1
|
Aggarwal P, Kaur G, Bhadada SK, Kumar R, Pandey S, Sood A, Mittal BR. Mirrored Metastatic Neuroendocrine Tumor in a Mother-Daughter Duo With Mutations in the MEN1 Gene. Clin Nucl Med 2025:00003072-990000000-01571. [PMID: 40016943 DOI: 10.1097/rlu.0000000000005732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/25/2024] [Indexed: 03/01/2025]
Abstract
Multiple endocrine neoplasia (MEN) 1 syndrome may present with either of any or all neuroendocrine tumors (NETs), parathyroid and pituitary adenoma. There is a paucity of data on the intronic and exonic mutations in the MEN1 gene associated with the MEN1 syndrome. We present an interesting study of a mother-daughter duo of MEN1 who had a similar lesions distribution of metastatic NET and underwent genetic analysis to reveal a rare mutation in the MEN1 gene and both first-degree relatives presented with metastatic NET without any other syndromic manifestation of MEN1 syndrome. Both patients received peptide receptor radionuclide therapy.
Collapse
Affiliation(s)
| | - Gurjeet Kaur
- Department of Endocrinology, PGIMER, Chandigarh, India
| | | | - Rajender Kumar
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Somit Pandey
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | | |
Collapse
|
2
|
Loganathan T, Priya Doss C G. A comprehensive high-throughput screening approach for discovering inhibitors targeting the menin-MLL1 interaction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 143:69-95. [PMID: 39843145 DOI: 10.1016/bs.apcsb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The prognosis for mixed-lineage leukemia (MLL), particularly in young children, remains a significant health concern due to the limited therapeutic options available. MLL refers to KMT2A chromosomal translocations that produce MLL fusion proteins. The protein menin, which is essential for the malignant potential of these MLL fusion proteins, offers novel targets for acute leukemia treatment. This study reports the identification of potential new inhibitors of MLL-mediated leukemia targeting menin through the screening of two distinct drug libraries and existing inhibitors. The 3D structure of the protein was retrieved from the Protein Data Bank (ID: 8IG0). The drug libraries, sourced from public repositories such as the 'Epigenetic Drug Library' and 'The FDA-anticancer Drug Library,' yielded top candidates like Tozaseritib and Panobinostat, which exhibited the highest binding energy scores in the Glide virtual screening module. Additionally, 31 known menin-MLL1 inhibitors were identified through PDB screening and subsequently docked with the menin protein. The top three inhibitors (M-525, M-808, and MI-89) were selected for further analysis. Five menin-ligand complexes were validated using molecular dynamics analysis and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations to verify the stability and binding mechanisms.These findings provide insights into the molecular mechanisms of these drugs and lay the groundwork for future clinical development aimed at improving outcomes for acute myeloid leukemia (AML) patients.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Smirne C, Giacomini GM, Berton AM, Pasini B, Mercalli F, Prodam F, Caputo M, Brosens LAA, Mollero ELM, Pitino R, Pirisi M, Aimaretti G, Ghigo E. A novel likely pathogenetic variant p.(Cys235Arg) of the MEN1 gene in multiple endocrine neoplasia type 1 with multifocal glucagonomas. J Endocrinol Invest 2024; 47:1815-1825. [PMID: 38294658 PMCID: PMC11196359 DOI: 10.1007/s40618-023-02287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Multiple endocrine neoplasia type 1 (MEN1) is a hereditary endocrine syndrome caused by pathogenic variants in MEN1 tumor suppressor gene. Diagnosis is commonly based on clinical criteria and confirmed by genetic testing. The objective of the present study was to report on a MEN1 case characterized by multiple pancreatic glucagonomas, with particular concern on the possible predisposing genetic defects. METHODS While conducting an extensive review of the most recent scientific evidence on the unusual glucagonoma familial forms, we analyzed the MEN1 gene in a 35-year-old female with MEN1, as well as her son and daughter, using Sanger and next-generation sequencing (NGS) approaches. We additionally explored the functional and structural consequences of the identified variant using in silico analyses. RESULTS NGS did not show any known pathogenic variant in the tested regions. However, a new non-conservative variant in exon 4 of MEN1 gene was found in heterozygosity in the patient and in her daughter, resulting in an amino acid substitution from hydrophobic cysteine to hydrophilic arginine at c.703T > C, p.(Cys235Arg). This variant is absent from populations databases and was never reported in full papers: its characteristics, together with the high specificity of the patient's clinical phenotype, pointed toward a possible causative role. CONCLUSION Our findings confirm the need for careful genetic analysis of patients with MEN1 and establish a likely pathogenic role for the new p.(Cys235Arg) variant, at least in the rare subset of MEN1 associated with glucagonomas.
Collapse
Affiliation(s)
- C Smirne
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy.
| | - G M Giacomini
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - A M Berton
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
| | - B Pasini
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Division of Medical Genetics, City of Health and Science University Hospital, 10126, Turin, Italy
| | - F Mercalli
- Division of Pathology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - F Prodam
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Caputo
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - L A A Brosens
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - E L M Mollero
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - R Pitino
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Pirisi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - G Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| |
Collapse
|
4
|
Leszczyńska D, Szatko A, Latocha J, Kochman M, Duchnowska M, Wójcicka A, Misiorowski W, Zgliczyníski W, Glinicki P. Persistent hypercalcaemia associated with two pathogenic variants in the CYP24A1 gene and a parathyroid adenoma-a case report and review. Front Endocrinol (Lausanne) 2024; 15:1355916. [PMID: 38665259 PMCID: PMC11043563 DOI: 10.3389/fendo.2024.1355916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction 24-Hydroxylase, encoded by the CYP24A1 gene, is a crucial enzyme involved in the catabolism of vitamin D. Loss-of-function mutations in CYP24A1 result in PTH-independent hypercalcaemia with high levels of 1,25(OH)2D3. The variety of clinical manifestations depends on age, and underlying genetic predisposition mutations can lead to fatal infantile hypercalcaemia among neonates, whereas adult symptoms are usually mild. Aim of the study We report a rare case of an adult with primary hyperparathyroidism and loss-of-function mutations in the CYP24A1 gene and a review of similar cases. Case presentation We report the case of a 58-year-old woman diagnosed initially with primary hyperparathyroidism. Preoperatively, the suspected mass adjoining the upper pole of the left lobe of the thyroid gland was found via ultrasonography and confirmed by 99mTc scintigraphy and biopsy as the parathyroid gland. The patient underwent parathyroidectomy (a histopathology report revealed parathyroid adenoma), which led to normocalcaemia. After 10 months, vitamin D supplementation was introduced due to deficiency, and the calcium level remained within the reference range. Two years later, biochemical tests showed recurrence of hypercalcaemia with suppressed parathyroid hormone levels and elevated 1,25(OH)2D3 concentrations. Further investigation excluded the most common causes of PTH-independent hypercalcaemia, such as granulomatous disease, malignancy, and vitamin D intoxication. Subsequently, vitamin D metabolites were measured using LC-MS/MS, which revealed high levels of 25(OH)D3, low levels of 24,25(OH)2D3 and elevated 25(OH)2D3/24,25(OH)2D3 ratios, suggesting a defect in vitamin D catabolism. Molecular analysis of the CYP24A1 gene using the NGS technique revealed two pathogenic variants: p.(Arg396Trp) and p.(Glu143del) (rs114368325 and rs777676129, respectively). Conclusions The diagnostic process for hypercalcaemia becomes complicated when multiple causes of hypercalcaemia coexist. The measurement of vitamin D metabolites using LC-MS/MS may help to identify carriers of CYP24A1 mutations. Subsequent molecular testing may contribute to establishing the exact frequency of pathogenic variants of the CYP24A1 gene and introducing personalized treatment.
