/BACKGROUND Pharmacokinetics may be of relevance for the risk of clozapine discontinuation. We compared metabolite profiles, accounting for smoking habits, in patients switching versus maintaining clozapine treatment at therapeutic concentrations. METHODS/PROCEDURES Adult patients with clozapine serum levels above 1070 nmol/L (350 ng/mL) were retrospectively included from a Norwegian therapeutic drug monitoring service during 2018-2020. Inclusion criteria were (1) known smoking habits, (2) blood sample drawn within 10 to 30 hours after last clozapine intake, and (3) detectable levels of N -desmethylclozapine, clozapine -N -oxide, clozapine-5 N -glucuronide, or clozapine- N + - glucuronide. Patients comedicated with cytochrome P450 enzyme inducers, inhibitors, or valproic acid were excluded. The high-resolution mass spectrometry assay enabled detection of 21 clozapine metabolites. Metabolite profiles were compared between patients switching treatment (switchers), measured as clozapine being replaced by another antipsychotic drug in blood samples, versus maintaining clozapine treatment (nonswitchers) during the study period. FINDINGS/RESULTS Of the 84 patients fulfilling the study criteria, 7 patients (8.3%) were identified as clozapine switchers. After correcting for smoking habits, the clozapine-5 N -glucuronide/clozapine ratio was 69% lower ( P < 0.001), while the clozapine- N + -glucuronide/clozapine-5 N -glucuronide ratio was 143% higher ( P = 0.026), respectively, in switchers versus nonswitchers. The other metabolite ratios did not significantly differ between switchers and nonswitchers. IMPLICATIONS/CONCLUSIONS The present study found a significantly reduced 5 N -glucuronidation phenotype in patients switching from clozapine at therapeutic serum concentrations (>1070 nmol/L) to other antipsychotic drugs. This may indicate that glucuronidation, as a potential detoxification mechanism, is related to clozapine tolerability. However, the causality of this observation needs to be investigated in future studies with larger patient populations.
Collapse
|
9
|
Pellikaan K, Ben Brahim Y, Rosenberg AGW, Davidse K, Poitou C, Coupaye M, Goldstone AP, Høybye C, Markovic TP, Grugni G, Crinò A, Caixàs A, Eldar-Geva T, Hirsch HJ, Gross-Tsur V, Butler MG, Miller JL, van der Kuy PHM, van den Berg SAA, Visser JA, van der Lely AJ, de Graaff LCG. Hypogonadism in Women with Prader-Willi Syndrome-Clinical Recommendations Based on a Dutch Cohort Study, Review of the Literature and an International Expert Panel Discussion. J Clin Med 2021; 10:jcm10245781. [PMID: 34945077 PMCID: PMC8707541 DOI: 10.3390/jcm10245781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare neuroendocrine genetic syndrome. Characteristics of PWS include hyperphagia, hypotonia, and intellectual disability. Pituitary hormone deficiencies, caused by hypothalamic dysfunction, are common and hypogonadism is the most prevalent. Untreated hypogonadism can cause osteoporosis, which is already an important issue in PWS. Therefore, timely detection and treatment of hypogonadism is crucial. To increase understanding and prevent undertreatment, we (1) performed a cohort study in the Dutch PWS population, (2) thoroughly reviewed the literature on female hypogonadism in PWS and (3) provide clinical recommendations on behalf of an international expert panel. For the cohort study, we retrospectively collected results of a systematic health screening in 64 female adults with PWS, which included a medical questionnaire, medical file search, medical interview, physical examination and biochemical measurements. Our data show that hypogonadism is frequent in females with PWS (94%), but is often undiagnosed and untreated. This could be related to unfamiliarity with the syndrome, fear of behavioral changes, hygienic concerns, or drug interactions. To prevent underdiagnosis and undertreatment, we provide practical recommendations for the screening and treatment of hypogonadism in females with PWS.
Collapse
Affiliation(s)
- Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Yassine Ben Brahim
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Christine Poitou
- Rare Diseases Center of Reference ‘Prader-Willi Syndrome and Obesity with Eating Disorders’ (PRADORT), Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France; (C.P.); (M.C.)
