1
|
Mumme HL, Raikar SS, Bhasin SS, Thomas BE, Lawrence T, Weinzierl EP, Pang Y, DeRyckere D, Gawad C, Wechsler DS, Porter CC, Castellino SM, Graham DK, Bhasin M. Single-cell RNA sequencing distinctly characterizes the wide heterogeneity in pediatric mixed phenotype acute leukemia. Genome Med 2023; 15:83. [PMID: 37845689 PMCID: PMC10577904 DOI: 10.1186/s13073-023-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediatric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape. METHODS We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcriptomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were compared in MPAL subtypes. RESULTS B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML samples. Genes overexpressed in both MPAL subtypes' blast cells compared to AML, ALL, and healthy BM included MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding subtypes. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, including selective upregulation of the IL-16 pathway in relapsed samples. CONCLUSIONS We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed to validate these findings.
Collapse
Affiliation(s)
- Hope L Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Taylor Lawrence
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Elizabeth P Weinzierl
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Yakun Pang
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Chuck Gawad
- Department: Pediatrics - Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Lü P, Qiu S, Pan Y, Shi S, Yu Q, Yu F, Miao L, Wang H, Chen K. Discovery of an Heparin-Binding Epidermal Growth Factor Domain Antibody from a Phage Library and Analysis of Its Inhibitory Effects in SKOV3 Cells. Cancer Biother Radiopharm 2023; 38:572-579. [PMID: 34529926 DOI: 10.1089/cbr.2021.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), which binds to the EGF receptor, plays an important role in the occurrence and development of inflammation in various diseases. HB-EGF mediates the progression of ovarian cancer and is associated with disease prognosis. Thus, a specific humanized antibody to HB-EGF with high affinity is important. Methods: In this study, a humanized domain antibody (VH) against HB-EGF was discovered through phage display technology. The domain antibody was expressed in HB2151 cells and purified from the supernatant using protein L, and were used to test the its effect in invasion and migration of ovarian cancer SKOV3. Results: A domain antibody against HB-EGF was discovered, with a dissociation constant of ∼30 nM. Functional assays indicated that the domain antibody inhibited the functions of HB-EGF in promoting invasion and migration of SKOV3 cells. Conclusions: The selected domain antibody is a potential tool for developing novel drugs or therapies to combat ovarian cancer.
Collapse
Affiliation(s)
- Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shenyan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Huiying Wang
- Jiangsu Well Biotechnology Co., Ltd., Changzhou, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
4
|
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2211-2234. [PMID: 36053324 DOI: 10.1007/s00432-022-04328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 12/25/2022]
Abstract
Ovarian cancer (OC) is among the most common human malignancies and the first cause of deaths among gynecologic cancers. Early diagnosis can help improving prognosis in those patients, and accordingly exploring novel molecular mechanisms may lead to find therapeutic targets. Circular RNAs (circRNAs) comprise a group of non-coding RNAs in multicellular organisms, which are identified with characteristic circular structure. CircRNAs have been found with substantial functions in regulating gene expression through interacting with RNA-binding proteins, targeting microRNAs, and transcriptional regulation. They have been found to be involved in regulating several critical processes such as cell growth, and death, organ development, signal transduction, and tumorigenesis. Accordingly, circRNAs have been implicated in a number of human diseases including malignancies. They are particularly reported to contribute to several hallmarks of cancer leading to cancer development and progression, although a number also are described with tumor-suppressor function. In OC, circRNAs are linked to regulation of cell growth, invasiveness, metastasis, angiogenesis, and chemoresistance. Notably, clinical studies also have shown potentials in diagnosis, prediction of prognosis, and therapeutic targets for OC. In this review, I have an overview to the putative mechanisms, and functions of circRNAs in regulating OC pathogenesis in addition to their clinical potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li W, Lin J, Huang J, Chen Z, Sheng Q, Yang F, Yang X, Cui X. MicroRNA-409-5p inhibits cell proliferation, and induces G 2/M phase arrest and apoptosis by targeting DLGAP5 in ovarian cancer cells. Oncol Lett 2022; 24:261. [PMID: 35765271 PMCID: PMC9219020 DOI: 10.3892/ol.2022.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
MicroRNA (miRNA/miR)-409-5p has been reported to be implicated in prostate and breast cancers; however, its functional role in ovarian cancer (OC) remains unclear. Therefore the aim of the present study was to investigate the clinical significance and biological function of miR-409-5p in OC. Here, reverse transcription-quantitative PCR analysis was performed to detect miR-409-5p expression in OC tissues and cell lines. The association between miR-409-5p expression and the clinicopathological characteristics of patients with OC was assessed using the Fisher's exact test. Furthermore, the Cell Counting Kit-8 assay was performed to assess cell proliferation. Cell cycle distribution and apoptosis were evaluated via flow cytometric analysis, and the target gene of miR-409-5p was validated via the dual-luciferase reporter assay. The results demonstrated that miR-409-5p expression was significantly downregulated in OC tissues and cell lines compared with adjacent normal tissues and epithelial cells, respectively. In addition, low miR-409-5p expression was significantly associated with tumor size (P=0.044) and the International Federation of Gynecology and Obstetrics staging system (P=0.005). Notably, overexpression of miR-409-5p suppressed cell proliferation, and induced G2/M phase arrest and apoptosis of OC cells. Mechanistically, discs large-associated protein 5 (DLGAP5) was identified as a novel target of miR-409-5p, which was negatively regulated by miR-409-5p. DLGAP5 expression was significantly upregulated in OC tissues and cell lines compared with adjacent normal tissues and epithelial cells, respectively. Furthermore, overexpression of DLGAP5 reversed the effects of miR-409-5p on SKOV-3 cell proliferation, and G2/M phase and apoptosis. Taken together, these results suggest that miR-409-5p acts as a tumor suppressor in OC by modulating DLGAP5 expression.