Collapse
Affiliation(s)
- Dorota Leszczyńska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Julia Latocha
- Students’ Scientific Group Affiliated with the Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Maria Duchnowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Wójcicka
- Warsaw Genomics, Warsaw, Poland
- Fundacja Wiedzieć Więcej, Warsaw, Poland
| | - Waldemar Misiorowski
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Wojciech Zgliczyníski
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
5
|
Einarsson HB, Frederiksen AL, Pedersen IS, Ettrup MS, Wirenfeldt M, Boldt H, Nguyen N, Andersen MS, Bjarkam CR, Poulsen FR. PDP type brain tumor in association with multiple endocrine neoplasia type 1. Heliyon 2024; 10:e27418. [PMID: 38510015 PMCID: PMC10951523 DOI: 10.1016/j.heliyon.2024.e27418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome caused by inactivating pathogenic variants in the tumor suppressor gene menin 1 on chromosome 11q13 (Falchetti et al., 2009). The syndrome is characterized by neoplasia in two or more endocrine glands and has a high degree of penetrance. Pathogenic germline multiple neoplasia type 1 variants primarily result in neoplasia affecting the parathyroid glands, the pancreatic islet cells, and the anterior pituitary in combination. Primary hyperparathyroidism is the most common pathological manifestation of the syndrome, followed by pancreatic neuroendocrine tumors. Important genetic confirmation has been provided showing that ependymoma should be considered as a neoplasm that can occur in patients with MEN1 (Kato et al., 1996; Cuevas-Ocampo et al., 2017). The biphasic histopathological tumor entity shown in the present case we name Pleomorphic Xanthoastocytoma grade 3 differential pathology (PDP) in association with Multiple Endocrine Neoplasia type 1. This MEN1 associated tumor subtype is an extension of the findings on MEN1 associated ependymoma, where we show that the clinical phenotype itself may potentially be triggered by a frameshift germline pathogenic variant for the MEN1 gene, in combination with cyclin-dependent kinase inhibitor 1B gene germline variant and cyclin dependent kinase inhibitor 2A somatic deletion downstream of menin.
Collapse
Affiliation(s)
| | - Anja Lisbeth Frederiksen
- Molecular Diagnostics, Aalborg University Hospital and Clinical Cancer Research Center, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| | - Inge Soekilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital and Clinical Cancer Research Center, Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| | | | - Martin Wirenfeldt
- Department of Pathology, Hospital South West Jutland, Denmark
- Department of Regional Health Research, University of Southern, Denmark
- Department of Clinical Research and BRIDGE, Brain Research – Inter-Disciplinary Guided Excellence, University of Southern, Denmark
| | - Henning Boldt
- Department of Pathology, Odense University Hospital, Denmark
| | - Nina Nguyen
- Department of Neuroradiology, Odense University Hospital, Denmark
| | | | | | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Denmark
- Department of Clinical Research and BRIDGE, Brain Research – Inter-Disciplinary Guided Excellence, University of Southern, Denmark
| |
Collapse
|
6
|
Murray A, Rodas Marquez SP, Krishnamurthy M, Lopez-Nunez O, Gurria JP, Trout AT, Almazan S, Mutyala K, Grisotti G, Shah A, Howell J. Multifocal Insulinoma as the Unique Presenting Feature of Multiple Endocrine Neoplasia Type 1 in an Adolescent. Horm Res Paediatr 2024; 98:75-83. [PMID: 38442699 PMCID: PMC11374928 DOI: 10.1159/000538211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited disorder defined by the presence of two of the following endocrinopathies: primary hyperparathyroidism, anterior pituitary tumors, and duodenopancreatic neuroendocrine tumors (NETs). NETs, which can secrete hormones including insulin, gastrin, and glucagon, among others, are common in patients with MEN1 and are a major cause of morbidity and premature death. NETs are more common later in life, with very few cases described in children. Here, we describe a unique case of an adolescent with multifocal pancreatic NETs as the single presenting feature of MEN1. CASE PRESENTATION A 13-year-old healthy male presented with severe weakness, altered mental status, and syncope in the setting of a venous blood glucose (BG) of 36 mg/dL. Workup showed an elevated insulin level (14 μIU/mL) when BG was 39 mg/dL with positive response to glucagon, concerning for hyperinsulinism. Diazoxide and chlorothiazide were started but not well tolerated secondary to emesis. Three suspected NETs were identified by magnetic resonance imaging and 68-Ga DOTATATE PET-CT imaging, including the largest, a 2.1 cm mass in the pancreatic head. A fourth mass in the pancreatic tail was identified via intraoperative ultrasound. All lesions were successfully enucleated and excised, and glucose levels normalized off diazoxide by post-op day 2. While the primary lesion stained for insulin and somatostatin by immunofluorescence (IF), consistent with his clinical presentation, the additional tumors expressed glucagon, somatostatin, pancreatic polypeptide, and chromogranin A but were negative for insulin. Genetic testing confirmed a pathogenic heterozygous mutation in MEN1 (c.969C>A, p.Tyr323). He had no other signs of MEN-associated comorbidities on screening. DISCUSSION/CONCLUSION This case demonstrates that young patients with MEN1 can present with multifocal NETs. These NETs may have polyhormonal expression patterns despite a clinical presentation consistent with one primary hormone. Our patient had clinical symptoms and laboratory evaluation consistent with an insulinoma but was found to have four NETs, each with different IF staining patterns. Advanced preoperative and intraoperative imaging is important to identify and treat all present NETs. Moreover, serum hormone levels pre- and posttreatment could help evaluate whether NETs are actively secreting hormones into the bloodstream or simply expressing them within the pancreas. Finally, this case highlights the importance of genetic testing for MEN1 in all young patients with insulinomas. INTRODUCTION Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited disorder defined by the presence of two of the following endocrinopathies: primary hyperparathyroidism, anterior pituitary tumors, and duodenopancreatic neuroendocrine tumors (NETs). NETs, which can secrete hormones including insulin, gastrin, and glucagon, among others, are common in patients with MEN1 and are a major cause of morbidity and premature death. NETs are more common later in life, with very few cases described in children. Here, we describe a unique case of an adolescent with multifocal pancreatic NETs as the single presenting feature of MEN1. CASE PRESENTATION A 13-year-old healthy male presented with severe weakness, altered mental status, and syncope in the setting of a venous blood glucose (BG) of 36 mg/dL. Workup showed an elevated insulin level (14 μIU/mL) when BG was 39 mg/dL with positive response to glucagon, concerning for hyperinsulinism. Diazoxide and chlorothiazide were started but not well tolerated secondary to emesis. Three suspected NETs were identified by magnetic resonance imaging and 68-Ga DOTATATE PET-CT imaging, including the largest, a 2.1 cm mass in the pancreatic head. A fourth mass in the pancreatic tail was identified via intraoperative ultrasound. All lesions were successfully enucleated and excised, and glucose levels normalized off diazoxide by post-op day 2. While the primary lesion stained for insulin and somatostatin by immunofluorescence (IF), consistent with his clinical presentation, the additional tumors expressed glucagon, somatostatin, pancreatic polypeptide, and chromogranin A but were negative for insulin. Genetic testing confirmed a pathogenic heterozygous mutation in MEN1 (c.969C>A, p.Tyr323). He had no other signs of MEN-associated comorbidities on screening. DISCUSSION/CONCLUSION This case demonstrates that young patients with MEN1 can present with multifocal NETs. These NETs may have polyhormonal expression patterns despite a clinical presentation consistent with one primary hormone. Our patient had clinical symptoms and laboratory evaluation consistent with an insulinoma but was found to have four NETs, each with different IF staining patterns. Advanced preoperative and intraoperative imaging is important to identify and treat all present NETs. Moreover, serum hormone levels pre- and posttreatment could help evaluate whether NETs are actively secreting hormones into the bloodstream or simply expressing them within the pancreas. Finally, this case highlights the importance of genetic testing for MEN1 in all young patients with insulinomas.
