1
|
Liehr T, Ziegler M, Person L, Kankel S, Padutsch N, Weise A, Weimer JP, Williams H, Ferreira S, Melo JB, Carreira IM. Small supernumerary marker chromosomes derived from human chromosome 11. Front Genet 2023; 14:1293652. [PMID: 38174048 PMCID: PMC10763568 DOI: 10.3389/fgene.2023.1293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: With only 39 reported cases in the literature, carriers of a small supernumerary marker chromosome (sSMC) derived from chromosome 11 represent an extremely rare cytogenomic condition. Methods: Herein, we present a review of reported sSMC(11), add 18 previously unpublished cases, and closely review eight cases classified as 'centromere-near partial trisomy 11' and a further four suited cases from DECIPHER. Results and discussion: Based on these data, we deduced the borders of the pericentric regions associated with clinical symptoms into a range of 2.63 and 0.96 Mb for chromosome 11 short (p) and long (q) arms, respectively. In addition, the minimal pericentric region of chromosome 11 without triplo-sensitive genes was narrowed to positions 47.68 and 60.52 Mb (GRCh37). Furthermore, there are apparent differences in the presentation of signs and symptoms in carriers of larger sSMCs derived from chromosome 11 when the partial trisomy is derived from different chromosome arms. However, the number of informative sSMC(11) cases remains low, with overlapping presentation between p- and q-arm-imbalances. In addition, uniparental disomy (UPD) of 'normal' chromosome 11 needs to be considered in the evaluation of sSMC(11) carriers, as imprinting may be an influencing factor, although no such cases have been reported. Comprehensively, prenatal sSMC(11) cases remain a diagnostic and prognostic challenge.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Monika Ziegler
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Luisa Person
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jörg Paul Weimer
- Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, University Kiel, Kiel, Germany
| | | | - Susana Ferreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana B. Melo
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Carreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Pendina AA, Shilenkova YV, Talantova OE, Efimova OA, Chiryaeva OG, Malysheva OV, Dudkina VS, Petrova LI, Serebryakova EA, Shabanova ES, Mekina ID, Komarova EM, Koltsova AS, Tikhonov AV, Tral TG, Tolibova GK, Osinovskaya NS, Krapivin MI, Petrovskaia-Kaminskaia AV, Korchak TS, Ivashchenko TE, Glotov OS, Romanova OV, Shikov AE, Urazov SP, Tsay VV, Eismont YA, Scherbak SG, Sagurova YM, Vashukova ES, Kozyulina PY, Dvoynova NM, Glotov AS, Baranov VS, Gzgzyan AM, Kogan IY. Reproductive History of a Woman With 8p and 18p Genetic Imbalance and Minor Phenotypic Abnormalities. Front Genet 2019; 10:1164. [PMID: 31824569 PMCID: PMC6880252 DOI: 10.3389/fgene.2019.01164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023] Open
Abstract
We report on the phenotype and the reproductive history of an adult female patient with an unbalanced karyotype: 8p23 and 18p11.3 terminal deletions and 8p22 duplication. The indication for karyotyping of the 28-year-old patient was a structural rearrangement in her miscarriage specimen: 45,ХХ,der(8;18)t(8;18)(p23;p11.3). Unexpectedly, the patient had the same karyotype with only one normal chromosome 8, one normal chromosome 18, and a derivative chromosome, which was a product of chromosomes 8 and 18 fusion with loss of their short arm terminal regions. Fluorescence in situ hybridization revealed that derivative chromosome was a pseudodicentric with an active centromere of chromosome 8. Array comparative genomic hybridization confirmed 8p and 18p terminal deletions and additionally revealed 8p22 duplication with a total of 43 OMIM annotated genes being affected by the rearrangement. The patient had minor facial and cranial dysmorphia and no pronounced physical or mental abnormalities. She was socially normal, had higher education and had been married since the age of 26 years. Considering genetic counseling, the patient had decided to conceive the next pregnancy through in vitro fertilization (IVF) with preimplantation genetic testing for structural chromosomal aberrations (PGT-SR). She underwent four IVF/PGT-SR cycles with a total of 25 oocytes obtained and a total of 10 embryos analyzed. Only one embryo was balanced regarding chromosomes 8 and 18, while the others were unbalanced and demonstrated different combinations of the normal chromosomes 8 and 18 and the derivative chromosome. The balanced embryo was transferred, but the pregnancy was not registered. After four unsuccessful IVF/PGT-SR cycles, the patient conceived naturally. Non-invasive prenatal testing showed additional chromosome 18. The prenatal cytogenetic analysis of chorionic villi revealed an abnormal karyotype: 46,ХХ,der(8;18)t(8;18)(p23;p11.3)mat,+18. The pregnancy was terminated for medical reasons. The patient has a strong intention to conceive a karyotypically normal fetus. However, genetic counseling regarding this issue is highly challenging. Taking into account a very low chance of balanced gametes, emotional stress caused by numerous unsuccessful attempts to conceive a balanced embryo and increasing age of the patient, an IVF cycle with a donor oocyte should probably be considered.
Collapse
Affiliation(s)
- Anna A. Pendina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Yulia V. Shilenkova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga E. Talantova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga A. Efimova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga G. Chiryaeva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga V. Malysheva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Vera S. Dudkina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Lubov' I. Petrova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Elena A. Serebryakova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Elena S. Shabanova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Irina D. Mekina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Evgeniia M. Komarova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Alla S. Koltsova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Andrei V. Tikhonov
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Tatyana G. Tral
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Gulrukhsor Kh. Tolibova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Natalia S. Osinovskaya
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Mikhail I. Krapivin
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anastasiia V. Petrovskaia-Kaminskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Taisia S. Korchak
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Tatyana E. Ivashchenko
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Oleg S. Glotov
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- City Hospital №40, St. Petersburg, Russia
| | | | | | | | | | | | - Sergei G. Scherbak
- St. Petersburg State University, St. Petersburg, Russia
- City Hospital №40, St. Petersburg, Russia
| | | | - Elena S. Vashukova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Polina Y. Kozyulina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | | | - Andrey S. Glotov
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Vladislav S. Baranov
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Alexander M. Gzgzyan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Igor Yu. Kogan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| |
Collapse
|
3
|
Arican P, Olgac Dundar N, Ozyilmaz B, Cavusoglu D, Gencpinar P, Erdogan KM, Saka Guvenc M. Chromosomal Microarray Analysis in Children with Unexplained Developmental Delay/Intellectual Disability. J Pediatr Genet 2019; 8:1-9. [PMID: 30775046 DOI: 10.1055/s-0038-1676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
Chromosomal microarray (CMA) analysis for discovery of copy number variants (CNVs) is now recommended as a first-line diagnostic tool in patients with unexplained developmental delay/intellectual disability (DD/ID) and autism spectrum disorders. In this study, we present the results of CMA analysis in patients with DD/ID. Of 210 patients, pathogenic CNVs were detected in 26 (12%) and variants of uncertain clinical significance in 36 (17%) children. The diagnosis of well-recognized genetic syndromes was achieved in 12 patients. CMA analysis revealed pathogenic de novo CNVs, such as 11p13 duplication with new clinical features. Our results support the utility of CMA as a routine diagnostic test for unexplained DD/ID.