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Ji Lin
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Jianfen Huang
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Zhuoying Chen
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
| | - Qunying Sheng
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| | - Fang Yang
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| | - Xue Yang
- Department of Clinical Medicine, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojie Cui
- Department of Gynecology, Xiamen Fifth Hospital, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
6
|
ADAM17-A Potential Blood-Based Biomarker for Detection of Early-Stage Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215563. [PMID: 34771725 PMCID: PMC8583642 DOI: 10.3390/cancers13215563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ovarian cancer has the highest lethality among gynecological tumors. Therefore, it is essential to find reliable biomarkers to improve early detection. This is the first report describing ADAM17 detection in serum and ascites fluid of ovarian cancer patients. A high ADAM17 concentration in serum at primary diagnosis is associated with early FIGO stages and predicts complete resection of the tumor mass. In addition, ADAM17 and CA-125 complement each other, especially in the diagnosis of early stages. In summary, ADAM17 appears to be a promising screening marker for detecting early-stage ovarian cancer. Abstract Ovarian cancer has the highest mortality rate among gynecological tumors. This is based on late diagnosis and the lack of early symptoms. To improve early detection, it is essential to find reliable biomarkers. The metalloprotease ADAM17 could be a potential marker, as it is highly expressed in many solid tumors, including ovarian and breast cancer. The aim of this work is to evaluate the relevance of ADAM17 as a potential diagnostic blood-based biomarker in ovarian cancer. Ovarian cancer cell lines IGROV-1 and A2780, as well as primary patient-derived tumor cells obtained from tumor tissue and ascitic fluid, were cultured to analyze ADAM17 abundance in the culture supernatant. In a translational approach, a cohort of 117 well-characterized ovarian cancer patients was assembled and ADAM17 levels in serum and corresponding ascitic fluid were determined at primary diagnosis. ADAM17 was quantified by enzyme-linked immunosorbent assay (ELISA). In the present study, ADAM17 was detected in the culture supernatant of ovarian cancer cell lines and primary cells. In addition, ADAM17 was found in serum and ascites of ovarian cancer patients. ADAM17 level was significantly increased in ovarian cancer patients compared to an age-matched control group (p < 0.0001). Importantly early FIGO I/II stages, which would not have been detected by CA-125, were associated with higher ADAM17 concentrations (p = 0.007). This is the first study proposing ADAM17 as a serum tumor marker in the setting of a gynecological tumor disease. Usage of ADAM17 in combination with CA-125 and other markers could help detect early stages of ovarian cancer.
Collapse
|
7
|
Overexpression of circ_CELSR1 facilitates paclitaxel resistance of ovarian cancer by regulating miR-149-5p/SIK2 axis. Anticancer Drugs 2021; 32:496-507. [PMID: 33735118 DOI: 10.1097/cad.0000000000001058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) have emerged as vital regulators in the chemoresistance of diverse human tumors, including ovarian cancer. In the present study, we attempted to explore the function of circ_CELSR1 in paclitaxel resistance of ovarian cancer. Quantitative real-time PCR (qRT-PCR) was conducted for the expression of circ_CELSR1, miR-149-5p and salt inducible kinase 2 (SIK2). Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the half-maximal inhibitory concentration (IC50) of paclitaxel and cell viability. Colony formation assay was adopted for cell colony formation. Flow cytometry analysis was conducted to analyze cell cycle process and apoptosis. Western blot assay was utilized to determine the protein levels. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to verify the association between miR-149-5p and circ_CELSR1 or SIK2. Murine xenograft model assay was carried out to determine the effect of circ_CELSR1 in paclitaxel resistance in vivo. Circ_CELSR1 was upregulated in paclitaxel-resistant ovarian cancer tissues and cells. Circ_CELSR1 knockdown enhanced paclitaxel sensitivity and cell apoptosis and repressed cell viability, colony formation and cell cycle process in paclitaxel-resistant ovarian cancer cells. For mechanism analysis, circ_CELSR1 could positively modulate SIK2 expression via sponging miR-149-5p. MiR-149-5p inhibition effectively restored the impacts of circ_CELSR1 knockdown on paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells. MiR-149-5p overexpression suppressed paclitaxel resistance and cell progression in paclitaxel-resistant ovarian cancer cells by interacting with SIK2. In addition, circ_CELSR1 silencing impeded paclitaxel resistance of ovarian cancer in vivo. Circ_CELSR1 improved the resistance of ovarian cancer to paclitaxel by regulating miR-149-5p/SIK2 axis.