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- ENDO-ERN (European Reference Network)
| | - Muriel Coupaye
- Rare Diseases Center of Reference ‘Prader-Willi Syndrome and Obesity with Eating Disorders’ (PRADORT), Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France; (C.P.); (M.C.)
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- ENDO-ERN (European Reference Network)
| | - Anthony P. Goldstone
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS, UK
| | - Charlotte Høybye
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- ENDO-ERN (European Reference Network)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Department of Endocrinology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Tania P. Markovic
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- Metabolism & Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Graziano Grugni
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- ENDO-ERN (European Reference Network)
- Divison of Auxology, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo, Italy
| | - Antonino Crinò
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Hospital, Research Institute, 00050 Palidoro, Italy
| | - Assumpta Caixàs
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- Endocrinology and Nutrition Department, Institut d’Investigació I Innovació Parc Taulí I3PT, Parc Taulí Hospital Universitari, Department of Medicine, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
- Correspondence: (A.C.); (L.C.G.d.G.)
| | - Talia Eldar-Geva
- The Israel Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem 9103102, Israel; (T.E.-G.); (H.J.H.); (V.G.-T.)
- Reproductive Endocrinology and Genetics Unit, Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center, Jerusalem 9103102, Israel
- Hebrew University School of Medicine, Jerusalem 9112102, Israel
| | - Harry J. Hirsch
- The Israel Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem 9103102, Israel; (T.E.-G.); (H.J.H.); (V.G.-T.)
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Varda Gross-Tsur
- The Israel Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem 9103102, Israel; (T.E.-G.); (H.J.H.); (V.G.-T.)
- Hebrew University School of Medicine, Jerusalem 9112102, Israel
- Neuropediatrics Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Merlin G. Butler
- Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jennifer L. Miller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Paul-Hugo M. van der Kuy
- Department of Hospital Pharmacy, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Sjoerd A. A. van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Department of Clinical Chemistry, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (Y.B.B.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (J.A.V.); (A.J.v.d.L.)
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Centre for Growth Disorders, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- International Network for Research, Management & Education on adults with PWS (INfoRMEd-PWS); (A.P.G.); (C.H.); (T.P.M.); (G.G.); (A.C.)
- ENDO-ERN (European Reference Network)
- Correspondence: (A.C.); (L.C.G.d.G.)
| |
Collapse
|
10
|
Stanbridge AJ, Cranshaw T, Paul MM. Clozapine metabolism may be affected by Gilbert's syndrome: case report and discussion. Pharmacogenet Genomics 2021; 31:221-224. [PMID: 34320604 DOI: 10.1097/fpc.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A 34-year-old man with treatment-resistant schizophrenia and Gilbert's syndrome was treated with clozapine and found to have unusually slow and fluctuating metabolism of clozapine, resulting in difficulty achieving a well-tolerated and stable plasma clozapine level. Gilbert's syndrome is a relatively common (3-10% prevalence) genetic condition which results in altered hepatic metabolism. This case report demonstrates in vivo the finding of previous in-vitro research suggesting that the UGT1A1 7/7 mutation most commonly associated with Gilbert's syndrome may result in decreased clozapine excretion. Given evidence of an increased prevalence of Gilbert's syndrome in patients with schizophrenia, further investigation into this possible correlation may improve understanding and prediction of clozapine dosage.