Collapse
Affiliation(s)
- Alison Murray
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Mansa Krishnamurthy
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Oscar Lopez-Nunez
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juan P. Gurria
- Department of General and Thoracic Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T. Trout
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susan Almazan
- Department of Endocrinology, Dayton Children’s Hospital, Dayton, OH, USA
| | | | - Gabriella Grisotti
- Department of General and Thoracic Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amy Shah
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan Howell
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Paladini A, Vallejo R, Guerrero M, Pasqualucci A, Peppin JF, Pergolizzi J, Varrassi G. Answering Big Questions in Pain Medicine. Cureus 2023; 15:e43561. [PMID: 37719539 PMCID: PMC10502917 DOI: 10.7759/cureus.43561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
The future of pain medicine is marked by many questions. What can other nations around the world learn from the opioid crisis that is still affecting the United States? The American opioid experience was mischaracterized and wrongly described, and its causes were misdiagnosed from the outset, leading to its mismanagement and the abandonment of many chronic pain patients to their suffering. There are a few new drugs in the analgesic armamentarium. What new targets do we have in pain medicine? There are many breakthroughs, discoveries, and potential new targets that could add to our analgesic prescribing choices. These include sigma receptors, d-amino acid oxidase, endoplasmic reticulum stress receptors, histone deacetylase, and others. Neuromodulation had been used with varying degrees of success for years, but with a simplistic approach based on the gate theory of pain. Despite our familiarity with neuromodulation and spinal cord stimulators, neuromodulation research indicates that the activation of glial cells may activate the immune system and enhance analgesia. Neuromodulation studies have concentrated on how electricity affects neuronal activity rather than how electrical activity could reduce pain. There are still more frontiers in our battle against pain and some promising avenues for treatments. This narrative review will try to summarize what can be done from the perspective of recent technological and pharmacological developments.
Collapse
Affiliation(s)
- Antonella Paladini
- Department of Life, Health & Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Ricardo Vallejo
- Department of Research, Millennium Pain Center, Bloomington, USA
| | - Marixa Guerrero
- Department of Pain Medicine/ Pain Management, Clínica del Country, Bogota, COL
| | - Alberto Pasqualucci
- Department of Anesthesia and Critical Care, University of Perugia, Perugia, ITA
| | - John F Peppin
- Department of Osteopathic Medicine, Marian University, Indianapolis, USA
| | - Joseph Pergolizzi
- Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Nema Research, Naples, USA
| | | |
Collapse
|
8
|
Abraham BM, Sharkey E, Kwatampora L, Ranzinger M, von Holzen U. Mediastinal Intrathymic Parathyroid Adenoma: A Case Report and Review of the Literature. Cureus 2023; 15:e42306. [PMID: 37609099 PMCID: PMC10442188 DOI: 10.7759/cureus.42306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
The classic clinical vignette of primary hyperparathyroidism is well described as "bones, stones, abdominal moans, and psychiatric overtones" to reflect the effects of excess parathyroid hormone (PTH) and calcium. Most commonly, primary hyperparathyroidism is due to a functional parathyroid adenoma situated by the thyroid gland. Rarely, the primary focus of autonomously produced PTH is located ectopically within the mediastinum. A 19-year-old Caucasian female with no relevant past medical history presented to the emergency department with tachycardia, nausea, vomiting, and a five-day history of vague, mid-abdominal pain. Initial computed tomography (CT) with contrast of the abdomen and pelvis was negative for acute findings, and she subsequently underwent biochemical screening. The patient was found to have elevated serum calcium and PTH, raising suspicion for the diagnosis of primary hyperparathyroidism. Further evaluation for a parathyroid adenoma was negative by a CT scan of the neck and thyroid ultrasound. A nuclear medicine parathyroid single-photon emission computed tomography (SPECT)/CT with technetium (Tc) 99m sestamibi found an abnormal nodular uptake within the left prevascular mediastinum suggestive of an ectopic parathyroid adenoma. A left-sided, video-assisted thoracoscopic surgery (VATS) with successful excision of the ectopic mediastinal parathyroid adenoma was performed. Surgical pathology revealed that the parathyroid adenoma was completely excised and surrounded by thymus and adipose tissue. The patient tolerated the procedure well and was discharged without further complications. The rarity of mediastinal, intrathymic parathyroid adenomas resulted in delayed diagnosis in this patient, understandably so as errant embryogenesis does not occur commonly. Visualization with SPECT/CT and successful specimen excision by minimally invasive VATS resulted in the accurate diagnosis and ultimate cure of this patient's primary hyperparathyroidism.
Collapse
|
9
|
Molina‐Céspedes P, Ruiz‐Golcher EJ, Badilla‐Barboza O, Sedó‐Mejía G, Barboza‐Rodríguez L, Badilla‐Porras R. Multiple endocrine neoplasia type 1 familial case in a patient with insulinoma and primary hyperparathyroidism: First report in literature and in the Costa Rican population of the c.1224_1225insGTCC pathogenic variant. Clin Case Rep 2023; 11:e7041. [PMID: 36911651 PMCID: PMC9994136 DOI: 10.1002/ccr3.7041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder without a good genotype-phenotype correlation, characterized by tumor predisposition in the parathyroid gland, anterior pituitary, and pancreatic islet cells. Here, we describe a 37-year-old male with previous history of nephrolithiasis, with a 1-year history of recurrent hypoglycemic episodes. Physical examination revealed the presence of two lipomas. Family history revealed primary hyperparathyroidism (PHPT), hyperprolactinemia, and multiple non-functioning pancreatic neuroendocrine tumors. Initial laboratories revealed hypoglycemia and primary hyperparathyroidism. A fasting test was positive after 3 hours of initiation. An abdominal CT Scan demonstrated a 28 × 27 mm mass in the pancreatic tail and bilateral nephrolithiasis. A distal pancreatectomy was done. After surgery, the patient persisted with hypoglycemic episodes that were managed with diazoxide and frequent feedings. A parathyroid Tc-99 m MIBI scan with SPECT/CT imaging demonstrated two hot uptake lesions compatible with abnormally functioning parathyroid tissue. Surgical treatment was offered; however, the patient decided to postpone the procedure. Direct sequence analysis of MEN1 gene revealed heterozygosity for a pathogenic insertion c.1224_1225insGTCC (p.Cys409Valfs*41). DNA sequence analysis was done to six of his first-degree relatives. A sister with clinical diagnosis of MEN1 and a pre-symptomatic brother were positive for the same MEN1 variant. To our knowledge, this is the first report of a genetically confirmed case of MEN1 in our country and is the first report in literature of the c.1224_1225insGTCC variant related to a clinically affected family.
Collapse
|
10
|
Soto-Feliciano YM, Sánchez-Rivera FJ, Perner F, Barrows DW, Kastenhuber ER, Ho YJ, Carroll T, Xiong Y, Anand D, Soshnev AA, Gates L, Beytagh MC, Cheon D, Gu S, Liu XS, Krivtsov AV, Meneses M, de Stanchina E, Stone RM, Armstrong SA, Lowe SW, Allis CD. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer Discov 2023; 13:146-169. [PMID: 36264143 PMCID: PMC9827117 DOI: 10.1158/2159-8290.cd-22-0416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
Abstract
Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Douglas W. Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York
| | - Yijun Xiong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Disha Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Alexey A. Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Leah Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Mary Clare Beytagh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - David Cheon
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Shengqing Gu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. Stone
- Leukemia Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - Scott W. Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.,Corresponding Authors: C. David Allis, The Rockefeller University, Allis Lab, Box #78, 1230 York Avenue, New York, NY 10065. Phone: 212-327-7839; E-mail: ; Scott W. Lowe, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Cancer Biology and Genetics Program, New York, NY, 10065. Phone: 646-888-3342; E-mail: ; and Scott A. Armstrong, Harvard Medical School, Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA, 02115. Phone: 617-632-2991; E-mail:
| |
Collapse
|
11
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
12
|
Lai J, Huang Y, Wu J, Cheng H, Qiu F. Multiple endocrine neoplasia type 1 involving both the liver and lung: a case report. World J Surg Oncol 2022; 20:151. [PMID: 35538538 PMCID: PMC9088025 DOI: 10.1186/s12957-022-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant tumor syndrome with a high degree of heterogeneity in clinical phenotypes, generally involving the parathyroid, anterior pituitary, and enteropancreas. In recent years, several new insights into the clinical features of MEN1 have been reported in the literature. However, it is not clear whether MEN1-associated primary tumors can occur in the liver. CASE PRESENTATION We report the case of a 52-year-old man with multiple endocrine neoplasia type 1 diagnosed by genetic sequencing. After uniportal thoracoscopic right middle lobectomy, laparoscopic radical resection of the liver tumors, and radiofrequency ablation of the parathyroid space, the parathyroid hormone level decreased from 177 pg/ml to a normal level (20 pg/ml). No local tumor recurrence was observed during a follow-up of 5 months. CONCLUSION We report the first case of MEN1 with simultaneous liver and lung involvement in which the patient underwent radical resection of the tumors, and we propose the possibility that the liver and other nonendocrine organs may also develop diseases associated with MEN1; although, this view needs further verification. Gene detection has crucial clinical significance for guiding diagnosis and treatment.