Collapse
|
8
|
Shi D, Sheng A, Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front Mol Biosci 2021; 8:639666. [PMID: 33768117 PMCID: PMC7985165 DOI: 10.3389/fmolb.2021.639666] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a family of linear and negatively charged polysaccharides that exist ubiquitously on the human cell surface as well as in the extracellular matrix. GAGs interact with a wide range of proteins, including proteases, growth factors, cytokines, chemokines and adhesion molecules, enabling them to mediate many physiological processes, such as protein function, cellular adhesion and signaling. GAG-protein interactions participate in and intervene in a variety of human diseases, including cardiovascular disease, infectious disease, neurodegenerative diseases and tumors. The breakthrough in analytical tools and approaches during the last two decades has facilitated a greater understanding of the importance of GAG-protein interactions and their roles in human diseases. This review focuses on aspects of the molecular basis and mechanisms of GAG-protein interactions involved in human disease. The most recent advances in analytical tools, especially mass spectrometry-based GAG sequencing and binding motif characterization methods, are introduced. An update of selected families of GAG binding proteins is presented. Perspectives on development of novel therapeutics targeting specific GAG-protein interactions are also covered in this review.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Zheng Y, Li Z, Yang S, Wang Y, Luan Z. CircEXOC6B Suppresses the Proliferation and Motility and Sensitizes Ovarian Cancer Cells to Paclitaxel Through miR-376c-3p/FOXO3 Axis. Cancer Biother Radiopharm 2020; 37:802-814. [PMID: 33006481 DOI: 10.1089/cbr.2020.3739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yingchun Zheng
- Department of Gynecologic Oncology, Qingdao Central Hospital, Qingdao, China
| | - Zhen Li
- Department of Reproductive Center, Qingdao Hospital for Women and Children, Qingdao, China
| | - Shiying Yang
- Department of Obstetrics, Rizhao People's Hospital, Rizhao, China
| | - Yue Wang
- Department of Emergency, Qingdao Central Hospital, Qingdao, China
| | - Zhaohui Luan
- Department of Gynecologic Oncology, Qingdao Central Hospital, Qingdao, China
| |
Collapse
|
10
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Zhang S, Cheng J, Quan C, Wen H, Feng Z, Hu Q, Zhu J, Huang Y, Wu X. circCELSR1 (hsa_circ_0063809) Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Regulating FOXR2 Expression via miR-1252. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:718-730. [PMID: 31945729 PMCID: PMC6965731 DOI: 10.1016/j.omtn.2019.12.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/11/2023]
Abstract
Ovarian cancer is the malignant tumor of the female reproductive system with the highest fatality rate. Tolerance to chemotherapeutic drugs such as paclitaxel (PTX) occurring in the very early stage is one of the important factors of the poor prognosis of ovarian cancer. Herein, we aim to study the dysregulation of a particular circular RNA (circRNA), circCELSR1 (hsa_circ_0063809), and its role in the progression and PTX resistance of ovarian cancer. The high expression of circCELSR1 in PTX-resistant tissues of ovarian cancer and PTX-resistant ovarian cancer cells (SKOV3/PTX and HeyA-8/PTX) was determined by microarray analyses and quantitative real-time PCR. Cell Counting Kit-8 (CCK-8) assays were performed to investigate the effect of circCELSR1 on PTX sensitivity of ovarian cancer cells. Flow cytometer assays were used to detect cell cycle and apoptosis of ovarian cancer cells. The effect of circCELSR1 on ovarian cancer cells was assessed in vitro and in vivo. The microRNA (miRNA) sponge mechanism of circRNAs was demonstrated using dual-luciferase reporter and RNA immunoprecipitation assays. By microarray (5 PTX-resistant ovarian cancer tissues νs 5 PTX-sensitive ovarian cancer tissues) and qRT-PCR (36 normal ovarian tissues and ovarian cancer tissues) we identified circCELSR1 to be dramatically highly expressed in ovarian cancer samples and correlated with PTX resistance. Compared with sensitive cell lines, circCELSR1 was also highly expressed in PTX-resistant ovarian cancer cell lines, and circCELSR1 silencing enhanced PTX-induced cytotoxicity in ovarian cancer cells. Meanwhile, the inhibition of circCELSR1 also caused ovarian cancer cell G0/G1 arrest and an increase in apoptosis. In vivo studies revealed that circCELSR1 was stably inhibited in a xenograft mouse model and inhibited the growth of ovarian cancer. Furthermore, we demonstrated that circCELSR1 acts as a sponge for miR-1252 and verified that forkhead box 2 (FOXR2) is a novel target of miR-1252. In this study, we explored the specific mechanisms of PTX resistance and tumor progress of ovarian cancer due to circCELSR1; presented the circCELSR1-miR-1252-FOXR2 axis and its role in ovarian cancer drug sensitivity and progression; and suggest that the results may provide an experimental basis for clinical application.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Jie Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Chenlian Quan
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Hao Wen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Zheng Feng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Qin Hu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Jun Zhu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Yan Huang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200000, China.