Collapse
Affiliation(s)
- Pinar Arican
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Katip Celebi University, Izmir, Turkey
| | - Berk Ozyilmaz
- Department of Medical Genetics, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Dilek Cavusoglu
- Department of Pediatric Neurology, Katip Celebi University, Izmir, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Katip Celebi University, Izmir, Turkey
| | - Kadri Murat Erdogan
- Department of Medical Genetics, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Merve Saka Guvenc
- Department of Medical Genetics, Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
4
|
Al-Rikabi ABH, Pekova S, Fan X, Jančušková T, Liehr T. Small Supernumerary Marker Chromosome May Provide Information on Dosage-insensitive Pericentric Regions in Human. Curr Genomics 2018; 19:192-199. [PMID: 29606906 PMCID: PMC5850507 DOI: 10.2174/1389202918666170717163830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/18/2016] [Accepted: 01/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cytogenetically visible chromosomal imbalances in humans are deleterious and adverse in the majority of the cases. However, healthy persons living with chromosomal imbalances in the range of several megabasepairs (Mbps) in size, like carriers of small Supernumerary Marker Chromosomes (sSMCs) exist. MATERIALS & METHODS The identification of healthy sSMC carriers with euchromatic centromere-near (ECN) imbalances led to the following proposal: ECN-regions do not contain any dosage sensitive genes. Due to own previous work, dosage-insensitive pericentric ECN-regions were already determined with an accuracy of 0.3 and 5 Mbp. Based on this data we established 43 new pericentromeric probe sets spanning about 3-5 Mbp of each euchromatic human chromosome arm starting from the known insensitive regions towards distal. Such so called pericentromeric-critical region fluorescence in situ hybridization (PeCR-FISH) probe sets were applied exemplarily and successful here in 15 sSMC cases as available from the Else Kröner-Fresenius-sSMC-cellbank . CONCLUSION Most of the involved sSMC breakpoints could be characterized as a higher resolution than before. An unexpected result was that in 5/15 cases cryptic mosaicism was characterized. The latter is also to be considered to have potentially an influence on the clinical outcome in these so-called discontinuous sSMCs. Overall, the suitability of PeCR-FISH to characterize sSMCs was proven; the potential of this probe set to further delineate sizes of dosage insensitive pericentric regions is obvious but dependent on suited cases. Furthermore, discontinuous sSMCs can be identified by this approach and this new subtype of sSMC needs to be studied in more detail in future.
Collapse
Affiliation(s)
- Ahmed B. Hamid Al-Rikabi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| | - Sona Pekova
- Synlab Genetics s.r.o., Evropska 176/16, 16000 Prague 6, Czech Republic
| | - Xioabo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| | - Tereza Jančušková
- Synlab Genetics s.r.o., Evropska 176/16, 16000 Prague 6, Czech Republic
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747Jena, Germany
| |
Collapse
|
5
|
Barranco L, Costa M, Lloveras E, Ordóñez E, Maiz N, Hernando C, Villa O, Cirigliano V, Plaja A. Three-Year Follow-Up of a Prenatally Ascertained Apparently Non-Mosaic sSMC(10): Delineation of a Non-Critical Region. Cytogenet Genome Res 2016; 147:209-11. [PMID: 26974471 DOI: 10.1159/000444600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Small supernumerary marker chromosomes (sSMC) originating from chromosome 10 are rare and usually found in mosaic form. We present a de novo apparently non-mosaic sSMC(10) prenatally diagnosed in amniotic fluid and postnatally confirmed in peripheral blood. Characterization by array-CGH showed a pericentromeric duplication of 7.1 Mb of chromosome 10. The fetus did not show ultrasound abnormalities, and a normal female phenotype was observed during a 3-year postnatal follow-up. The absence of phenotypic abnormalities in the present case provides evidence of a non-critical pericentromeric region in 10p11.21q11.1 (hg19 35,355,570-42,448,569) associated with a duplication.
Collapse
Affiliation(s)
- Laura Barranco
- Departament de Citogenx00E8;tica, LABCO Diagnostics Iberia, Esplugues de Llobregat, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Louvrier C, Egea G, Labalme A, Des Portes V, Gazzo S, Callet-Bauchu E, Till M, Sanlaville D, Edery P, Schluth-Bolard C. Characterization of a de novo Supernumerary Neocentric Ring Chromosome Derived from Chromosome 7. Cytogenet Genome Res 2015; 147:111-7. [PMID: 26669311 DOI: 10.1159/000442265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
Supernumerary ring chromosomes (SRC) are usually derived from regions adjacent to the centromere. Their identification may be challenging, particularly in case of low mosaicism. Here, we report on a patient who was referred for major in utero growth retardation, severe developmental delay, facial dysmorphism, cleft palate, and hypospadias. The karyotype showed a small SRC in mosaic. The combination of FISH, M-FISH and array-CGH was necessary for a complete characterization of this SRC. M-FISH revealed that the SRC originated from chromosome 7. Array-CGH performed with a 400K oligonucleotide array showed a gain in region 7q22.1q31.1 present in low mosaic. This result was confirmed by FISH using BAC probes specific for chromosome 7. The SRC was a neocentric ring derived from 7q22.1q31.1 and was found in only 8% of the cells. This is the first patient carrying a mosaic neocentric SRC derived from the long arm of chromosome 7. Our study emphasizes the need to combine different techniques and to use adapted bioinformatic tools for low-mosaicism marker identification. It also contributes to the delineation of the partial trisomy 7q phenotype.