Collapse
|
11
|
Willcocks IR, Legge SE, Nalmpanti M, Mazzeo L, King A, Jansen J, Helthuis M, Owen MJ, O’Donovan MC, Walters JTR, Pardiñas AF. Clozapine Metabolism is Associated With Absolute Neutrophil Count in Individuals With Treatment-Resistant Schizophrenia. Front Pharmacol 2021; 12:658734. [PMID: 33959025 PMCID: PMC8094024 DOI: 10.3389/fphar.2021.658734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Up to one-third of those with schizophrenia fail to respond to standard antipsychotics and are considered to have treatment-resistant schizophrenia, a condition for which clozapine is the only evidence-based medication. While up to 60% of treated individuals obtain therapeutic benefits from clozapine, it is currently underprescribed worldwide, partly because of concerns related to its broad adverse effect profile. In particular, the potential effects of clozapine on the immune system have gained relevance after a recent study showed that drug plasma concentrations were inversely correlated with neutrophil counts in individuals routinely undergoing treatment. Seeking to investigate this relationship in more detail, we extracted metabolic, immune, and genetic data from a UK cohort of long-term clozapine users linked to a clozapine monitoring service, CLOZUK2 (N = 208). Whilst a correlation analysis was compatible with the original results, a multiple linear regression accounting for dose and other confounding factors additionally allowed us to estimate the decrease in absolute neutrophil counts to approximately 141 cells/mm3 for every 0.1 mg/L increase in clozapine concentration. However, this association was attenuated after controlling for the metabolic ratio between clozapine and its main metabolite, norclozapine, which was itself negatively associated with neutrophil concentrations. Further analyses revealed that these relationships are likely moderated by genetic factors, as three pharmacogenomic SNPs previously associated to norclozapine plasma concentrations and the metabolic ratio (rs61750900, rs2011425 and rs1126545) were shown to be independently associated with a variation in neutrophil counts of about 400 cells/mm3 per effect allele. Such results are compatible with an effect of norclozapine, but not necessarily clozapine, on immune cell counts, and highlight the need for further investigations into the potential role of genetic determinants of clozapine pharmacokinetics in the occurrence of adverse effects during treatment.
Collapse
Affiliation(s)
- Isabella R. Willcocks
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sophie E. Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mariana Nalmpanti
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lucy Mazzeo
- Hafan y Coed Mental Health Unit, University Hospital of Llandough, Cardiff, United Kingdom
| | - Adrian King
- Magna Laboratories Ltd., Ross-on-Wye, United Kingdom
| | | | | | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Whiskey E, Romano G, Elliott M, Campbell M, Anandarajah C, Taylor D, Valsraj K. Possible pharmacogenetic factors in clozapine treatment failure: a case report. Ther Adv Psychopharmacol 2021; 11:20451253211030844. [PMID: 35211290 PMCID: PMC8862186 DOI: 10.1177/20451253211030844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
There is still much to learn about the predictors of therapeutic response in psychiatry, but progress is gradually being made and precision psychiatry is an exciting and emerging subspeciality in this field. This is critically important in the treatment of refractory psychotic disorders, where clozapine is the only evidence-based treatment but only about half the patients experience an adequate response. In this case report, we explore the possible biological mechanisms underlying treatment failure and discuss possible ways of improving clinical outcomes. Further work is required to fully understand why some patients fail to respond to the most effective treatment in refractory schizophrenia. Therapeutic drug monitoring together with early pharmacogenetic testing may offer a path for some patients with refractory psychotic symptoms unresponsive to clozapine treatment.
Collapse
Affiliation(s)
- Eromona Whiskey
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | | | | | | | | | - David Taylor
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | | |
Collapse
|
13
|
Hattori S, Suda A, Miyauchi M, Shiraishi Y, Saeki T, Fukushima T, Fujibayashi M, Tsujita N, Ishii C, Ishii N, Moritani T, Saigusa Y, Kishida I. The association of genetic polymorphisms in CYP1A2, UGT1A4, and ABCB1 with autonomic nervous system dysfunction in schizophrenia patients treated with olanzapine. BMC Psychiatry 2020; 20:72. [PMID: 32070304 PMCID: PMC7027321 DOI: 10.1186/s12888-020-02492-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Use of the antipsychotic drug olanzapine by patients with schizophrenia is associated with autonomic nervous system (ANS) dysfunction. It is presumed that there are interindividual differences in ANS dysfunction that correspond to pharmacogenetics. In this study, we investigated whether genetic polymorphisms in ABCB1, CYP1A2, and UGT1A4 are associated with this observed ANS dysfunction. METHODS A total of 91 schizophrenia patients treated with olanzapine monotherapy participated in this study. A power spectral analysis of heart rate variability was used to assess ANS activity. The TaqMan system was used to genotype seven single nucleotide polymorphisms (SNPs) in CYP1A2 (rs2069514 and rs762551), UGT1A4 (rs2011425), and ABCB1 (rs1045642, rs1128503, rs2032582, rs2235048). RESULTS Sympathetic nervous activity was significantly higher in individuals with the UGT1A4 rs2011425 G allele than in those with the UGT1A4 rs2011425 non-G allele (sympathetic activity, p = .001). Furthermore, sympathetic nervous activity was also significantly associated with UGT1A4 rs2011425 genotype as revealed by multiple regression analysis (sympathetic activity, p = .008). CONCLUSIONS We suggest that the UGT1A4 rs2011425 polymorphism affects olanzapine tolerability because it is associated with the observed side effects of olanzapine in schizophrenia patients, namely sympathetic dysfunction.