| |
Collapse
|
12
|
Agarwal M, Mondal T, Bose B. Peptides derived from a short stretch of diphtheria toxin bind to heparin-binding epidermal growth factor-like growth factor. Toxicon 2019; 169:109-116. [PMID: 31494209 DOI: 10.1016/j.toxicon.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 10/26/2022]
Abstract
Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) is the receptor for diphtheria toxin (DT). Mutated or truncated, non-toxic DT has been used earlier for HB-EGF-targeted drug delivery and to modulate HB-EGF signaling. In the present work, we have synthesized a peptide corresponding to a 26 amino acid long stretch of the receptor-binding domain of DT. This region of DT makes multiple contacts with HB-EGF and has residues critical for binding to HB-EGF. We show that this peptide and two of its mutants bind to HB-EGF. We have also created recombinant proteins by fusing Maltose-binding Protein (MBP) with these peptides. These recombinant MBP-tagged peptides bind to HB-EGF with affinities in the range of 10-7 to 10-8 M. We have observed that these MBP-tagged peptides can modulate molecular signaling of HB-EGF. Therefore, this 26 amino acid long stretch of DT can be considered as an independent functional segment for binding to HB-EGF. Peptides corresponding to this region may be used for HB-EGF targeted cellular delivery of molecular cargo or to modulate HB-EGF signaling.
Collapse
Affiliation(s)
- Mahesh Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Current Address: Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Tanmay Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Biplab Bose
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
13
|
Tang XH, Li H, Zheng XS, Lu MS, An Y, Zhang XL. CRM197 reverses paclitaxel resistance by inhibiting the NAC-1/Gadd45 pathway in paclitaxel-resistant ovarian cancer cells. Cancer Med 2019; 8:6426-6436. [PMID: 31490008 PMCID: PMC6797568 DOI: 10.1002/cam4.2512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022] Open
Abstract
Heparin‐binding epidermal growth factor‐like growth factor (HB‐EGF) is a new promising target for the treatment of ovarian cancer. Our previous study showed that cross‐reacting material 197 (CRM197), a specific HB‐EGF inhibitor, significantly reverses resistance against paclitaxel in paclitaxel‐resistant ovarian cancer cells. However, the mechanism of the effect of CRM197 on the reversion of paclitaxel resistance was unclear. In this study, in vitro and in vivo data suggested that CRM197 treatment sensitized paclitaxel‐resistant ovarian cancer cells to paclitaxel, at least in part, via nucleus accumbens‐1 (NAC‐1) and its downstream pathway, DNA damage‐inducible 45‐γ interacting protein (Gadd45gip1)/growth arrest and DNA damage‐inducible 45 (Gadd45), in A2780/Taxol and SKOV3/Taxol cells. The results also showed that CRM197 activated the proapoptotic JNK/p38MAPK pathway to enhance caspase‐3 activity and apoptosis by downregulation of the NAC‐1/Gadd45gip1/Gadd45 pathway, leading to reversion of paclitaxel resistance in A2780/Taxol and SKOV3/Taxol cells. This study provides the first mechanism through which CRM197 significantly reverses resistance against paclitaxel by modulating the NAC‐1/Gadd45gip1/Gadd45 pathway in paclitaxel‐resistant ovarian cancer cells, and the mechanism of HB‐EGF inhibition as a novel therapeutic strategy for patients with paclitaxel‐resistant ovarian cancer.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiu-Shuang Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mei-Song Lu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan An
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Lei Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Shen Y, Ruan L, Lian C, Li R, Tu Z, Liu H. Discovery of HB-EGF binding peptides and their functional characterization in ovarian cancer cell lines. Cell Death Discov 2019; 5:82. [PMID: 30937184 PMCID: PMC6433920 DOI: 10.1038/s41420-019-0163-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 01/29/2023] Open
Abstract
Ovarian cancer is one of the most frequent causes of cancer death among all gynecologic cancers. Though standard therapy often results in temporary clinical remission, most patients suffer from recurrence and metastasis of ovarian cancer, which highlights the need for developing new therapeutic agents targeting specific molecules. Previous studies have demonstrated that the native ligand of epidermal growth factor receptor (EGFR) and ErbB4, heparin-binding EGF-like growth factor (HB-EGF), plays a critical role in the progression of ovarian cancer and is associated with prognosis of ovarian cancer. In the current study, we tried to develop a peptide-based treatment for ovarian cancer by targeting HB-EGF. After the functions of HB-EGF in promoting migration and invasion of SKOV3 and HO-8910 cells were confirmed, phage display was used to discover peptides binding to HB-EGF. Two peptides, no. 7 and no. 29 were found mildly binding to HB-EGF. Then the effects of these peptides on HB-EGF functions were examined and both peptides no. 7 and no. 29 were found indeed inhibiting the functions of HB-EGF in promoting migration and invasion of SKOV3 and HO-8910 cells in vitro. Further mechanism investigation showed that peptides no. 7 and no. 29 inhibited HB-EGF-promoted cell migration and invasion through attenuating activation of the EGFR signaling pathway manifested by decreased p-Erk1/2 and Snail levels. More importantly, peptides no. 7 and no. 29 showed strong activities in inhibiting migration of SKOV3 cells in vivo. These results provide a proof of concept method for developing novel peptide drugs to combat ovarian cancer through interfering with HB-EGF mediated signaling pathways.