Collapse
Affiliation(s)
- Camille Louvrier
- Laboratoire de Cytogx00E9;nx00E9;tique Constitutionnelle, Service de Gx00E9;nx00E9;tique, Centre de Biologie et de Pathologie Est, Bron, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Haltrich I, Pikó H, Kiss E, Tóth Z, Karcagi V, Fekete G. A de novo atypical ring sSMC(22) characterized by array CGH in a boy with cat-eye syndrome. Mol Cytogenet 2014; 7:37. [PMID: 24959203 PMCID: PMC4067088 DOI: 10.1186/1755-8166-7-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Microduplications 22q11 have been characterized as a genomic duplication syndrome mediated by nonallelic homologous recombination between region-specific low-copy repeats. Here we report on a 19 years old boy with intellectual disability having an unexpected structurally complex ring small supernumerary marker chromosome (sSMC) originated from a larger trisomy and a smaller tetrasomy of proximal 22q11 harboring additional copies of cat eye syndrome critical regions genes. RESULTS PRINCIPAL CLINICAL FEATURES WERE: anorectal and urogenital malformations, total anomalous pulmonary venous return with secundum ASD, hearing defect, preauricular pits, seizure and eczema. The proband also presented some rare or so far not reported clinical findings such as hyperinsulinaemia, severe immunodeficiency and grave cognitive deficits. Chromosome analysis revealed a mosaic karyotype with the presence of a small ring-like marker in 60% of cells. Array CGH detected approximately an 1,2 Mb single and a 0,2 Mb double copy gain of the proximal long arm of chromosome 22. The 1,3 Mb intervening region of chromosome 22 from centromere to the breakpoints showed no copy alteration. The karyotype of the patient was defined as 47,XY,+mar[60]/46,XY[40].ish idic r(22)(q11.1.q11.21) × 4.arr 22q11(17,435, 645-18,656,678) × 3,(17,598,642-17,799,783) × 4 dn. CONCLUSIONS The present report is the first one with a detailed description of clinical presentation in a patient carrying an atypical size ring sSMC (22) analyzed by array CGH. The specialty of the finding is emphasized by the fact that although the patient had a mosaic sSMC and the amplified region was smaller than in typical cat eye syndrome cases, the clinical presentation was severe.
Collapse
Affiliation(s)
- Irén Haltrich
- 2nd Department of Paediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest 1094, Hungary
| | - Henriett Pikó
- Department of Molecular Genetics and Diagnostics, National Institute of Environmental Health, Budapest, Hungary
| | - Eszter Kiss
- 2nd Department of Paediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest 1094, Hungary
| | - Zsuzsa Tóth
- 2nd Department of Paediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest 1094, Hungary
| | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, National Institute of Environmental Health, Budapest, Hungary
| | - György Fekete
- 2nd Department of Paediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest 1094, Hungary
| |
Collapse
|
8
|
Malvestiti F, De Toffol S, Grimi B, Chinetti S, Marcato L, Agrati C, Di Meco AM, Frascoli G, Trotta A, Malvestiti B, Ruggeri A, Dulcetti F, Maggi F, Simoni G, Grati FR. De novo
small supernumerary marker chromosomes detected on 143 000 consecutive prenatal diagnoses: chromosomal distribution, frequencies, and characterization combining molecular cytogenetics approaches. Prenat Diagn 2014; 34:460-8. [DOI: 10.1002/pd.4330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Francesca Malvestiti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Simona De Toffol
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Beatrice Grimi
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Sara Chinetti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Livia Marcato
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Cristina Agrati
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Maria Di Meco
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Giuditta Frascoli
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Trotta
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Barbara Malvestiti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Anna Ruggeri
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Francesca Dulcetti
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Federico Maggi
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Giuseppe Simoni
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| | - Francesca Romana Grati
- Research and Development, Cytogenetics and Molecular Biology; TOMA Advanced Biomedical Assays; Busto Arsizio Varese Italy
| |
Collapse
|
9
|
Strassberg M, Fruhman G, Van den Veyver IB. Copy-number changes in prenatal diagnosis. Expert Rev Mol Diagn 2014; 11:579-92. [DOI: 10.1586/erm.11.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Lee CG, Park SJ, Yun JN, Ko JM, Kim HJ, Yim SY, Sohn YB. Array-based comparative genomic hybridization in 190 Korean patients with developmental delay and/or intellectual disability: a single tertiary care university center study. Yonsei Med J 2013; 54:1463-70. [PMID: 24142652 PMCID: PMC3809862 DOI: 10.3349/ymj.2013.54.6.1463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study analyzed and evaluated the demographic, clinical, and cytogenetic data [G-banded karyotyping and array-based comparative genomic hybridization (array CGH)] of patients with unexplained developmental delay or intellectual disability at a single Korean institution. MATERIALS AND METHODS We collected clinical and cytogenetic data based on retrospective charts at Ajou University Medical Center, Suwon, Korea from April 2008 to March 2012. RESULTS A total of 190 patients were identified. Mean age was 5.1±1.87 years. Array CGH yielded abnormal results in 26 of 190 patients (13.7%). Copy number losses were about two-fold more frequent than gains. A total of 61.5% of all patients had copy number losses. The most common deletion disorders included 22q11.2 deletion syndrome, 15q11.2q12 deletion and 18q deletion syndrome. Copy number gains were identified in 34.6% of patients, and common diseases among these included Potocki-Lupski syndrome, 15q11-13 duplication syndrome and duplication 22q. Abnormal karyotype with normal array CGH results was exhibited in 2.6% of patients; theses included balanced translocation (n=2), inversion (n=2) and low-level mosaicism (n=1). Facial abnormalities (p<0.001) and failure to thrive were (p<0.001) also more frequent in the group of patients with abnormal CGH findings. CONCLUSION Array CGH is a useful diagnostic tool in clinical settings in patients with developmental delay or intellectual disability combined with facial abnormalities or failure to thrive.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Medical Genetics, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 443-380, Korea.