Collapse
Affiliation(s)
- Saki Hattori
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Akira Suda
- grid.268441.d0000 0001 1033 6139Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Masatoshi Miyauchi
- grid.268441.d0000 0001 1033 6139Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Yohko Shiraishi
- grid.268441.d0000 0001 1033 6139Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Takashi Saeki
- grid.268441.d0000 0001 1033 6139Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan ,Asahinooka Hospital, 128-1 Kwaihonchou, Asahi-ku, Yokohama, Kanagawa 251-8530 Japan
| | - Tadashi Fukushima
- Asahinooka Hospital, 128-1 Kwaihonchou, Asahi-ku, Yokohama, Kanagawa 251-8530 Japan
| | - Mami Fujibayashi
- grid.412493.90000 0001 0454 7765Division of Physical and Health Education, Setsunan University, 17-8 Ikedanakamachi, Neyagawa, Osaka, 572-8508 Japan
| | - Natsuki Tsujita
- grid.258799.80000 0004 0372 2033Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto, 606-8316 Japan
| | - Chie Ishii
- Fujisawa Hospital, 383 Kotuka Fujisawa, Kanagawa, 251-8530 Japan
| | - Norio Ishii
- Fujisawa Hospital, 383 Kotuka Fujisawa, Kanagawa, 251-8530 Japan
| | - Tosiho Moritani
- grid.258798.90000 0001 0674 6688Faculty of General Education, Kyoto Sangyo University, Kamo-motoyama, Kita-ku, Kyoto, 606-8555 Japan
| | - Yusuke Saigusa
- grid.268441.d0000 0001 1033 6139Department of Biostatistics, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Ikuko Kishida
- grid.268441.d0000 0001 1033 6139Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan ,Fujisawa Hospital, 383 Kotuka Fujisawa, Kanagawa, 251-8530 Japan
| |
Collapse
|
14
|
Predicting novel genomic regions linked to genetic disorders using GWAS and chromosome conformation data - a case study of schizophrenia. Sci Rep 2019; 9:17940. [PMID: 31784692 PMCID: PMC6884554 DOI: 10.1038/s41598-019-54514-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies identified numerous loci harbouring single nucleotide polymorphisms (SNPs) associated with various human diseases, although the causal role of many of them remains unknown. In this paper, we postulate that co-location and shared biological function of novel genes with genes known to associate with a specific phenotype make them potential candidates linked to the same phenotype (“guilt-by-proxy”). We propose a novel network-based approach for predicting candidate genes/genomic regions utilising the knowledge of the 3D architecture of the human genome and GWAS data. As a case study we used a well-studied polygenic disorder ‒ schizophrenia ‒ for which we compiled a comprehensive dataset of SNPs. Our approach revealed 634 novel regions covering ~398 Mb of the human genome and harbouring ~9000 genes. Using various network measures and enrichment analysis, we identified subsets of genes and investigated the plausibility of these genes/regions having an association with schizophrenia using literature search and bioinformatics resources. We identified several genes/regions with previously reported associations with schizophrenia, thus providing proof-of-concept, as well as novel candidates with no prior known associations. This approach has the potential to identify novel genes/genomic regions linked to other polygenic disorders and provide means of aggregating genes/SNPs for further investigation.
Collapse
|
15
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
16
|
Maideen NMP. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J Pharmacol 2019; 8:14-25. [DOI: 10.5497/wjp.v8.i2.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Tobacco smoking is a global public health threat causing several illnesses including cardiovascular disease (Myocardial infarction), cerebrovascular disease (Stroke), peripheral vascular disease (Claudication), chronic obstructive pulmonary disease, asthma, reduced female infertility, sexual dysfunction in men, different types of cancer and many other diseases. It has been estimated in 2015 that approximately 1.3 billion people smoke, around the globe. Use of medications among smokers is more common, nowadays. This review is aimed to identify the medications affected by smoking, involving Cytochrome P450 (CYP) and uridine diphosphate-glucuronosyltransferases (UGTs) enzymes and Nicotine. Polycyclic aromatic hydrocarbons (PAHs) of tobacco smoke have been associated with the induction of CYP enzymes such as CYP1A1, CYP1A2 and possibly CYP2E1 and UGT enzymes. The drugs metabolized by CYP1A1, CYP1A2, CYP2E1 and UGT enzymes might be affected by tobacco smoking and the smokers taking medications metabolized by those enzymes, may need higher doses due to decreased plasma concentrations through enhanced induction by PAHs of tobacco smoke. The prescribers and the pharmacists are required to be aware of medications affected by tobacco smoking to prevent the toxicity-associated complications during smoking cessation.