Collapse
Affiliation(s)
- Jianlin Lai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yangyang Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Junyi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Hui Cheng
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China. .,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Waguespack SG. Beyond the "3 Ps": A critical appraisal of the non-endocrine manifestations of multiple endocrine neoplasia type 1. Front Endocrinol (Lausanne) 2022; 13:1029041. [PMID: 36325452 PMCID: PMC9618614 DOI: 10.3389/fendo.2022.1029041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an autosomal-dominantly inherited tumor syndrome, is classically defined by tumors arising from the "3 Ps": Parathyroids, Pituitary, and the endocrine Pancreas. From its earliest descriptions, MEN1 has been associated with other endocrine and non-endocrine neoplastic manifestations. High quality evidence supports a direct association between pathogenic MEN1 variants and neoplasms of the skin (angiofibromas and collagenomas), adipose tissue (lipomas and hibernomas), and smooth muscle (leiomyomas). Although CNS tumors, melanoma, and, most recently, breast cancer have been reported as MEN1 clinical manifestations, the published evidence to date is not yet sufficient to establish causality. Well-designed, multicenter prospective studies will help us to understand better the relationship of these tumors to MEN1, in addition to verifying the true prevalence and penetrance of the well-documented neoplastic associations. Nevertheless, patients affected by MEN1 should be aware of these non-endocrine manifestations, and providers should be encouraged always to think beyond the "3 Ps" when treating an MEN1 patient.
Collapse
|
14
|
Teinturier R, Abou Ziki R, Kassem L, Luo Y, Malbeteau L, Gherardi S, Corbo L, Bertolino P, Bachelot T, Treilleux I, Zhang CX, Le Romancer M. Reduced menin expression leads to decreased ERα expression and is correlated with the occurrence of human luminal B-like and ER-negative breast cancer subtypes. Breast Cancer Res Treat 2021; 190:389-401. [PMID: 34561764 PMCID: PMC8558183 DOI: 10.1007/s10549-021-06339-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Purpose Menin, encoded by the MEN1 gene, was recently reported to be involved in breast cancers, though the underlying mechanisms remain elusive. In the current study, we sought to further determine its role in mammary cells. Methods Menin expression in mammary lesions from mammary-specific Men1 mutant mice was detected using immunofluorescence staining. RT-qPCR and western blot were performed to determine the role of menin in ERα expression in human breast cancer cell lines. ChIP-qPCR and reporter gene assays were carried out to dissect the action of menin on the proximal ESR1 promoter. Menin expression in female patients with breast cancer was analyzed and its correlation with breast cancer subtypes was investigated. Results Immunofluorescence staining revealed that early mammary neoplasia in Men1 mutant mice displayed weak ERα expression. Furthermore, MEN1 silencing led to both reduced ESR1 mRNA and ERα protein expression in MCF7 and T47D cells. To further dissect the regulation of ESR1 transcription by menin, we examined whether and in which way menin could regulate the proximal ESR1 promoter, which has not been fully explored. Using ChIP analysis and reporter gene assays covering − 2500 bp to + 2000 bp of the TSS position, we showed that the activity of the proximal ESR1 promoter was markedly reduced upon menin downregulation independently of H3K4me3 status. Importantly, by analyzing the expression of menin in 354 human breast cancers, we found that a lower expression was associated with ER-negative breast cancer (P = 0.041). Moreover, among the 294 ER-positive breast cancer samples, reduced menin expression was not only associated with larger tumors (P = 0.01) and higher SBR grades (P = 0.005) but also with the luminal B-like breast cancer subtype (P = 0.006). Consistent with our clinical data, we demonstrated that GATA3 and FOXA1, co-factors in ESR1 regulation, interact physically with menin in MCF7 cells, and MEN1 knockdown led to altered protein expression of GATA3, the latter being a known marker of the luminal A subtype, in MCF7 cells. Conclusion Taken together, our data provide clues to the important role of menin in ERα regulation and the formation of breast cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06339-9.
Collapse
Affiliation(s)
- Romain Teinturier
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Razan Abou Ziki
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yakun Luo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Lucie Malbeteau
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Samuele Gherardi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Laura Corbo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Philippe Bertolino
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | | | - Chang Xian Zhang
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| |
Collapse
|
15
|
Fushimi Y, Kamei S, Tatsumi F, Sanada J, Shimoda M, Kimura T, Obata A, Nakanishi S, Kaku K, Mune T, Kaneto H. Multiple endocrine neoplasia type 1 with a frameshift mutation in its gene accompanied by a giant cervical lipoma and multiple fatty deposits in the pancreas: case report. BMC Endocr Disord 2021; 21:164. [PMID: 34384417 PMCID: PMC8359094 DOI: 10.1186/s12902-021-00821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by pituitary neoplasia, primary hyperparathyroidism and pancreatic endocrine tumor. Here we show a case of MEN1 with a germline frameshift mutation in its gene accompanied by a giant cervical lipoma and multiple fatty deposits in the pancreas. CASE PRESENTATION A 28-year-old man noticed the decreased visual acuity of both eyes and visited our institution. Since he was diagnosed as visual disturbance and brain computer tomography (CT) showed a mass in the pituitary fossa, he was hospitalized in our institution. Endoscopic trans-sphenoidal hypophysectomy and total parathyroidectomy with auto-transplantation were performed, and a giant cervical lipoma was resected. Furthermore, in genetic search, we found a germline frameshift mutation in MEN1 gene leading to the appearance of a new stop codon. CONCLUSIONS We should bear in m ind that giant skin lipoma and multiple abnormal fatty deposits in the pancreas could be complicated with MEN1.
Collapse
Affiliation(s)
- Yoshiro Fushimi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Shinji Kamei
- Department of Diabetic Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Fuminori Tatsumi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Junpei Sanada
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, 701-0192 Kurashiki, Japan
| |
Collapse
|
16
|
Multiple Endocrine Neoplasia Type 1 with Concomitant Existence of Malignant Insulinoma: A Rare Finding. Case Rep Endocrinol 2021; 2021:8842667. [PMID: 34367700 PMCID: PMC8337156 DOI: 10.1155/2021/8842667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare syndrome of autosomal dominant inheritance defined by co-occurrence of two or more tumors originating from the parathyroid gland, pancreatic islet cells, and/or anterior pituitary. Insulinoma which has an incidence of 0.4% is a rare pancreatic neuroendocrine tumor. Malignant insulinoma is extremely rare, while primary hyperparathyroidism is a common occurrence in MEN1. We present a case of MEN1 syndrome with 2.6 cm insulinoma in the pancreatic head and parathyroid adenoma in a 56-year-old female who presented with symptoms suggestive of hypoglycemia like multiple episodes of loss of consciousness for four years. Classical pancreaticoduodenectomy was carried out, and the postoperative period was uneventful. Later, subtotal parathyroidectomy was performed, which showed parathyroid adenoma. Patients presenting with features of hypoglycemia should be vigilantly assessed for the presence of a sinister pathology.