Collapse
Affiliation(s)
- Yanting Shen
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Lingling Ruan
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Caixia Lian
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Ruyan Li
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Zhigang Tu
- 2Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Hanqing Liu
- 1School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| |
Collapse
|
15
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cross-reacting material 197, a heparin-binding EGF-like growth factor inhibitor, reverses the chemoresistance in human cisplatin-resistant ovarian cancer. Anticancer Drugs 2016; 25:1201-10. [PMID: 25115341 DOI: 10.1097/cad.0000000000000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to be a promising antitumor agent for ovarian cancer therapy. Our previous studies have shown that CRM197 has potent antitumor activity in human cisplatin-resistant ovarian cancer. However, the relationship between CRM197 and the resistance to cisplatin remains unclear. Here, we report that CRM197 significantly reverses the resistance to cisplatin in cisplatin-resistant ovarian carcinoma cell line (A2780/CDDP). We established xenograft nude mice models with A2780 and A2780/CDDP cells. Notably, we observed that CRM197 suppresses the expression of HB-EGF and epidermal growth factor receptor in A2780/CDDP cells and xenografts harboring the overexpression of HB-EGF and epidermal growth factor receptor. Experiments conducted in vitro and in vivo suggest that CRM197 markedly downregulates the expression of excision repair cross-complementing group 1 (P = 0.002) and DNA repair capacity in A2780/CDDP tumor (P < 0.001) by inactivation of extracellular signal-regulated kinase signaling, providing novel possible mechanisms for the ability of CRM197 to restore drug sensitivity. These results suggest that CRM197 as an HB-EGF inhibitor might be a cisplatin-chemosensitizing agent for the treatment of ovarian carcinoma with resistance to cisplatin.
Collapse
|
17
|
Snezhkova EA, Tridon A, Evrard B, Nikolaev VG, Uvarov VY, Tsimbalyuk RS, Ivanuk AA, Komov VV, Sakhno LA. Binding Potency of Heparin Immobilized on Activated Charcoal for DNA Antibodies. Bull Exp Biol Med 2016; 160:444-7. [PMID: 26902353 DOI: 10.1007/s10517-016-3192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/24/2022]
Abstract
In vitro experiments showed that heparin adsorbed on activated charcoal can bind antibodies raised against native and single-stranded DNA in a diluted sera pool with a high level of these DNA. Thus, heparin used as anticoagulant during hemosorption procedure can demonstrate supplementary therapeutic activity resulting from its interaction with various agents involved in acute and chronic inflammatory reactions such as DNA- and RNA-binding substances, proinflammatory cytokines, complement components, growth factors, etc. Research and development of heparin-containing carbonic adsorbents for the therapy of numerous inflammatory and autoimmune diseases seems to be a promising avenue in hematology.
Collapse
Affiliation(s)
- E A Snezhkova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine.
| | - A Tridon
- Faculty of Medicine and Pharmacy, University d'Auvergne, Clermont-Ferrand, France
| | - B Evrard
- Faculty of Medicine and Pharmacy, University d'Auvergne, Clermont-Ferrand, France
| | - V G Nikolaev
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | - V Yu Uvarov
- A. A. Bogomolets National Medical University, Kiev, Ukraine
| | - R S Tsimbalyuk
- A. A. Bogomolets National Medical University, Kiev, Ukraine
| | - A A Ivanuk
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | - V V Komov
- Research Institute of Physicochemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - L A Sakhno
- R. E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, National Academy of Science of Ukraine, Kiev, Ukraine
| |
Collapse
|
18
|
Bourgeois DL, Kabarowski KA, Porubsky VL, Kreeger PK. High-grade serous ovarian cancer cell lines exhibit heterogeneous responses to growth factor stimulation. Cancer Cell Int 2015; 15:112. [PMID: 26648788 PMCID: PMC4672525 DOI: 10.1186/s12935-015-0263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
Background The factors driving the onset and progression of ovarian cancer are not well understood. Recent reports have identified cell lines that are representative of the genomic pattern of high-grade serous ovarian cancer (HGSOC), in which greater than 90 % of tumors have a mutation in TP53. However, many of these representative cell lines have not been widely used so it is unclear if these cell lines capture the variability that is characteristic of the disease. Methods We investigated six TP53-mutant HGSOC cell lines (Caov3, Caov4, OV90, OVCA432, OVCAR3, and OVCAR4) for migration, MMP2 expression, proliferation, and VEGF secretion, behaviors that play critical roles in tumor progression. In addition to comparing baseline variation between the cell lines, we determined how these behaviors changed in response to four growth factors implicated in ovarian cancer progression: HB-EGF, NRG1β, IGF1, and HGF. Results Baseline levels of each behavior varied across the cell lines and this variation was comparable to that seen in tumors. All four growth factors impacted cell proliferation or VEGF secretion, and HB-EGF, NRG1β, and HGF impacted wound closure or MMP2 expression in at least two cell lines. Growth factor-induced responses demonstrated substantial heterogeneity, with cell lines sensitive to all four growth factors, a subset of the growth factors, or none of the growth factors, depending on the response of interest. Principal component analysis demonstrated that the data clustered together based on cell line rather than growth factor identity, suggesting that response is dependent on intrinsic qualities of the tumor cell rather than the growth factor. Conclusions Significant variation was seen among the cell lines, consistent with the heterogeneity of HGSOC. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0263-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle L Bourgeois
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Karl A Kabarowski
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Veronica L Porubsky
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| |
Collapse
|
19
|
Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxel-resistant human ovarian cancer. Tumour Biol 2015; 37:5521-8. [PMID: 26572150 DOI: 10.1007/s13277-015-4412-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been proven to be a promising chemotherapeutic target for ovarian cancer. Our previous studies have demonstrated that inhibition of HB-EGF by the special inhibitor, cross-reacting material 197 (CRM197), potently inhibits the anti-tumor activity in paclitaxel-resistant ovarian cancer. Here, we found that inhibition of HB-EGF by CRM197 significantly reverses the resistance to paclitaxel in paclitaxel-resistant ovarian carcinoma cell line (A2780/Taxol). A2780/Taxol cells over-expressed HB-EGF and epidermal growth factor receptor (EGFR) and CRM197 notably suppressed the expression of HB-EGF and EGFR. Experiments performed in vitro and in vivo further suggested that CRM197 markedly down-regulated the ATP-binding cassette sub-family B member 1 (ABCB1/MDR1) messenger RNA (mRNA) expression (P = 0.01), plasma membrane glycoprotein (P-gp) protein (P = 0.009), and P-gp-mediated efflux (P = 0.007) through inhibition of nuclear factor-κB (NF-κB) expression, which were classical chemoresistance-related targets with respect to paclitaxel therapy. Meanwhile, inhibition of HB-EGF enhanced caspase-3 activity to induce apoptosis via MDR1 inhibition in A2780/Taxol cells (P = 0.038). Collectively, HB-EGF is a molecular target for the resistance of ovarian cancer to paclitaxel and CRM197 as a HB-EGF-targeted agent might be a chemosensitizing agent for paclitaxel-resistant ovarian carcinoma. Our findings provide novel possible mechanisms for HB-EGF to be a target to restore the chemosensitivity to paclitaxel.
Collapse
|
20
|
Sehouli J, Reinthaller A, Marth C, Reimer D, Reimer T, Stummvoll W, Angleitner-Boubenizek L, Brandt B, Chekerov R. Intra- and postoperative catumaxomab in patients with epithelial ovarian cancer: safety and two-year efficacy results from a multicentre, single-arm, phase II study. Br J Cancer 2014; 111:1519-25. [PMID: 25225907 PMCID: PMC4200087 DOI: 10.1038/bjc.2014.443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/25/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This is the first study investigating the safety and efficacy of the trifunctional antibody catumaxomab administered i.p. at the end of cytoreductive surgery and postoperatively prior to standard chemotherapy in patients with primary epithelial ovarian cancer (EOC). METHODS Patients received i.p. catumaxomab 10 μg intraoperatively and 10, 20, 50 and 150 μg on days 7, 10, 13 and 16, respectively, postoperatively. After the study, patients received standard chemotherapy and were followed for 23 months. The primary endpoint was the rate of postoperative complications. RESULTS Forty-one patients entered the study and were evaluable for safety and 34 were alive at 24 months. Complete tumour resection rate was 68%. Postoperative complications were observed in 51%, the most common anastomotic leakage (7%) and wound infections (5%). The most common catumaxomab-related adverse events were abdominal pain, nausea, vomiting and pyrexia. Thirty-nine percent discontinued catumaxomab therapy, and 98% received chemotherapy post study. Kaplan-Meier estimates of disease-free and overall survival after 24 months were 56% and 85%, respectively. CONCLUSIONS Intra- and close postoperative catumaxomab seems feasible, but efficacy and safety were limited by postsurgical complications. In the future prospective trials are needed to investigate the best schedule of integration of catumaxomab into current treatment strategies for EOC.
Collapse
Affiliation(s)
- J Sehouli
- 1] NOGGO, Ovarian cancer study group of the North-Eastern German Society of Gynaecological Oncology (NOGGO), Berlin, Germany [2] Department of Gynaecology, Charité University Hospital, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - A Reinthaller
- Department of Gynaecology and Gynecologic Oncology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - C Marth
- Department of Obstetrics and Gynaecology, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - D Reimer
- Department of Gynaecology, Charité University Hospital, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - T Reimer
- Department of Obstetrics and Gynaecology, Klinikum Suedstadt, University of Rostock, Südring 81, D-18059 Rostock, Germany
| | - W Stummvoll
- Department of Obstetrics and Gynaecology, Landesfrauenklinik Linz, Krankenhausstraße 26-30, A-4020 Linz, Austria
| | - L Angleitner-Boubenizek
- Department of Obstetrics and Gynaecology, Landesfrauenklinik Linz, Krankenhausstraße 26-30, A-4020 Linz, Austria
| | - B Brandt
- Neovii (formerly Fresenius) Biotech GmbH, Frankfurter Ring 193a, 80807 Munich, Germany
| | - R Chekerov
- Department of Gynaecology, Charité University Hospital, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
21
|
Cole CL, Rushton G, Jayson GC, Avizienyte E. Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding epidermal growth factor (EGF)-like growth factor/EGF receptor signaling. J Biol Chem 2014; 289:10488-10501. [PMID: 24563483 PMCID: PMC4036170 DOI: 10.1074/jbc.m113.534263] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Indexed: 01/13/2023] Open
Abstract
Heparan sulfate (HS) is a component of cell surface and extracellular matrix proteoglycans that regulates numerous signaling pathways by binding and activating multiple growth factors and chemokines. The amount and pattern of HS sulfation are key determinants for the assembly of the trimolecular, HS-growth factor-receptor, signaling complex. Here we demonstrate that HS 6-O-sulfotransferases 1 and 2 (HS6ST-1 and HS6ST-2), which perform sulfation at 6-O position in glucosamine in HS, impact ovarian cancer angiogenesis through the HS-dependent HB-EGF/EGFR axis that subsequently modulates the expression of multiple angiogenic cytokines. Down-regulation of HS6ST-1 or HS6ST-2 in human ovarian cancer cell lines results in 30-50% reduction in glucosamine 6-O-sulfate levels in HS, impairing HB-EGF-dependent EGFR signaling and diminishing FGF2, IL-6, and IL-8 mRNA and protein levels in cancer cells. These cancer cell-related changes reduce endothelial cell signaling and tubule formation in vitro. In vivo, the development of subcutaneous tumor nodules with reduced 6-O-sulfation is significantly delayed at the initial stages of tumor establishment with further reduction in angiogenesis occurring throughout tumor growth. Our results show that in addition to the critical role that 6-O-sulfate moieties play in angiogenic cytokine activation, HS 6-O-sulfation level, determined by the expression of HS6ST isoforms in ovarian cancer cells, is a major regulator of angiogenic program in ovarian cancer cells impacting HB-EGF signaling and subsequent expression of angiogenic cytokines by cancer cells.