Collapse
|
17
|
Kim SC, Kim MG. Meta-analysis of the Influence of UGT Genetic Polymorphisms on Lamotrigine Concentration. Basic Clin Pharmacol Toxicol 2018; 124:163-169. [PMID: 30168665 DOI: 10.1111/bcpt.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are involved in the metabolism of lamotrigine, but whether the UGT1A4 and UGT2B7 genetic polymorphisms affect lamotrigine concentration remains controversial. Thus, the objective of this meta-analysis was to analyse the influence of UGT1A4 and UGT2B7 genetic polymorphisms on lamotrigine concentration. Through searching, screening, selection, data extraction and quantitative analyses, the influence of UGT1A4 and UGT2B7 genetic polymorphisms on lamotrigine concentration-to-dose ratio (CDR) was assessed by meta-analysis of nine studies. Neither UGT1A4 70C>A nor 142T>G significantly affected lamotrigine CDR values (standardized difference in means [SDM] = 0.433, 95% confidence interval [CI] = -0.380-1.302; SDM = -0.458, 95% CI = -1.141-0.224, respectively). Only the UGT2B7 -161C>T homozygous variant had significantly higher CDR values than the wild-type (WT) and heterozygous variant (SDM = 0.634, 95% CI = 0.056-1.222). In conclusion, CDR of lamotrigine was significantly higher for the UGT2B7 -161C>T homozygous variant than for the WT and heterozygous variant. Thus, UGT2B7 -161C>T homozygous variant needs to receive reduced dose.
Collapse
Affiliation(s)
- Su Cheol Kim
- Department of Psychiatry, Anam Hospital, Korea University of Medicine, Seoul, Korea
| | - Myeong Gyu Kim
- Graduate School of Clinical Pharmacy, CHA University, Pocheon, Korea
| |
Collapse
|
18
|
Gawlik M, Skibiński R. Simulation of phase I metabolism reactions of clozapine by HLM and photocatalytic methods with the use of UHPLC-ESI-MS/MS. Biomed Chromatogr 2018; 32:e4297. [PMID: 29799621 DOI: 10.1002/bmc.4297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023]
Abstract
In this study the comparison of human liver microsomes in in vitro incubation as well as ZnO- and TiO2 -assisted photocatalytic degradation of clozapine as a mimicking method of phase I metabolism transformation was performed. Based on reversed-phase UHPLC separation and high-resolution MS/MS data, eight transformation products were identified and seven of them were found to be hepatic metabolites of the parent compound. The multivariate chemometric comparison of the obtained results shows ZnO-assisted photocatalysis to be a more suitable approach to phase I metabolism simulation. The photocatalytic experiments demonstrated that the disappearance of clozapine followed pseudo-zero order kinetics.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
19
|
The Genetic Polymorphism UGT1A4*3 Is Associated with Low Posaconazole Plasma Concentrations in Hematological Malignancy Patients Receiving the Oral Suspension. Antimicrob Agents Chemother 2018; 62:AAC.02230-17. [PMID: 29661871 DOI: 10.1128/aac.02230-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/07/2018] [Indexed: 01/14/2023] Open
Abstract
The metabolism of posaconazole is mediated mainly by uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, especially UGT1A4. The aim of this study was to investigate the effects of genetic polymorphisms on the posaconazole plasma concentration (PPC). This prospective study was conducted from September 2014 to August 2016. We enrolled patients with acute myeloid leukemia or myelodysplastic syndrome treated with posaconazole oral suspension (200 mg) three times daily for fungal prophylaxis. The patients were examined for the multidrug resistance gene 1 3435C>T and 2677G>T/A variations and the UGT1A4*3 allele by direct sequencing of DNA from peripheral whole-blood samples. We defined poor absorbers to be those with PPCs of <200 ng/ml and the optimal PPC to be ≥700 ng/ml on day 8. The associations between genetic polymorphisms and the PPC were evaluated using multivariate logistic regression analysis including clinical variables. During the study period, 132 patients were enrolled. Six patients (4.5%) were defined as poor absorbers, and 49 patients (37.1%) did not reach the optimal PPC on day 8. In multivariate analysis, the independent risk factors for a poor absorber were at least one UGT1A4*3 allele (adjusted odds ratio [aOR], 18.81; 95% confidence interval [CI], 1.09 to 324.44; P = 0.043) and poor oral food intake (aOR per -100 kcal, 1.44; 95% CI, 1.04 to 1.99; P = 0.029). There was no statistically significant association between the genetic polymorphisms and achievement of the optimal PPC on day 8. The UGT1A4*3 polymorphism is an independent risk factor for being a poor absorber of posaconazole oral suspension in patients with hematological malignancies.