Collapse
|
17
|
Marini F, Brandi ML. Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int J Mol Sci 2021; 22:ijms22147352. [PMID: 34298972 PMCID: PMC8306915 DOI: 10.3390/ijms22147352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited multiple cancer syndrome of neuroendocrine tissues. Tumors are caused by an inherited germinal heterozygote inactivating mutation of the MEN1 tumor suppressor gene, followed by a somatic loss of heterozygosity (LOH) of the MEN1 gene in target neuroendocrine cells, mainly at parathyroids, pancreas islets, and anterior pituitary. Over 1500 different germline and somatic mutations of the MEN1 gene have been identified, but the syndrome is completely missing a direct genotype-phenotype correlation, thus supporting the hypothesis that exogenous and endogenous factors, other than MEN1 specific mutation, are involved in MEN1 tumorigenesis and definition of individual clinical phenotype. Epigenetic factors, such as microRNAs (miRNAs), are strongly suspected to have a role in MEN1 tumor initiation and development. Recently, a direct autoregulatory network between miR-24, MEN1 mRNA, and menin was demonstrated in parathyroids and endocrine pancreas, showing a miR-24-induced silencing of menin expression that could have a key role in initiation of tumors in MEN1-target neuroendocrine cells. Here, we review the current knowledge on the post-transcriptional regulation of MEN1 and menin expression by miR-24, and its possible direct role in MEN1 syndrome, describing the possibility and the potential approaches to target and silence this miRNA, to permit the correct expression of the wild type menin, and thereby prevent the development of cancers in the target tissues.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/pharmacology
- Antagomirs/therapeutic use
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA Damage
- Feedback, Physiological
- Forecasting
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genetic Therapy
- Humans
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Multiple Endocrine Neoplasia Type 1/genetics
- Multiple Endocrine Neoplasia Type 1/metabolism
- Multiple Endocrine Neoplasia Type 1/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Isoforms/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Rats
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence: or ; Tel.: +39-055-23-36-663
| |
Collapse
|
18
|
Mosenia A, Ward C, Yee A, Qorbani A, Corvera C. Multifocal pancreatic PPoma in the setting of MEN1: Case report and review of literature. Int J Surg Case Rep 2021; 83:106008. [PMID: 34118524 PMCID: PMC8193151 DOI: 10.1016/j.ijscr.2021.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction and importance Functioning pancreatic neuroendocrine tumors (pNETs) that express pancreatic polypeptide—PPomas—do not yet have a pathognomonic clinical syndrome associated with them due to their overall rarity and diverse symptoms. Moreover, in patients with MEN1, the often multifocal nature of pNETs presents a unique clinical issue. Case presentation We report a case of a 22-year-old man with a known MEN1 gene mutation who was suffering from severe diarrhea (7–8 bowel movements per day) and was found to have only elevated PP levels on biochemical work-up. Ga68-DOTATATE PET/CT showed multifocal tumors in the body and tail of the pancreas that were not evident on contrast-enhanced CT. The patient underwent a successful laparoscopic radical antegrade modular pancreatosplenectomy (RAMP) and recovered well post-operatively with complete resolution of his diarrhea. Immunohistochemistry showed multiple pure PPomas. Clinical discussion This case highlights the unique propensity for multifocal disease in patients with MEN1 mutations and the utility of functional imaging by somatostatin analogs, i.e., Ga68-DOTATATE PET/CT, in order to perform oncologic laparoscopic pancreatic resections. Conclusion PPomas in the setting of MEN1 mutations are a unique clinical entity due to their diverse associated clinical syndromes and propensity for multifocal disease. PPomas have no pathognomonic clinical syndrome associated with them. Patients with MEN1 have a propensity for multifocal pNETs. DOTATE PET/CT is vital adjunct to pancreatic protocol CT for operative planning. Intra-operative ultrasound makes laparoscopic multi-focal pNET resection feasible. DOTATATE PET/CT surveillance is necessary due to high risk for recurrence in MEN1.
Collapse
Affiliation(s)
- Arman Mosenia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Casey Ward
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alisa Yee
- Department of Surgery, Division of Surgical Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - Amir Qorbani
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Carlos Corvera
- Department of Surgery, Division of Surgical Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Luzi E, Pandolfini L, Ciuffi S, Marini F, Cremisi F, Nesi G, Brandi ML. MicroRNAs regulatory networks governing the epigenetic landscape of MEN1 gastro-entero-pancreatic neuroendocrine tumor: A case report. Clin Transl Med 2021; 11:e351. [PMID: 33931963 PMCID: PMC8023566 DOI: 10.1002/ctm2.351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ettore Luzi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Luca Pandolfini
- Istituto Italiano di Tecnologia (IIT)GenovaItaly
- Scuola Normale Superiore di PisaPisaItaly
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | | | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
20
|
Shyamasunder AH, Pai R, Ramamoorthy H, Sakhti D, Manipadam MT, Kapoor N, Paul TV, Jebasingh F, Thomas N, Abraham DT, Paul MJ, Chacko AG, Prabhu K, Rajaratnam S. Clinical Profile and Mutations Associated with Multiple Endocrine Neoplasia-Type1 (MEN1) and Their First-Degree Relatives at Risk of Developing MEN1: A Prospective Study. Horm Metab Res 2021; 53:245-256. [PMID: 33853118 DOI: 10.1055/a-1402-0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple Endocrine Neoplasia type-1 (MEN1) is an autosomal dominant disorder with a combined occurrence of tumours of parathyroid glands, pancreatic islets, and anterior pituitary. About 90% of these patients carry mutations in the MEN1 gene, though the spectrum is not well defined in India. Forty clinically suspected cases of MEN1 were enrolled prospectively over six years; 32 patients (23 index-cases and nine affected relatives) with≥2 classical endocrine tumours of MEN1 were considered definite, and eight were categorised as 'MEN1-like'. Details of their clinical presentation, treatment and mutational analysis including MEN1 gene, 3' and 5' untranslated regions (UTR) of MEN1, CDKN1B, and CaSR genes were collated. Asymptomatic first-degree relatives were also screened. Among the 32 definite MEN1 patients, all had primary hyperparathyroidism, 22 (68.7%) had gastroentero-pancreatic neuroendocrine tumours, and 21 (66%) had pituitary adenoma. Of the 23 definite index-cases, 13 (56.5%) carried mutations in the MEN1 gene. Five of nine affected first-degree relatives (55.5%), and four of 10 asymptomatic relatives (40%) also had MEN1 mutations. Seven of 10 MEN1 mutation-negative definite index-cases harboured p.V109G polymorphism in the CDKN1B gene. All eight MEN1-like cases were negative for mutations and large deletions in MEN1, mutations in 3' and 5' UTR of MEN1, CaSR and CDKN1B genes. The study has helped to clearly document the pattern of mutations among Indian MEN1 patients. However, the absence of MEN1 mutation in ~44% of cases and the presence of p.V109G polymorphism in CDKN1B gene raise the question whether such polymorphisms could independently contribute to pathogenesis.
Collapse
Affiliation(s)
| | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Dhananjayan Sakhti
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| | - Thomas Vizhalil Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| | - Felix Jebasingh
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Thomas Abraham
- Department of Endocrine Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Ari George Chacko
- Department of Neurosurgery, Christian Medical College, Vellore, Tamil Nadu, India
| | - Krishna Prabhu
- Department of Neurosurgery, Christian Medical College, Vellore, Tamil Nadu, India
| | - Simon Rajaratnam
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
21
|
Drewitz KP, Grey J, Brügmann P, Pichl J, Sammarco M, Aarts M, van Genechten D, Brandi ML, Schaaf L. Patients' perception on the quality of care for multiple endocrine neoplasia disorders in Europe: an online survey from a patient support group. Endocrine 2021; 71:634-640. [PMID: 33537957 DOI: 10.1007/s12020-021-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE European Patient Advocacy Groups (ePAGs) within the Endo-ERN identified a lack of knowledge about quality of care (QoC) of patients with multiple endocrine neoplasia (MEN). The aim of this study was to identify inequalities in care and to encourage improvements. METHODS The European MEN Alliance (EMENA) developed and conducted a survey, using the European Commissions' EUSurvey platform. Patient groups and healthcare professionals (HCPs) distributed the survey. RESULTS A total of 288 participants completed the survey (MEN1 n = 203, MEN2 n = 67, MEN3 n = 18) from 18 European countries. The majority of respondents were recruited via patient groups (58%), aged between 41 and 60 years (53%) and were female (67%). All participants reported having been diagnosed on average 5.58 years (95%-CI: 4.45-6.60) after first symptoms occurred. This timeframe was lower in the group with MEN2 (2.97 years, 95%-CI: 1.37-4.57). Most of the participants (67%) received their diagnosis by a positive gene test after presenting with one or more MEN-related tumours. Overall QoC was rated as either "good" (43%) or "excellent" (36%). CONCLUSION The results of this unique Europe-wide, patient-driven survey on QoC of patients with MEN show that ratings for overall QoC were lower than ratings for different aspects of care. This may be because of the complex nature of care for genetic syndromes. Furthermore, patients who connect with patient groups may be deemed "expert patients" whose answers are not representative of the overall MEN patient community. We hope that Endo-ERN can support further education and training for HCPs based on these results.