| | | | | | | | | | | | | |
Collapse
|
11
|
Castronovo C, Valtorta E, Crippa M, Tedoldi S, Romitti L, Amione MC, Guerneri S, Rusconi D, Ballarati L, Milani D, Grosso E, Cavalli P, Giardino D, Bonati MT, Larizza L, Finelli P. Design and validation of a pericentromeric BAC clone set aimed at improving diagnosis and phenotype prediction of supernumerary marker chromosomes. Mol Cytogenet 2013; 6:45. [PMID: 24171812 PMCID: PMC4176193 DOI: 10.1186/1755-8166-6-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Small supernumerary marker chromosomes (sSMCs) are additional, structurally abnormal chromosomes, generally smaller than chromosome 20 of the same metaphase spread. Due to their small size, they are difficult to characterize by conventional cytogenetics alone. In regard to their clinical effects, sSMCs are a heterogeneous group: in particular, sSMCs containing pericentromeric euchromatin are likely to be associated with abnormal outcomes, although exceptions have been reported. To improve characterization of the genetic content of sSMCs, several approaches might be applied based on different molecular and molecular-cytogenetic assays, e.g., fluorescent in situ hybridization (FISH), array-based comparative genomic hybridization (array CGH), and multiplex ligation-dependent probe amplification (MLPA). To provide a complementary tool for the characterization of sSMCs, we constructed and validated a new, FISH-based, pericentromeric Bacterial Artificial Chromosome (BAC) clone set that with a high resolution spans the most proximal euchromatic sequences of all human chromosome arms, excluding the acrocentric short arms. Results By FISH analysis, we assayed 561 pericentromeric BAC probes and excluded 75 that showed a wrong chromosomal localization. The remaining 486 probes were used to establish 43 BAC-based pericentromeric panels. Each panel consists of a core, which with a high resolution covers the most proximal euchromatic ~0.7 Mb (on average) of each chromosome arm and generally bridges the heterochromatin/euchromatin junction, as well as clones located proximally and distally to the core. The pericentromeric clone set was subsequently validated by the characterization of 19 sSMCs. Using the core probes, we could rapidly distinguish between heterochromatic (1/19) and euchromatic (11/19) sSMCs, and estimate the euchromatic DNA content, which ranged from approximately 0.13 to more than 10 Mb. The characterization was not completed for seven sSMCs due to a lack of information about the covered region in the reference sequence (1/19) or sample insufficiency (6/19). Conclusions Our results demonstrate that this pericentromeric clone set is useful as an alternative tool for sSMC characterization, primarily in cases of very small SMCs that contain either heterochromatin exclusively or a tiny amount of euchromatic sequence, and also in cases of low-level or cryptic mosaicism. The resulting data will foster knowledge of human proximal euchromatic regions involved in chromosomal imbalances, thereby improving genotype–phenotype correlations.
Collapse
Affiliation(s)
- Chiara Castronovo
- Laboratorio di Citogenetica Medica e Genetica Molecolare, IRCCS Istituto Auxologico Italiano, via Ariosto 13, 20145, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen CP, Cheng PJ, Chang SD, Lee YX, Shih JC, Chern SR, Wu PS, Su JW, Chen YT, Hsieh AHM, Chen THT, Chen LF, Wang W. Ring chromosome 21 presenting with sacrococcygeal teratoma: Prenatal diagnosis, molecular cytogenetic characterization and literature review. Gene 2013; 522:111-6. [DOI: 10.1016/j.gene.2013.03.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 03/13/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
13
|
Marle N, Martinet D, Aboura A, Joly-Helas G, Andrieux J, Flori E, Puechberty J, Vialard F, Sanlaville D, Fert Ferrer S, Bourrouillou G, Tabet AC, Quilichini B, Simon-Bouy B, Bazin A, Becker M, Stora H, Amblard S, Doco-Fenzy M, Molina Gomes D, Girard-Lemaire F, Cordier MP, Satre V, Schneider A, Lemeur N, Chambon P, Jacquemont S, Fellmann F, Vigouroux-Castera A, Molignier R, Delaye A, Pipiras E, Liquier A, Rousseau T, Mosca AL, Kremer V, Payet M, Rangon C, Mugneret F, Aho S, Faivre L, Callier P. Molecular characterization of 39 de novo sSMC: contribution to prognosis and genetic counselling, a prospective study. Clin Genet 2013; 85:233-44. [PMID: 23489061 DOI: 10.1111/cge.12138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 11/27/2022]
Abstract
Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be characterized by karyotype. In many prenatal cases of de novo sSMC, the outcome of pregnancy is difficult to predict because the euchromatin content is unclear. This study aimed to determine the presence or absence of euchromatin material of 39 de novo prenatally ascertained sSMC by array-comparative genomic hybridization (array-CGH) or single nucleotide polymorphism (SNP) array. Cases were prospectively ascertained from the study of 65,000 prenatal samples [0.060%; 95% confidence interval (CI), 0.042-0.082]. Array-CGH showed that 22 markers were derived from non-acrocentric markers (56.4%) and 7 from acrocentic markers (18%). The 10 additional cases remained unidentified (25.6%), but 7 of 10 could be further identified using fluorescence in situ hybridization; 69% of de novo sSMC contained euchromatin material, 95.4% of which for non-acrocentric markers. Some sSMC containing euchromatin had a normal phenotype (31% for non-acrocentric and 75% for acrocentric markers). Statistical differences between normal and abnormal phenotypes were shown for the size of the euchromatin material (more or less than 1 Mb, p = 0.0006) and number of genes (more or less than 10, p = 0.0009). This study is the largest to date and shows the utility of array-CGH or SNP array in the detection and characterization of de novo sSMC in a prenatal context.
Collapse
Affiliation(s)
- N Marle
- Département de Génétique, Hôpital Le Bocage, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lyons MJ, Fuller JD, Montoya MDC, DuPont BR, Holden KR. Unbalanced translocation involving partial trisomy 9p and partial monosomy yq with neurodevelopmental delays. J Child Neurol 2013; 28:524-6. [PMID: 22752474 DOI: 10.1177/0883073812446309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a 4-year-old Honduran boy with mild neurodevelopmental delays, growth delays, dysmorphic features, and small genitalia. Chromosome analysis initially revealed a single X chromosome and a marker chromosome derived from the short arm of chromosome 9 which was consistent with Turner syndrome as only 1 sex chromosome could be identified. However, on further analysis, he was found to have an unbalanced translocation involving the short arm of chromosome 9 and the long arm of the Y chromosome. The translocation resulted in partial trisomy 9p and partial monosomy Yq. The patient's clinical features are felt to be the result of partial trisomy 9p. In addition, partial monosomy Yq is associated with male infertility. Testing of the patient's parents was normal, indicating this was a de novo translocation. Additional evaluations of this child and his parents allowed an accurate assessment of his diagnosis, long-term prognosis, and chance of recurrence.
Collapse
Affiliation(s)
- Michael J Lyons
- Greenwood Genetic Center, Greenwood, Charleston, SC 29418, USA.