Collapse
Affiliation(s)
- Claire L Cole
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Graham Rushton
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Gordon C Jayson
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Egle Avizienyte
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom.
| |
Collapse
|
22
|
Kelley DS, Adkins Y, Reddy A, Woodhouse LR, Mackey BE, Erickson KL. Sweet bing cherries lower circulating concentrations of markers for chronic inflammatory diseases in healthy humans. J Nutr 2013; 143:340-4. [PMID: 23343675 DOI: 10.3945/jn.112.171371] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A limited number of studies have demonstrated that some modulators of inflammation can be altered by the consumption of sweet cherries. We have taken a proteomics approach to determine the effects of dietary cherries on targeted gene expression. The purpose was then to determine changes caused by cherry consumption in the plasma concentrations of multiple biomarkers for several chronic inflammatory diseases in healthy humans with modestly elevated C-reactive protein (CRP; range, 1-14 mg/L; mean, 3.5 mg/L; normal, <1.0 mg/L). Eighteen men and women (45-61 y) supplemented their diets with Bing sweet cherries (280 g/d) for 28 d. Fasting blood samples were taken before the start of consuming the cherries (study d 7), 28 d after the initiation of cherry supplementation (d 35), and 28 d after the discontinuation (d 63). Of the 89 biomarkers assessed, cherry consumption for 28 d altered concentrations of 9, did not change those of 67, and the other 13 were below the detection limits. Cherry consumption decreased (P < 0.05) plasma concentrations of extracellular newly identified ligand for the receptor for advanced glycation end products (29.0%), CRP (20.1%), ferritin (20.3%), plasminogen activator inhibitor-1 (19.9%), endothelin-1 (13.7%), epidermal growth factor (13.2%), and IL-18 (8.1%) and increased that of IL-1 receptor antagonist (27.9%) compared with corresponding values on study d 7. The ferritin concentration continued to decrease between d 35 and 63 and it was significantly lower on d 63 than on d 7. Because the participants in this study were healthy, no clinical pathology end points were measured. However, results from the present study demonstrate that cherry consumption selectively reduced several biomarkers associated with inflammatory diseases.
Collapse
Affiliation(s)
- Darshan S Kelley
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The peritoneal metastatic route of cancer dissemination is shared by cancers of the ovary and gastrointestinal tract. Once initiated, peritoneal metastasis typically proceeds rapidly in a feed-forward manner. Several factors contribute to this efficient progression. In peritoneal metastasis, cancer cells exfoliate into the peritoneal fluid and spread locally, transported by peritoneal fluid. Inflammatory cytokines released by tumor and immune cells compromise the protective, anti-adhesive mesothelial cell layer that lines the peritoneal cavity, exposing the underlying extracellular matrix to which cancer cells readily attach. The peritoneum is further rendered receptive to metastatic implantation and growth by myofibroblastic cell behaviors also stimulated by inflammatory cytokines. Individual cancer cells suspended in peritoneal fluid can aggregate to form multicellular spheroids. This cellular arrangement imparts resistance to anoikis, apoptosis, and chemotherapeutics. Emerging evidence indicates that compact spheroid formation is preferentially accomplished by cancer cells with high invasive capacity and contractile behaviors. This review focuses on the pathological alterations to the peritoneum and the properties of cancer cells that in combination drive peritoneal metastasis.