Collapse
Affiliation(s)
- Karl Philipp Drewitz
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany.
- Institute of Social Medicine and Health Systems Research, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- German Network of Pituitary and Adrenal Diseases, Fürth, Germany.
| | - Jo Grey
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- Association for Multiple Endocrine Neoplasia Disorders (AMEND), Kent, UK
- European Patient Advocacy Group (ePAG), Main Thematic Group 4 (Genetic Endocrine Tumour Syndromes), European Reference Network on Rare Endocrine Conditions (Endo-ERN), Leiden, The Netherlands
| | - Petra Brügmann
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- German Network of Pituitary and Adrenal Diseases, Fürth, Germany
- European Patient Advocacy Group (ePAG), Main Thematic Group 4 (Genetic Endocrine Tumour Syndromes), European Reference Network on Rare Endocrine Conditions (Endo-ERN), Leiden, The Netherlands
| | - Josef Pichl
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- German Network of Pituitary and Adrenal Diseases, Fürth, Germany
| | - Martina Sammarco
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- Associazione Italiana Neoplasie Endocrine Multiple di tipo 1 e 2 (AIMEN 1 e 2), Torino, Italy
| | - Monique Aarts
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- Belangengroep MEN, Utrecht, The Netherlands
| | - Dirk van Genechten
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- vzw NET & MEN Kanker, Blankenberge, Belgium
| | - Maria-Luisa Brandi
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- Donatello Bone Clinic, Florence, Italy
- Endo-ERN Reference Center, University Hospital Careggi, Florence, Italy
| | - Ludwig Schaaf
- European Multiple Endocrine Neoplasia Alliance (EMENA), Munich, Germany
- Department of Endocrinology, München Klinik Schwabing, Munich, Germany
| |
Collapse
|
22
|
Mele C, Mencarelli M, Caputo M, Mai S, Pagano L, Aimaretti G, Scacchi M, Falchetti A, Marzullo P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front Endocrinol (Lausanne) 2020; 11:591501. [PMID: 33312161 PMCID: PMC7708377 DOI: 10.3389/fendo.2020.591501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited tumor syndrome, associated with parathyroid, pituitary, and gastro-entero-pancreatic (GEP) neuroendocrine tumors (NETs). MEN1 is usually consequent to different germline and somatic mutations of the MEN1 tumor suppressor gene, although phenocopies have also been reported. This review analyzed main biomedical databases searching for reports on MEN1 gene mutations and focused on aggressive and aberrant clinical manifestations to investigate the potential genotype-phenotype correlation. Despite efforts made by several groups, this link remains elusive to date and evidence that aggressive or aberrant clinical phenotypes may be related to specific mutations has been provided by case reports and small groups of MEN1 patients or families. In such context, a higher risk of aggressive tumor phenotypes has been described in relation to frameshift and non-sense mutations, and predominantly associated with aggressive GEP NETs, particularly pancreatic NETs. In our experience a novel heterozygous missense mutation at c.836C>A in exon 6 was noticed in a MEN1 patient operated for macro-prolactinoma, who progressively developed recurrent parathyroid adenomas, expanding gastrinomas and, long after the first MEN1 manifestation, a neuroendocrine uterine carcinoma. In conclusion, proof of genotype-phenotype correlation is limited but current evidence hints at the need for long-term interdisciplinary surveillance in patients with aggressive phenotypes and genetically confirmed MEN1.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Monica Mencarelli
- Istituto Auxologico Italiano, IRCCS, Laboratory of Molecular Biology, S. Giuseppe Hospital, Piancavallo, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, IRCCS, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, Italy
| | - Loredana Pagano
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Massimo Scacchi
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, Rehabilitation Unit, S. Giuseppe Hospital, Unit for Bone Metabolism Diseases, Verbania, Italy
- Diabetes & Lab of Endocrine and Metabolic Research, Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
- *Correspondence: Paolo Marzullo,
| |
Collapse
|
23
|
Concomitant pancreatic neuroendocrine tumors in hereditary tumor syndromes: who, when and how to operate? JOURNAL OF PANCREATOLOGY 2019. [DOI: 10.1097/jp9.0000000000000016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Qiaoqiao C, Li H, Liu X, Yan Z, Zhao M, Xu Z, Wang Z, Shi K. MiR-24-3p regulates cell proliferation and milk protein synthesis of mammary epithelial cells through menin in dairy cows. J Cell Physiol 2019; 234:1522-1533. [PMID: 30221364 PMCID: PMC6282567 DOI: 10.1002/jcp.27017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023]
Abstract
MiR-24-3p, a broadly conserved, small, noncoding RNA, is abundantly expressed in mammary tissue. However, its regulatory role in this tissue remains poorly understood. It was predicted that miR-24-3p targets the 3' untranslated region (3'-UTR) of multiple endocrine neoplasia type 1 (MEN1), an important regulatory factor in mammary tissue. The objective of this study was to investigate the function of miR-24-3p in mammary cells. Using a luciferase assay in mammary epithelial cells (MAC-T), miR-24-3p was confirmed to target the 3'-UTR of MEN1. Furthermore, miR-24-3p negatively regulated the expression of the MEN1 gene and its encoded protein, menin. miR-24-3p enhanced proliferation of MAC-T by promoting G1/S phase progression. MiR-24-3p also regulated the expression of key factors involved in phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin and Janus kinase/signal transducer and activators of transcription signaling pathways, therefore controlling milk protein synthesis in epithelial cells. Thus, miR-24-3p appears to act on MAC-T by targeting MEN1. The expression of miR-24-3p was controlled by MEN1/menin, indicating a negative feedback loop between miR-24-3p and MEN1/menin. The negatively inhibited expression pattern of miR-24-3p and MEN1 was active in mammary tissues at different lactation stages. The feedback mechanism is a new concept to further understand the lactation cycle of mammary glands and can possibly to be manipulated to improve milk yield and quality.
Collapse
Affiliation(s)
- Cao Qiaoqiao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Honghui Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Xue Liu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhengui Yan
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhongjin Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhonghua Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| |
Collapse
|
25
|
Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol (Lausanne) 2019; 10:339. [PMID: 31263451 PMCID: PMC6584804 DOI: 10.3389/fendo.2019.00339] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary tumor syndrome inherited in an autosomal dominant manner and characterized by a predisposition to a multitude of endocrine neoplasms primarily of parathyroid, enteropancreatic, and anterior pituitary origin, as well as nonendocrine neoplasms. Other endocrine tumors in MEN1 include foregut carcinoid tumors, adrenocortical tumors, and rarely pheochromocytoma. Nonendocrine manifestations include meningiomas and ependymomas, lipomas, angiofibromas, collagenomas, and leiomyomas. MEN1 is caused by inactivating mutations of the tumor suppressor gene MEN1 which encodes the protein menin. This syndrome can affect all age groups, with 17% of patients developing MEN1-associated tumors before 21 years of age. Despite advances in the diagnosis and treatment of MEN1-associated tumors, patients with MEN1 continue to have decreased life expectancy primarily due to malignant neuroendocrine tumors. The most recent clinical practice guidelines for MEN1, published in 2012, highlight the need for early genetic and clinical diagnosis of MEN1 and recommend an intensive surveillance approach for both patients with this syndrome and asymptomatic carriers starting at the age of 5 years with the goal of timely detection and management of MEN1-associated neoplasms and ultimately decreased disease-specific morbidity and mortality. Unfortunately, there is no clear genotype-phenotype correlation and individual mutation-dependent surveillance is not possible currently.