| | | | | | | | | |
Collapse
|
15
|
Shaffer LG, Ballif BC, Theisen A, Rorem E, Bejjani BA, Torchia BA. In the middle of it all: a centered approach to chromosome analysis. ACTA ACUST UNITED AC 2013; 2:221-9. [PMID: 23485141 DOI: 10.1517/17530059.2.2.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The pericentromeric areas immediately flanking the centromeres are prone to instability owing to their high levels of repetitive sequences. This genomic instability makes the pericentromeric regions ideal candidates for the investigation of chromosomal abnormalities resulting in genetic disease. However, it is this instability that confounds attempts to analyze these regions of the genome. The sequencing of the human genome, while illuminating the complexity of the pericentromeric regions, has enabled the development of high-resolution microarrays for the characterization of chromosomal abnormalities. OBJECTIVE The MarkerChip(™) was developed specifically to target the pericentromeres for the identification and characterization of pericentromeric chromosomal abnormalities. METHODS The authors' experience with this microarray is reviewed in their clinical diagnostic laboratory. RESULTS/DISCUSSION The MarkerChip demonstrates the utility of constructing a microarray for the analysis of chromosome abnormalities with coverage concentrated on areas of the genome particularly susceptible to rearrangement.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Signature Genomic Laboratories, 120 N Pine St, Spokane, WA 99202, USA +1 509 474 6840 ; +1 509 474 6839 ;
| | | | | | | | | | | |
Collapse
|
16
|
Huang B, Pearle P, Rauen KA, Cotter PD. Supernumerary marker chromosomes derived from chromosome 6: cytogenetic, molecular cytogenetic, and array CGH characterization. Am J Med Genet A 2012; 158A:1568-73. [PMID: 22639445 DOI: 10.1002/ajmg.a.35385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/05/2012] [Indexed: 11/10/2022]
Abstract
Supernumerary marker chromosomes (SMC) are relatively common in prenatal diagnosis. As the clinical outcomes vary greatly, a better understanding of the karyotype-phenotype correlation for different SMCs will be important for genetic counseling. We present two cases of prenatally detected de novo, small SMCs. The markers were present in 80% of amniocyte colonies in Case 1 and 38% of the colonies in Case 2. The SMCs were determined to be derived from chromosome 6 during postnatal confirmation studies. Although the sizes and the chromosomal origin of the SMCs in these two cases appeared to be similar, the clinical outcomes varied. The clinical manifestations observed in Case 1 included small for gestational age, feeding difficulty at birth, hydronephrosis, deviated septum and dysmorphic features, while the phenotype is apparently normal in Case 2. Array comparative genomic hybridization (CGH) was performed and showed increase in dosage for approximately 26 Mb of genetic material from the proximal short and long arms of chromosome 6 in Case 1. Results of array CGH were uninformative in Case 2, either due to mosaicism or lack of detectable euchromatin. The difference in the clinical presentation in these two patients may have resulted from the difference in the actual gene contents of the marker chromosomes and/or the differential distribution of the mosaicism.
Collapse
Affiliation(s)
- Bing Huang
- Integrated Genetics, Monrovia, California 91016, USA.
| | | | | | | |
Collapse
|
17
|
Mori MDLÁ, Mansilla E, García-Santiago F, Vallespín E, Palomares M, Martín R, Rodríguez R, Martínez-Payo C, Gil-Fournier B, Ramiro S, Lapunzina P, Nevado J. Diagnóstico prenatal y array-hibridación genómica comparada (CGH) (I). Gestaciones de elevado riesgo. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.diapre.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Fiorentino F, Caiazzo F, Napolitano S, Spizzichino L, Bono S, Sessa M, Nuccitelli A, Biricik A, Gordon A, Rizzo G, Baldi M. Introducing array comparative genomic hybridization into routine prenatal diagnosis practice: a prospective study on over 1000 consecutive clinical cases. Prenat Diagn 2011; 31:1270-82. [PMID: 22034057 DOI: 10.1002/pd.2884] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/28/2011] [Accepted: 09/06/2011] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the feasibility of offering array-based comparative genomic hybridization testing for prenatal diagnosis as a first-line test, a prospective study was performed, comparing the results achieved from array comparative genomic hybridization (aCGH) with those obtained from conventional karyotype. METHOD Women undergoing amniocentesis or chorionic villus sampling were offered aCGH analysis. A total of 1037 prenatal samples were processed in parallel using both aCGH and G-banding for standard karyotyping. Specimen types included amniotic fluid (89.0%), chorionic villus sampling (9.5%) and cultured amniocytes (1.5%). RESULTS Chromosomal abnormalities were identified in 34 (3.3%) samples; in 9 out of 34 cases (26.5%) aCGH detected pathogenic copy number variations that would not have been found if only a standard karyotype had been performed. aCGH was also able to detect chromosomal mosaicism at as low as a 10% level. There was complete concordance between the conventional karyotyping and aCGH results, except for 2 cases that were only correctly diagnosed by aCGH. CONCLUSIONS This study demonstrates that aCGH represents an improved diagnostic tool for prenatal detection of chromosomal abnormalities. Although larger studies are needed, our results provide further evidence on the feasibility of introducing aCGH as a first-line diagnostic test in routine prenatal diagnosis practice.
Collapse
|
19
|
Shehab MI, Mazen I, Bint S. Tissue-specific mosaicism for tetrasomy 9p uncovered by array CGH. Am J Med Genet A 2011; 155A:2496-2500. [DOI: 10.1002/ajmg.a.34176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Ochalski ME, Engle N, Wakim A, Ravnan BJ, Hoffner L, Rajkovic A, Surti U. Complex X chromosome rearrangement delineated by array comparative genome hybridization in a woman with premature ovarian insufficiency. Fertil Steril 2011; 95:2433.e9-15. [DOI: 10.1016/j.fertnstert.2011.03.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
21
|
Keren B, Le Caignec C. Oligonucleotide microarrays in constitutional genetic diagnosis. Expert Rev Mol Diagn 2011; 11:521-32. [PMID: 21707460 DOI: 10.1586/erm.11.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oligonucleotide microarrays such as comparative genomic hybridization arrays and SNP microarrays enable the identification of genomic imbalances - also termed copy-number variants - with increasing resolution. This article will focus on the most significant applications of high-throughput oligonucleotide microarrays, both in genetic diagnosis and research. In genetic diagnosis, the method is becoming a standard tool for investigating patients with unexplained developmental delay/intellectual disability, autism spectrum disorders and/or with multiple congenital anomalies. Oligonucleotide microarray have also been recently applied to the detection of genomic imbalances in prenatal diagnosis either to characterize a chromosomal rearrangement that has previously been identified by standard prenatal karyotyping or to detect a cryptic genomic imbalance in a fetus with ultrasound abnormalities and a normal standard prenatal karyotype. In research, oligonucleotide microarrays have been used for a wide range of applications, such as the identification of new genes responsible for monogenic disorders and the association of a copy-number variant as a predisposing factor to a common disease. Despite its widespread use, the interpretation of results is not always straightforward. We will discuss several unexpected results and ethical issues raised by these new methods.