Collapse
|
20
|
Abstract
OBJECTIVES Valproic acid and clozapine are drugs commonly used in the treatment of schizophrenic and schizoaffective disorders. Pharmacokinetic interactions of valproic acid with several drugs are well known, yet results concerning the interaction with clozapine are inconsistent. METHODS Steady-state dose-corrected serum concentrations of clozapine and its main metabolite norclozapine were retrospectively analyzed in 45 patients receiving both clozapine and valproic acid. Controls were matched for sex, age, smoking, comedication, and inflammatory response. RESULTS The group receiving comedication with valproic acid showed significantly lower median dose-corrected serum concentrations of norclozapine (0.44 [0.27-0.58] (ng/mL)/(mg/d) vs 0.78 [0.60-1.07] (ng/mL)/(mg/d)) as well as metabolite to parent compound ratios (0.40 [0.36-0.47] vs 0.71 [0.58-0.84]) by approximately 44%. Dose-corrected serum concentrations of clozapine were not significantly lower. The effect of valproic acid was independent of sex and smoking. CONCLUSIONS Comedication with valproic acid accelerated metabolism of clozapine with predominant effects on the degradation of norclozapine. Therapeutic drug monitoring should be applied to guide individual patient responses upon initiation of comedication.
Collapse
|
21
|
Smith RM. Advancing psychiatric pharmacogenomics using drug development paradigms. Pharmacogenomics 2017; 18:1459-1467. [PMID: 28975860 DOI: 10.2217/pgs-2017-0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drugs used to treat psychiatric disorders, even when taken as directed, fail to provide adequate relief for a sizeable proportion of patients. Despite our advancements in understanding human genetics and development of high-throughput tools to probe variation, pharmacogenomics has yielded marginal ability to predict drug response for psychiatric disorders. Here, I review the current pharmacogenomics paradigm, identifying opportunities to incorporate drug development strategies designed to increase the probability of delivering a successful molecule to the clinic. This includes using in-depth pharmacokinetic profiles, clear measures of target engagement and target-specific pharmacodynamic responses orthogonal to clinical response. The complex pharmacological profiles psychiatric drugs require re-examination of simplified clinical response-oriented pharmacogenetic hypotheses, in favor of a more complete patient profile.
Collapse
Affiliation(s)
- Ryan M Smith
- Division of Pharmaceutics & Translational Therapeutics, Department of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, College of Pharmacy, 115 South Grand Avenue, S427 Pharmacy Building, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Gene polymorphisms potentially related to the pharmacokinetics of clozapine: a systematic review. Int Clin Psychopharmacol 2016; 31:179-84. [PMID: 25563806 DOI: 10.1097/yic.0000000000000065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clozapine is currently the ultimate effective therapy for otherwise treatment-refractory schizophrenia. However, the drug is also associated with many adverse effects, some of them potentially fatal. Thus, there is an unmet need to predict clinical response to clozapine. As the pharmacokinetics of clozapine vary considerably between and within individuals, there may be an association between genetic polymorphisms and clozapine plasma concentration and consequently, clinical response. We have reviewed studies that have investigated the association between clozapine metabolic pathways related to genes polymorphisms in relation to plasma clozapine concentration and clinical response. Overall, most of the studies reported negative results. The only gene polymorphism that has been found to be associated with clozapine plasma concentration and response was the ABCB1 gene, which codes for transmembrane transporters expressed in the bowel mucosa, blood-brain barrier, kidney and liver. More prospective longitudinal studies are needed to elucidate the possible role of the ABCB1 polymorphism and transmembrane transporters in clozapine pharmacokinetics and clinical response.