Collapse
|
24
|
Regulation of cellular growth, apoptosis, and Akt activity in human U251 glioma cells by a combination of cisplatin with CRM197. Anticancer Drugs 2012; 23:81-9. [PMID: 21934602 DOI: 10.1097/cad.0b013e32834b9b72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aberrantly activated antiapoptotic phospatidyl-3-inositol-kinase (PI3K)/Akt signaling induced by cisplatin limits the effectiveness of chemotherapy; inhibition of this pathway may augment the sensitivity of tumor cells to cisplatin-induced toxicity and promote apoptosis. Cross-reacting material 197 (CRM197), the nontoxic mutant of diphtheria toxin, could act as an heparin-binding epidermal growth factor inhibitor and has been shown to have some anticancer effects, but the effect of CRM197 on glioma cells remains unclear. The aim of this study was to investigate the effects of a combination of cisplatin with CRM197 on the growth and apoptosis of human U251 glioma cells and the possible mechanism. In this study, we demonstrated that cisplatin or CRM197 induced a dose-dependent growth inhibition in U251 cells, but cisplatin at 5 µg/ml and CRM197 at 1 µg/ml did not affect the viability of human astrocytes. Cisplatin induced a time-dependent growth inhibition in U251 cells, whereas the growth-inhibitory effects induced by CRM197 alone or combined with cisplatin reached a peak at 24 h after treatment. Compared with the administration of cisplatin or CRM197 alone, CRM197 combined with cisplatin significantly enhanced U251 cell growth inhibition and apoptosis. Cisplatin induced sustained activation of Akt, whereas CRM197 markedly suppressed the Akt phosphorylation induced by cisplatin. The effects of growth inhibition and apoptosis were markedly enhanced after a combination of cisplatin with CRM197 plus the PI3K inhibitor LY294002 or wortmannin. Therefore, CRM197 combined with cisplatin could enhance growth inhibition and apoptosis of glioma cells by inhibiting the cisplatin-induced PI3K/Akt pathway.
Collapse
|
25
|
Nishikawa K, Asai T, Shigematsu H, Shimizu K, Kato H, Asano Y, Takashima S, Mekada E, Oku N, Minamino T. Development of anti-HB-EGF immunoliposomes for the treatment of breast cancer. J Control Release 2012; 160:274-80. [DOI: 10.1016/j.jconrel.2011.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
26
|
Tang XH, Deng S, Li M, Lu MS. The anti-tumor effect of cross-reacting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer. Biochem Biophys Res Commun 2012; 422:676-80. [PMID: 22609777 DOI: 10.1016/j.bbrc.2012.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF was over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p<0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.
Collapse
Affiliation(s)
- Xiao-han Tang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | | | | | | |
Collapse
|
27
|
Hiss D. Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. JOURNAL OF ONCOLOGY 2012; 2012:737981. [PMID: 22481932 PMCID: PMC3306947 DOI: 10.1155/2012/737981] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/24/2011] [Indexed: 12/18/2022]
Abstract
The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects, but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted treatment rationales.
Collapse
Affiliation(s)
- Donavon Hiss
- Molecular Oncology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
28
|
|
29
|
Ohnishi Y, Inoue H, Furukawa M, Kakudo K, Nozaki M. Heparin-binding epidermal growth factor-like growth factor is a potent regulator of invasion activity in oral squamous cell carcinoma. Oncol Rep 2011; 27:954-8. [PMID: 22209887 PMCID: PMC3583476 DOI: 10.3892/or.2011.1616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/24/2011] [Indexed: 11/06/2022] Open
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) has been shown to stimulate the growth of various cell types in an autocrine or paracrine manner. Although HB-EGF is widely expressed in tumors when compared with normal tissue, its contribution to cancer progression remains obscure. The objective of this study was to explore the effects of HB-EGF on proliferation, invasion activity and MMP-9 levels of an oral squamous cell carcinoma cell line, HSC3, in vitro. MTT assays, Matrigel invasion assays and RT-PCR in combination with RNA interference (RNAi) were used in this study. An RNAi-mediated decrease in HB-EGF expression reduced invasion activity and MMP-9 mRNA levels, but not proliferation, in HSC3 cells. The addition of purified HB-EGF to cell culture medium upregulated MMP-9 mRNA levels in HSC3 cells. Furthermore, the TACE inhibitor TAPI-2 or EGFR inhibitor AG1478 decreased MMP-9 mRNA levels in HSC3 cells. These data indicate that HB-EGF released from HSC3 cells by TACE stimulates EGFR in an autocrine manner, which in turn activates invasion activity via MMP-9 upregulation.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Chuo-ku, Osaka 540-0008, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
EGF-like growth factors control tumor progression, as well as evasion from the toxic effects of chemotherapy. Accordingly, antibodies targeting the cognate receptors, such as EGFR/ErbB-1 and the co-receptor HER2/ErbB-2, are widely used to treat cancer patients, but agents that target the EGF-like growth factors are not available. To circumvent the existence of 11 distinct ErbB ligands, we constructed a soluble fusion protein (hereinafter: TRAP-Fc) comprising truncated extracellular domains of EGFR/ErbB-1 and ErbB-4. The recombinant TRAP-Fc retained high affinity ligand binding to EGF-like growth factors and partially inhibited growth of a variety of cultured tumor cells. Consistently, TRAP-Fc displayed an inhibitory effect in xenograft models of human cancer, as well as synergy with chemotherapy. Additionally, TRAP-Fc inhibited invasive growth of mammary tumor cells and reduced their metastatic seeding in the lungs of animals. Taken together, the activities displayed by TRAP-Fc reinforce critical roles of EGF-like growth factors in tumor progression, and they warrant further tests of TRAP-Fc in pre-clinical models.
Collapse
|