Collapse
|
26
|
Benchmarking health-related quality of life in thyroid cancer versus other cancers and United States normative data. Surgery 2018; 164:986-992. [DOI: 10.1016/j.surg.2018.06.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
27
|
Makri A, Bonella MB, Keil MF, Hernandez-Ramirez L, Paluch G, Tirosh A, Saldarriaga C, Chittiboina P, Marx SJ, Stratakis CA, Lodish M. Children with MEN1 gene mutations may present first (and at a young age) with Cushing disease. Clin Endocrinol (Oxf) 2018; 89:437-443. [PMID: 29927501 PMCID: PMC6341462 DOI: 10.1111/cen.13796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/18/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Cushing disease (CD) is a rare entity caused by ACTH-secreting pituitary tumours, leading to prolonged hypercortisolism. Most cases are sporadic but can rarely occur in the context of familial predisposition, due to germline mutations in genes such as MEN1, leading to multiple endocrine neoplasia type 1, MEN1. We have reported previously that CD can be the first and only presenting manifestation of MEN1. In this report, we describe a cohort of paediatric patients who presented with CD as the first manifestation of MEN1. MATERIALS AND METHODS A retrospective analysis of paediatric patients admitted to the National Institutes of Health (NIH) Clinical Center for evaluation of hypercortisolism, between 1997 and 2017. MEN1 was diagnosed on a clinical, familial and/or genetic basis. RESULTS Of a total of 238 children with CD, six patients were subsequently diagnosed with MEN1, three males and three females with a mean age at diagnosis of CD at 13.4 ± 2.9 years. Five of the six patients had familial MEN1 and one patient was a sporadic case. Additional manifestations of MEN1 included primary hyperparathyroidism in three patients and hyperprolactinemia in two patients. DISCUSSION This report describes a paediatric patient population with MEN1 in whom CD was the initial manifestation, confirming a previous observation that paediatric patients with MEN1 may present first with an ACTH-producing adenoma. Therefore, germline MEN1 mutations should be sought in paediatric CD and tested for when there is a suggestive family history and/or other manifestations.
Collapse
Affiliation(s)
- Angeliki Makri
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Maria Belen Bonella
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Margaret F. Keil
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Laura Hernandez-Ramirez
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Gabriella Paluch
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Amit Tirosh
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carolina Saldarriaga
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Stephen J. Marx
- The National institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Constantine A. Stratakis
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Maya Lodish
- Eunice Kennedy Shriver National institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Ligiero Braga T, Santos-Oliveira R. PPoma Review: Epidemiology, Aetiopathogenesis, Prognosis and Treatment. Diseases 2018; 6:diseases6010008. [PMID: 29324681 PMCID: PMC5871954 DOI: 10.3390/diseases6010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023] Open
Abstract
Generally, pancreatic polypeptide-secreting tumor of the distal pancreas (PPoma) is classified as a rare tumor, and may occur sporadically or be associated in families or with multiple endocrine neoplasia type 1 (NEM 1). It grows slowly, reaching large dimensions at the time of diagnosis and the symptomatology is fundamentally due to the mass effect, causing either non-specific abdominal pain or symptoms suggestive of obstruction of the pancreatic or biliary duct. Therefore, when detected, they are usually malignant, with metastases mainly in the liver. The combination of serum analysis of increased levels of chromogranin A and pancreatic polypeptide and pancreastatin is very useful with a sensitivity of up to 95%. However, in addition, scintigraphicexams with somatostatin analogues should be performed to better clarify the diagnosis. Surgical resection is the treatment of choice, despite surgical difficulty and because they are generally palliative due to the metastases. Surgeries for tumor volume reduction are also performed to relieve symptoms. Chemotherapy commonly uses streptozotocin and somatostatin analogues to treat residual disease. Unfortunately, the survival rates are still very low, less than 10%, and if metastases already exist, this percentage drops to 3%.
Collapse
Affiliation(s)
- Thais Ligiero Braga
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil.
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil.
| |
Collapse
|
29
|
Abstract
Neuroendocrine tumours (NETs) are a heterogenous group of tumours arising from neuroendocrine cells in several sites around the body. They include tumours of the gastroenteropancreatic system, phaeochromocytoma and paraganglioma and medullary thyroid cancer. In recent years, it has become increasingly apparent that a number of these tumours arise as a result of germline genetic mutations and are inherited in an autosomal dominant pattern. The number of genes implicated is increasing rapidly. Identifying which patients are likely to have a germline mutation enables clinicians to counsel patients adequately about their future disease risk, and allows for earlier detection of at-risk patients through family screening. The institution of screening and surveillance programmes may in turn lead to a major shift in presentation patterns for some of these tumours. In this review, we examine the features which may lead a clinician to suspect that a patient may have an inherited cause of a NET and we outline which underlying conditions should be suspected. We also discuss what type of screening may be appropriate in a variety of situations.
Collapse
Affiliation(s)
- Triona O'Shea
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Maralyn Druce
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
30
|
Giusti F, Cianferotti L, Boaretto F, Cetani F, Cioppi F, Colao A, Davì MV, Faggiano A, Fanciulli G, Ferolla P, Ferone D, Fossi C, Giudici F, Gronchi G, Loli P, Mantero F, Marcocci C, Marini F, Masi L, Opocher G, Beck-Peccoz P, Persani L, Scillitani A, Sciortino G, Spada A, Tomassetti P, Tonelli F, Brandi ML. Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database. Endocrine 2017; 58:349-359. [PMID: 28132167 DOI: 10.1007/s12020-017-1234-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to integrate European epidemiological data on patients with multiple endocrine neoplasia type 1 by creating an Italian registry of this syndrome, including clinical and genetic characteristics and therapeutic management. METHODS Clinical, familial and genetic data of patients with multiple endocrine neoplasia type 1, diagnosed, treated, and followed-up for a mean time of 11.3 years, in 14 Italian referral endocrinological centers, were collected, over a 3-year course (2011-2013), to build a national electronic database. RESULTS The Italian multiple endocrine neoplasia type 1 database includes 475 patients (271 women and 204 men), of whom 383 patients (80.6%) were classified as familial cases (from 136 different pedigrees), and 92 (19.4%) patients were sporadic cases. A MEN1 mutation was identified in 92.6% of familial cases and in 48.9% of sporadic cases. Four hundred thirty-six patients were symptomatic, presenting primary hyperparathyroidism, gastroenteropancreatic neuroendocrine tumors and pituitary tumors in 93, 53, and 41% of cases, respectively. Thirty-nine subjects, belonging to affected pedigrees positive for a MEN1 mutation, were asymptomatic at clinical and biochemical screening. Age at diagnosis of multiple endocrine neoplasia type 1 probands was similar for both familial and simplex cases (mean age 47.2 ± 15.3 years). In familial cases, diagnosis of multiple endocrine neoplasia type 1 in relatives of affected probands was made more than 10 years in advance (mean age at diagnosis 36.5 ± 17.6 years). CONCLUSIONS The analysis of Italian registry of multiple endocrine neoplasia type 1 patients revealed that clinical features of Italian multiple endocrine neoplasia type 1 patients are similar to those of other western countries, and confirmed that the genetic test allowed multiple endocrine neoplasia type 1 diagnosis 10 years earlier than biochemical or clinical diagnosis.