Collapse
|
23
|
Tian DD, Wang W, Wang HN, Sze SCW, Zhang ZJ. Pharmacokinetic Evaluation of Clozapine in Concomitant Use of Radix Rehmanniae, Fructus Schisandrae, Radix Bupleuri, or Fructus Gardeniae in Rats. Molecules 2016; 21:molecules21060696. [PMID: 27240333 PMCID: PMC6272930 DOI: 10.3390/molecules21060696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Radix Rehmanniae, Fructus Schisandrae, Radix Bupleuri, and Fructus Gardeniae are often used alongside with clozapine (CLZ) for schizophrenia patients in order to reduce side effects and enhance therapeutic efficacy. However, worse outcomes were observed raising concern about a critical issue, herb-drug interactions, which were rarely reported when antipsychotics were included. This study aims to determine whether the concomitant use of these herbal medicines affects the pharmacokinetic characteristics of CLZ in rat models. Rats were given a single or multiple intraperitoneal injections of 10 mg/kg CLZ, either alone or with individual herbal water extracts administered orally. CLZ and its two inactive metabolites, norclozapine and clozapine N-oxide, were determined by high-performance liquid chromatography/tandem mass spectrometry. In the acute treatment, the formation of both metabolites was reduced, while no significant change was observed in the CLZ pharmacokinetics for any of the herbal extracts. In the chronic treatment, none of the four herbal extracts significantly influenced the pharmacokinetic parameters of CLZ and its metabolites. Renal and liver functions stayed normal after the 11-day combined use of herbal medicines. Overall, the four herbs had limited interaction effect on CLZ pharmacokinetics in the acute and chronic treatment. Herb-drug interaction includes both pharmacokinetic and pharmacodynamic mechanisms. This result gives us a hint that pharmacodynamic herb-drug interaction, instead of pharmacokinetic types, may exist and need further confirmation.
Collapse
Affiliation(s)
- Dan-Dan Tian
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Hua-Ning Wang
- Department of Psychiatry, the fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Fowler S, Kletzl H, Finel M, Manevski N, Schmid P, Tuerck D, Norcross RD, Hoener MC, Spleiss O, Iglesias VA. A UGT2B10 splicing polymorphism common in african populations may greatly increase drug exposure. J Pharmacol Exp Ther 2014; 352:358-67. [PMID: 25503386 DOI: 10.1124/jpet.114.220194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RO5263397 [(S)-4-(3-fluoro-2-methyl-phenyl)-4,5-dihydro-oxazol-2-ylamine], a new compound that showed promising results in animal models of schizophrenia, is mainly metabolized in humans by N-glucuronidation. Enzyme studies, using the (then) available commercial uridine 5'-diphosphate-glucuronosyltransferases (UGTs), suggested that UGT1A4 is responsible for its conjugation. In the first clinical trial, in which RO5263397 was administered orally to healthy human volunteers, a 136-fold above-average systemic exposure to the parent compound was found in one of the participants. Further administration in this trial identified two more such poor metabolizers, all three of African origin. Additional in vitro studies with recombinant UGTs showed that the contribution of UGT2B10 to RO5263397 glucuronidation is much higher than UGT1A4 at clinically relevant concentrations. DNA sequencing in all of these poor metabolizers identified a previously uncharacterized splice site mutation that prevents assembly of full-length UGT2B10 mRNA and thus functional UGT2B10 protein expression. Further DNA database analyses revealed the UGT2B10 splice site mutation to be highly frequent in individuals of African origin (45%), moderately frequent in Asians (8%) and almost unrepresented in Caucasians (<1%). A prospective study using hepatocytes from 20 individual African donors demonstrated a >100-fold lower intrinsic clearance of RO5263397 in cells homozygous for the splice site variant allele. Our results highlight the need to include UGT2B10 when screening the human UGTs for the enzymes involved in the glucuronidation of a new compound, particularly when there is a possibility of N-glucuronidation. Moreover, this study demonstrates the importance of considering different ethnicities during drug development.