Collapse
Affiliation(s)
- Boris Keren
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Département de Génétique et Cytogénétique, France
| | | |
Collapse
|
22
|
Fruhman G, El-Hattab AW, Belmont JW, Patel A, Cheung SW, Sutton VR. Suspected trisomy 22: Modification, clarification, or confirmation of the diagnosis by aCGH. Am J Med Genet A 2010; 155A:434-8. [PMID: 21271668 DOI: 10.1002/ajmg.a.33792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 11/09/2022]
|
23
|
Prenatal Diagnosis and Molecular Cytogenetic Characterization of a Small Supernumerary Marker Chromosome Derived From Chromosome 8. Taiwan J Obstet Gynecol 2010; 49:500-5. [DOI: 10.1016/s1028-4559(10)60104-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 11/21/2022] Open
|
24
|
Keren B, Schluth-Bolard C, Egea G, Sanlaville D. Nouvelles méthodes d’analyse globale du génome humain. Arch Pediatr 2010; 17:1605-8. [DOI: 10.1016/j.arcped.2010.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
25
|
van der Veken LT, Dieleman MM, Douben H, van de Brug JC, van de Graaf R, Hoogeboom AJM, Poddighe PJ, de Klein A. Low grade mosaic for a complex supernumerary ring chromosome 18 in an adult patient with multiple congenital anomalies. Mol Cytogenet 2010; 3:13. [PMID: 20618949 PMCID: PMC2909946 DOI: 10.1186/1755-8166-3-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/09/2010] [Indexed: 11/12/2022] Open
Abstract
Background Several cases have been reported of patients with a ring chromosome 18 replacing one of the normal chromosomes 18. Less common are patients with a supernumerary ring chromosomes 18. High resolution whole genome examination in patients with multiple congenital abnormalities might reveal cytogenetic abnormalities of an unexpected complexity. Results We report a 24 years old male patient with lower spinal anomalies, hypospadia, bifid scrotum, cryptorchism, anal atresia, kidney stones, urethra anomalies, radial dysplasia, and a hypoplastic thumb. Some of the anomalies overlap with the VACTERL association. Chromosome analysis of cultured peripheral blood lymphocytes revealed an additional ring chromosome in 13% of the metaphases. Both parents had a normal karyotype, demonstrating the de novo origin of this ring chromosome. FISH analysis using whole chromosome paints showed that the additional chromosomal material was derived from chromosome 18. Chromosome analysis of cultured fibroblasts revealed only one cell with the supernumerary ring chromosome in the 400 analyzed. To characterize the ring chromosome in more detail peripheral blood derived DNA was analyzed using SNP-arrays. The array results indicated a 5 Mb gain of the pericentromeric region of chromosome 18q10-q11.2. FISH analysis using BAC-probes located in the region indicated the presence of 6 signals on the r(18) chromosome. In addition, microsatellite analysis demonstrated that the unique supernumerary ring chromosome was paternally derived and both normal copies showed biparental disomy. Conclusions We report on an adult patient with multiple congenital abnormalities who had in 13% of his cells a unique supernumerary ring chromosome 18 that was composed of 6 copies of the 5 Mb gene rich region of 18q11.
Collapse
Affiliation(s)
- Lars T van der Veken
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fruhman G, Van den Veyver IB. Applications of array comparative genomic hybridization in obstetrics. Obstet Gynecol Clin North Am 2010; 37:71-85, Table of Contents. [PMID: 20494259 DOI: 10.1016/j.ogc.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Current prenatal cytogenetic diagnosis uses mostly G-banded karyotyping of fetal cells from chorionic villi or amniotic fluid cultures, which readily detects any aneuploidy and larger structural genomic rearrangements that are more than 4 to 5 megabases in size. Fluorescence in situ hybridization (FISH) is also used for rapid detection of the common aneuploidies seen in liveborns. If there is prior knowledge that increases risk for a specific deletion or duplication syndrome, FISH with a probe specific for the region in question is done. Over the past decade, array-based comparative genomic hybridization (aCGH) has been developed, which can survey the entire genome for submicroscopic microdeletions and microduplications, in addition to all unbalanced chromosomal abnormalities that are also detected by karyotype. aCGH in essence interrogates the genome with thousands of probes fixed on a slide in a single assay, and has already revolutionized cytogenetic diagnosis in the pediatric population. aCGH is being used increasingly for prenatal diagnosis where it is also beginning to make a significant impact. The authors review here principles of aCGH, its benefits for prenatal diagnosis and associated challenges, primarily the inability to detect balanced chromosomal abnormalities and a small risk for discovery of chromosomal abnormalities of uncertain clinical significance. The superior diagnostic power of aCGH far outweighs these concerns. Furthermore, such issues can be addressed during pre- and posttest counseling, and their impact will further diminish as the technology continues to develop and experience with its prenatal diagnostic use grows.
Collapse
Affiliation(s)
- Gary Fruhman
- Department of Molecular and Human Genetics, Baylor College of Medicine, 6621 Fannin Street CC 1560, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Jaru-Ampornpan P, Kuchtey J, Dev VG, Kuchtey R. Primary congenital glaucoma associated with Patau syndrome with long survival. J Pediatr Ophthalmol Strabismus 2010; 47 Online:e1-4. [PMID: 21080618 DOI: 10.3928/01913913-20100618-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
Ocular abnormalities are common in Patau syndrome (trisomy 13), but only a few cases with congenital glaucoma have been reported, some of which were associated with other ocular defects. This report describes a case of primary congenital glaucoma in an 11-year-old patient with full trisomy 13.
Collapse
|
28
|
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86:749-64. [PMID: 20466091 PMCID: PMC2869000 DOI: 10.1016/j.ajhg.2010.04.006] [Citation(s) in RCA: 1837] [Impact Index Per Article: 131.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 12/11/2022] Open
Abstract
Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
Collapse
Affiliation(s)
- David T. Miller
- Division of Genetics and Department of Laboratory Medicine, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Margaret P. Adam
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Leslie G. Biesecker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arthur R. Brothman
- Department of Pediatrics, Human Genetics, Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Deanna M. Church
- National Center for Biotechnology Information, Bethesda, MD, USA
| | - John A. Crolla
- National Genetics Reference Laboratory (Wessex), Salisbury UK
| | - Evan E. Eichler
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Charles J. Epstein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - W. Andrew Faucett
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lars Feuk
- Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | - Ada Hamosh
- Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laird Jackson
- Department of Obstetrics and Gynecology, Drexel University College of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin B. Kaminsky
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Klaas Kok
- Department of Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Ian D. Krantz
- Department of Pediatrics/Human Genetics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Robert M. Kuhn
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Charles Lee
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James M. Ostell
- National Center for Biotechnology Information, Bethesda, MD, USA
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, University Sao Paulo, Brazil
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genetic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Nancy B. Spinner
- Department of Pediatrics/Human Genetics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dimitri J. Stavropoulos
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Erik C. Thorland
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Darrel J. Waggoner
- Department of Human Genetics and Pediatrics, University of Chicago, Chicago, IL, USA
| | | | - Christa Lese Martin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David H. Ledbetter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Shaffer LG, Bejjani BA. Using microarray-based molecular cytogenetic methods to identify chromosome abnormalities. Pediatr Ann 2009; 38:440-7. [PMID: 19711882 DOI: 10.3928/00904481-20090723-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Van den Veyver IB, Patel A, Shaw CA, Pursley AN, Kang SHL, Simovich MJ, Ward PA, Darilek S, Johnson A, Neill SE, Bi W, White LD, Eng CM, Lupski JR, Cheung SW, Beaudet AL. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn 2009; 29:29-39. [PMID: 19012303 DOI: 10.1002/pd.2127] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the use of array comparative genomic hybridization (aCGH) for prenatal diagnosis, including assessment of variants of uncertain significance, and the ability to detect abnormalities not detected by karyotype, and vice versa. METHODS Women undergoing amniocentesis or chorionic villus sampling (CVS) for karyotype were offered aCGH analysis using a targeted microarray. Parental samples were obtained concurrently to exclude maternal cell contamination and determine if copy number variants (CNVs) were de novo, or inherited prior to issuing a report. RESULTS We analyzed 300 samples, most were amniotic fluid (82%) and CVS (17%). The most common indications were advanced maternal age (N=123) and abnormal ultrasound findings (N=84). We detected 58 CNVs (19.3%). Of these, 40 (13.3%) were interpreted as likely benign, 15 (5.0%) were of defined pathological significance, while 3 (1.0%) were of uncertain clinical significance. For seven (approximately 2.3% or 1/43), aCGH contributed important new information. For two of these (1% or approximately 1/150), the abnormality would not have been detected without aCGH analysis. CONCLUSION Although aCGH-detected benign inherited variants in 13.3% of cases, these did not present major counseling difficulties, and the procedure is an improved diagnostic tool for prenatal detection of chromosomal abnormalities.
Collapse
|
31
|
Abstract
It is now becoming generally accepted that a significant amount of human genetic variation is due to structural changes of the genome rather than to base-pair changes in the DNA. As for base-pair changes, knowledge of gene and genome function has been informed by structural alterations that convey clinical phenotypes. Genomic disorders are a class of human conditions that result from structural changes of the human genome that convey traits or susceptibility to traits. The path to the delineation of genomic disorders is intertwined with the evolving technologies that have enabled the resolution of human genome analyses to continue increasing. Similarly, the ability to perform high-resolution human genome analysis has fueled the current and future clinical implementation of such discoveries in the evolving field of genome medicine.
Collapse
Affiliation(s)
- James R Lupski
- Departments of Molecular and Human Genetics, and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Kogan JM, Miller E, Ware SM. High resolution SNP based microarray mapping of mosaic supernumerary marker chromosomes 13 and 17: Delineating novel loci for apraxia. Am J Med Genet A 2009; 149A:887-93. [DOI: 10.1002/ajmg.a.32750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Gruchy N, Lebrun M, Herlicoviez M, Alliet J, Gourdier D, Kottler ML, Mittre H, Leporrier N. Supernumerary marker chromosomes management in prenatal diagnosis. Am J Med Genet A 2008; 146A:2770-6. [DOI: 10.1002/ajmg.a.32532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Ballif BC, Theisen A, McDonald-McGinn DM, Zackai EH, Hersh JH, Bejjani BA, Shaffer LG. Identification of a previously unrecognized microdeletion syndrome of 16q11.2q12.2. Clin Genet 2008; 74:469-75. [PMID: 18811697 DOI: 10.1111/j.1399-0004.2008.01094.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the identification of microdeletions of 16q11.2q12.2 by microarray-based comparative genomic hybridization (aCGH) in two individuals. The clinical features of these two individuals include hypotonia, gastroesophageal reflux, ear anomalies, and toe deformities. Other features include developmental delay, mental retardation, hypothyroidism, and seizures. The identification of common clinical features in these two individuals and those of one other report suggests microdeletion of 16q12.1q12.2 is a rare, emerging syndrome. These results illustrate that aCGH is particularly suited to identify rare chromosome abnormalities in patients with apparently non-syndromic idiopathic mental retardation and birth defects.
Collapse
Affiliation(s)
- B C Ballif
- Signature Genomic Laboratories, LLC, Spokane, WA 99207, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Gouas L, Goumy C, Véronèse L, Tchirkov A, Vago P. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities. ACTA ACUST UNITED AC 2008; 56:345-53. [DOI: 10.1016/j.patbio.2008.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
|
36
|
Ou Z, Kang SHL, Shaw CA, Carmack CE, White LD, Patel A, Beaudet AL, Cheung SW, Chinault AC. Bacterial artificial chromosome-emulation oligonucleotide arrays for targeted clinical array-comparative genomic hybridization analyses. Genet Med 2008; 10:278-89. [PMID: 18414211 DOI: 10.1097/gim.0b013e31816b4420] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The goal of this work was to test the ability of oligonucleotide-based arrays to reproduce the results of focused bacterial artificial chromosome (BAC)-based arrays used clinically in comparative genomic hybridization experiments to detect constitutional copy number changes in genomic DNA. METHODS Custom oligonucleotide (oligo) arrays were designed using the Agilent Technologies platform to give high-resolution coverage of regions within the genome sequence coordinates of BAC/P1 artificial chromosome (PAC) clones that had already been validated for use in previous versions of clone arrays used in clinical practice. Standard array-comparative genomic hybridization experiments, including a simultaneous blind analysis of a set of clinical samples, were conducted on both array platforms to identify copy number differences between patient samples and normal reference controls. RESULTS Initial experiments successfully demonstrated the capacity of oligo arrays to emulate BAC data without the need for dye-reversal comparisons. Empirical data and computational analyses of oligo response and distribution from a pilot array were used to design an optimized array of 44,000 oligos (44K). This custom 44K oligo array consists of probes localized to the genomic positions of >1400 fluorescence in situ hybridization-verified BAC/PAC clones covering more than 140 regions implicated in genetic diseases, as well as all clinically relevant subtelomeric and pericentromeric regions. CONCLUSIONS Our data demonstrate that oligo-based arrays offer a valid alternative for focused BAC arrays. Furthermore, they have significant advantages, including better design flexibility, avoidance of repetitive sequences, manufacturing processes amenable to good manufacturing practice standards in the future, increased robustness because of an enhanced dynamic range (signal to background), and increased resolution that allows for detection of smaller regions of change.
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
[Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics]. ACTA ACUST UNITED AC 2008; 56:362-7. [PMID: 18456432 DOI: 10.1016/j.patbio.2008.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/14/2008] [Indexed: 11/20/2022]
Abstract
Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.