Collapse
Affiliation(s)
- Stephen Fowler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Heidemarie Kletzl
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Moshe Finel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Nenad Manevski
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Paul Schmid
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Dietrich Tuerck
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Roger D Norcross
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Marius C Hoener
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Olivia Spleiss
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| | - Victor A Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (S.F., H.K., P.S., D.T., R.D.N., M.C.H., O.S., V.A.I.); and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F., N.M.)
| |
Collapse
|
25
|
Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur J Drug Metab Pharmacokinet 2014; 41:149-55. [PMID: 25492569 DOI: 10.1007/s13318-014-0247-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
The gene encoding uridine diphosphate glucuronosyltransferase (UGT) 1A4 shows considerable polymorphism. Several common drugs are metabolised by UGT1A4, among them lamotrigine (LTG). Experimental and clinical studies suggest that certain variants of UGT1A4 are associated with altered enzyme activity. However, results are conflicting. This clinical study aimed to investigate the frequencies of two common UGT1A4 variants, *2 (P24T) and *3 (L48V), and their potential effects on serum concentrations of LTG. The *2 variant was associated with a trend towards higher serum concentrations, while the *3 variant was associated with significantly lower serum concentrations of LTG. The calculated allele frequencies were in the same range as in earlier studies on Caucasian populations. To our knowledge, this is the first study suggesting a clinical effect of UGT1A4*2. Further study is needed to confirm this finding.
Collapse
|
26
|
Chang Y, Yang LY, Zhang MC, Liu SY. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol 2014; 70:941-6. [DOI: 10.1007/s00228-014-1690-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/16/2014] [Indexed: 12/01/2022]
|
27
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany; Translational Pharmacology, University of Bonn Medical Faculty, Germany.
| | - H Bartels
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany
| | - M L Lehmann
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - J Brockmöller
- Institute of Clinical Pharmacology, University of Göttingen, Germany
| |
Collapse
|
28
|
Edavana VK, Dhakal IB, Williams S, Penney R, Boysen G, Yao-Borengasser A, Kadlubar S. Potential role of UGT1A4 promoter SNPs in anastrozole pharmacogenomics. Drug Metab Dispos 2013; 41:870-7. [PMID: 23371966 DOI: 10.1124/dmd.112.048157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anastrozole belongs to the nonsteroidal triazole-derivative group of aromatase inhibitors. Recently, clinical trials demonstrated improved antitumoral efficacy and a favorable toxicity with third-generation aromatase inhibitors, compared with tamoxifen. Anastrozole is predominantly metabolized by phase I oxidation with the potential for further phase II glucuronidation. It also, however, is subject to direct N-glucuronidation by UDP-glucuronosyltransferase 1A4 (UGT1A4). Anastrozole pharmacokinetics vary widely among patients, but pharmacogenomic studies of patients treated with anastrozole are sparse. In this study, we examined individual variability in the glucuronidation of anastrozole and its association with UGT1A4 promoter and coding region polymorphisms. In vitro assays using liver microsomal preparations from individual subjects (n = 96) demonstrated 235-fold variability in anastrozole glucuronidation. Anastrozole glucuronidation was correlated (r = 0.99; P < 0.0001) with lamotrigine glucuronidation (a diagnostic substrate for UGT1A4) and with UGT1A4 mRNA expression levels in human liver microsomes (r = 0.99; P < 0.0001). Recombinant UGT1A4 catalyzed anastrozole glucuronidation, which was inhibited by hecogenin (IC50 = 15 µM), a UGT1A4 specific inhibitor. The promoter region of UGT1A4 is polymorphic, and compared with those homozygous for the common allele, lower enzymatic activity was observed in microsomes from individuals heterozygous for -163G<A, -219T<G, and -217C<T (P = 0.009, P = 0.014, and P = 0.009, respectively). These results indicate that variability in glucuronidation could contribute to response to anastrozole in the treatment of breast cancer.
Collapse
Affiliation(s)
- Vineetha Koroth Edavana
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|