Collapse
|
38
|
Tsuchiya KD, Opheim KE, Hannibal MC, Hing AV, Glass IA, Raff ML, Norwood T, Torchia BA. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization. Mol Cytogenet 2008; 1:7. [PMID: 18471320 PMCID: PMC2375883 DOI: 10.1186/1755-8166-1-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/21/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Supernumerary marker chromosomes (SMCs) are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s) involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients) that were characterized by microarray comparative genomic hybridization (array CGH). RESULTS In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. CONCLUSION The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.
Collapse
Affiliation(s)
- Karen D Tsuchiya
- Department of Laboratories, Children's Hospital & Regional Medical Center, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mechanisms and consequences of small supernumerary marker chromosomes: from Barbara McClintock to modern genetic-counseling issues. Am J Hum Genet 2008; 82:398-410. [PMID: 18252220 DOI: 10.1016/j.ajhg.2007.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/05/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022] Open
Abstract
Supernumerary marker chromosomes (SMCs) are common, but their molecular content and mechanism of origin are often not precisely characterized. We analyzed all centromere regions to identify the junction between the unique chromosome arm and the pericentromeric repeats. A molecular-ruler clone panel for each chromosome arm was developed and used for the design of a custom oligonucleotide array. Of 27 nonsatellited SMCs analyzed by array comparative genomic hybridization (aCGH) and/or fluorescence in situ hybridization (FISH), seven (approximately 26%) were shown to be unique sequence negative. Of the 20 unique-sequence-positive SMCs, the average unique DNA content was approximately 6.5 Mb (range 0.3-22.2 Mb) and 33 known genes (range 0-149). Of the 14 informative nonacrocentric SMCs, five (approximately 36%) contained unique DNA from both the p and q arms, whereas nine (approximately 64%) contained unique DNA from only one arm. The latter cases are consistent with ring-chromosome formation by centromere misdivision, as first described by McClintock in maize. In one case, a r(4) containing approximately 4.4 Mb of unique DNA from 4p was also present in the proband's mother. However, FISH revealed a cryptic deletion in one chromosome 4 and reduced alpha satellite in the del(4) and r(4), indicating that the mother was a balanced ring and deletion carrier. Our data, and recent reports in the literature, suggest that this "McClintock mechanism" of small-ring formation might be the predominant mechanism of origin. Comprehensive analysis of SMCs by aCGH and FISH can distinguish unique-negative from unique-positive cases, determine the precise gene content, and provide information on mechanism of origin, inheritance, and recurrence risk.
Collapse
|
40
|
Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2008; 145C:335-45. [PMID: 17910076 DOI: 10.1002/ajmg.c.30152] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome analysis is an important diagnostic tool in the identification of causes of mental retardation, developmental delay, and other developmental disabilities. Cytogenetic approaches have revealed the chromosomal basis of a large number of genetic syndromes. The recent use of microarray-based comparative genomic hybridization (array CGH) has accelerated the identification of novel cytogenetic abnormalities. We present the results of array CGH in 8,789 clinical cases submitted for a variety of developmental problems. Of these cases, 6.9% showed clinically relevant abnormalities, 1.2% showed benign copy-number variants (polymorphisms), 2.5% showed recurrent alterations of unclear clinical significance-many of which are likely to be polymorphisms-and 1.4% showed novel alterations of unclear relevance. Although cytogenetic methods, including array CGH, have great potential for identifying novel chromosomal syndromes, this high-resolution analysis may also result in diagnostic challenges imposed on laboratories and clinicians regarding findings of unclear clinical significance. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Signature Genomic Laboratories, LLC, 120 N Pine Street, Ste 242C, Spokane, WA 99202, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Shinawi M, Shao L, Jeng LJB, Shaw CA, Patel A, Bacino C, Sutton VR, Belmont J, Cheung SW. Low-level mosaicism of trisomy 14: Phenotypic and molecular characterization. Am J Med Genet A 2008; 146A:1395-405. [DOI: 10.1002/ajmg.a.32287] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
Mental retardation affects approximately 3% of the population, and the background birth defect rate is 3% to 4%. An underlying cause is identified less than 50% of the time. In the cases in which a cause is determined, a chromosomal anomaly is the cause in up to 40%. Laboratory evaluation routinely includes high-resolution karyotyping, subtelomeric fluorescence in situ hybridization analysis, and targeted fluorescence in situ hybridization analysis depending on the clinical features. There are technical limitations to these techniques, however. For example, anomalies less than 2 to 3 Mb in size are undetectable by karyotype, and subtelomeric fluorescence in situ hybridization analysis is a labor-intensive analysis with a relatively low yield. With completion of the Human Genome Project, diagnostic testing is moving toward the use of DNA-based techniques such as comparative genomic hybridization microarray analysis or array comparative genomic hybridization. Although this technology has been used in the evaluation of tumors and cancer patients in the past, it is now being applied in the assessment of patients demonstrating idiopathic mental retardation or developmental delay, dysmorphic features, congenital anomalies, and spontaneous abortions. As with other well-developed cytogenetic studies, there are technical limitations to array comparative genomic hybridization that must be acknowledged and addressed before its widespread use. A variety of array-based technologies are now available on a clinical basis. We discuss the utility and limitations of using this technology in the evaluation of individuals with mental retardation and malformations, citing the existing literature.
Collapse
Affiliation(s)
- Melanie Manning
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
43
|
Bui TH. Prenatal cytogenetic diagnosis: gone FISHing, BAC soon! ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2007; 30:247-51. [PMID: 17721912 DOI: 10.1002/uog.5142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
44
|
Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, Surti U, Jackson KE, Asamoah A, Brock PL, Gowans GC, Conway RL, Graham JM, Medne L, Zackai EH, Shaikh TH, Geoghegan J, Selzer RR, Eis PS, Bejjani BA, Shaffer LG. Discovery of a previously unrecognized microdeletion syndrome of 16p11.2–p12.2. Nat Genet 2007; 39:1071-3. [PMID: 17704777 DOI: 10.1038/ng2107] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 06/20/2007] [Indexed: 11/08/2022]
Abstract
We have identified a recurrent de novo pericentromeric deletion in 16p11.2-p12.2 in four individuals with developmental disabilities by microarray-based comparative genomic hybridization analysis. The identification of common clinical features in these four individuals along with the characterization of complex segmental duplications flanking the deletion regions suggests that nonallelic homologous recombination mediated these rearrangements and that deletions in 16p11.2-p12.2 constitute a previously undescribed syndrome.
Collapse
Affiliation(s)
- Blake C Ballif
- Signature Genomic Laboratories, Spokane, Washington 99202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|