Collapse
Affiliation(s)
- Francesca Giusti
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Francesca Boaretto
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Pisa, Italy
| | - Federica Cioppi
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Davì
- Internal Medicine, Section of Endocrinology, Department of Medicine, University of Verona, Verona, Italy
| | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" IRCCS, Naples, Italy
| | - Giuseppe Fanciulli
- NET Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Piero Ferolla
- Department of Internal Medicine and Endocrine Sciences, University of Perugia, Perugia, Italy
| | - Diego Ferone
- Endocrinology Units, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Caterina Fossi
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Giorgio Gronchi
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Paola Loli
- Department of Endocrinology, Hospital Niguarda Ca' Granda, Milan, Italy
| | - Franco Mantero
- Division of Endocrinology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Pisa, Italy
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Laura Masi
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Giuseppe Opocher
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alfredo Scillitani
- Unit of Endocrinology 'Casa Sollievo della Sofferenza' Hospital, IRCCS, San Giovanni Rotondo, Foggia, Italy
| | - Giovanna Sciortino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paola Tomassetti
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Francesco Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139, Florence, Italy.
| |
Collapse
|
31
|
Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma. Oncogene 2017; 37:616-626. [PMID: 28991228 DOI: 10.1038/onc.2017.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Ossifying fibroma (OF) is a rare benign tumor of the craniofacial bones that can reach considerable and disfiguring dimensions if left untreated. Although the clinicopathological characteristics of OF are well established, the underlying etiology has remained largely unknown. Our work indicates that Men1-a tumor suppressor gene responsible of Multiple endocrine neoplasia type 1-is critical for OF formation and shows that mice with targeted disruption of Men1 in osteoblasts (Men1Runx2Cre) develop multifocal OF in the mandible with a 100% penetrance. Using lineage-tracing analysis, we demonstrate that loss of Men1 arrests stromal osteoprogenitors in OF at the osterix-positive pre-osteoblastic differentiation stage. Analysis of Men1-lacking stromal spindle cells isolated from OF (OF-derived MSCs (OFMSCs)) revealed a downregulation of the cyclin-dependent kinase (CDK) inhibitor Cdkn1a, consistent with an increased proliferation rate. Intriguingly, the re-expression of Men1 in Men1-deficient OFMSCs restored Cdkn1a expression and abrogated cellular proliferation supporting the tumor-suppressive role of Men1 in OF. Although our work presents the first evidence of Men1 in OF development, it further provides the first genetic mouse model of OF that can be used to better understand the molecular pathogenesis of these benign tumors and to potentially develop novel treatment strategies.
Collapse
|
32
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
33
|
Affiliation(s)
- A. Perez-Ecija
- Departamento de Medicina y Cirugia Animal; Universidad de Cordoba; Cordoba Spain
| | - R. E. Toribio
- Department of Veterinary Clinical Sciences; The Ohio State University; Columbus Ohio USA
| | - F. J. Mendoza
- Departamento de Medicina y Cirugia Animal; Universidad de Cordoba; Cordoba Spain
| |
Collapse
|
34
|
Luzi E, Marini F, Ciuffi S, Galli G, Brandi ML. An autoregulatory network between menin and pri-miR-24-1 is required for the processing of its specific modulator miR-24-1 in BON1 cells. MOLECULAR BIOSYSTEMS 2017; 12:1922-8. [PMID: 27098433 DOI: 10.1039/c6mb00118a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary cancer complex syndrome manifesting a variety of endocrine and non-endocrine neoplasms and lesions. MEN1 is characterized by tumours of the parathyroids, of the neuroendocrine cells of the gastroenteropancreatic tract, and of the anterior pituitary. The MEN1 gene, a tumour suppressor gene, encodes the menin protein. Loss of heterozygosity (LOH) at 11q13 is typical of MEN1 tumours in agreement with Knudson's two-hit hypothesis. We previously showed that the MEN1 parathyroid tumorigenesis is under the control of an "incoherent feedback loop" between miR-24-1 and the menin protein that generates a "Gene Regulatory Network" (GRN) that mimics the second hit of Knudson's hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Here we show, in the BON1 cell line derived from lymphnode metastasis of a human carcinoid tumour of the pancreas, that menin binds specifically to the primary RNA sequence pri-miR-24-1 by promoting the miR-24-1 biogenesis. Network simulation showed a new feed-forward loop between menin, microRNA-24-1 and Musashi-1 proteins. This result shows a novel mechanism whereby menin, a RNA-binding protein, facilitates the processing of its specific miRNA by regulating the dynamics of the menin-miR-24 Gene Regulatory Network at the level of pri-miRNA processing.
Collapse
Affiliation(s)
- Ettore Luzi
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Gianna Galli
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
35
|
Seim I, Jeffery PL, Thomas PB, Nelson CC, Chopin LK. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3 (BETHESDA, MD.) 2017; 7:1731-1741. [PMID: 28413162 PMCID: PMC5473753 DOI: 10.1534/g3.117.039909] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022]
Abstract
The bone metastasis-derived PC3 and the lymph node metastasis-derived LNCaP prostate cancer cell lines are widely studied, having been described in thousands of publications over the last four decades. Here, we report short-read whole-genome sequencing (WGS) and de novo assembly of PC3 (ATCC CRL-1435) and LNCaP (clone FGC; ATCC CRL-1740) at ∼70 × coverage. A known homozygous mutation in TP53 and homozygous loss of PTEN were robustly identified in the PC3 cell line, whereas the LNCaP cell line exhibited a larger number of putative inactivating somatic point and indel mutations (and in particular a loss of stop codon events). This study also provides preliminary evidence that loss of one or both copies of the tumor suppressor Capicua (CIC) contributes to primary tumor relapse and metastatic progression, potentially offering a treatment target for castration-resistant prostate cancer (CRPC). Our work provides a resource for genetic, genomic, and biological studies employing two commonly-used prostate cancer cell lines.
Collapse
Affiliation(s)
- Inge Seim
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Penny L Jeffery
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Patrick B Thomas
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Lisa K Chopin
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
36
|
Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev 2017; 36:77-90. [PMID: 28283772 PMCID: PMC5385190 DOI: 10.1007/s10555-017-9661-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several distinct melanoma syndromes have been defined, and genetic tests are available for the associated causative genes. Guidelines for melanoma genetic testing have been published as an informal "rule of twos and threes," but these guidelines apply to CDKN2A testing and are not intended for the more recently described non-CDKN2A melanoma syndromes. In order to develop an approach for the full spectrum of hereditary melanoma patients, we have separated melanoma syndromes into two types: "melanoma dominant" and "melanoma subordinate." Syndromes in which melanoma is a predominant cancer type are considered melanoma dominant, although other cancers, such as mesothelioma or pancreatic cancers, may also be observed. These syndromes are associated with defects in CDKN2A, CDK4, BAP1, MITF, and POT1. Melanoma-subordinate syndromes have an increased but lower risk of melanoma than that of other cancer(s) seen in the syndrome, such as breast and ovarian cancer or Cowden syndrome. Many of these melanoma-subordinate syndromes are associated with well-established predisposition genes (e.g., BRCA1/2, PTEN). It is likely that these predisposition genes are responsible for the increased susceptibility to melanoma as well but with lower penetrance than that observed for the dominant cancer(s) in those syndromes. In this review, we describe our extension of the "rule of twos and threes" for melanoma genetic testing. This algorithm incorporates an understanding of the spectrum of cancers and genes seen in association with melanoma to create a more comprehensive and tailored approach to genetic testing.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Olivia M Lucero
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jone E Sampson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Cassidy
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy.
| |
Collapse
|
37
|
Podetta M, Pusztaszeri M, Toso C, Procopiou M, Triponez F, Sadowski SM. Oncocytic Adrenocortical Neoplasm with Concomitant Papillary Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8:384. [PMID: 29403439 PMCID: PMC5786566 DOI: 10.3389/fendo.2017.00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022] Open
Abstract
Adrenal oncocytoma (AO) is an extremely rare adrenocortical neoplasm and little is known about its malignant potential, secretory properties, and hereditary origin. We present the case of a benign AO with concomitant incidentally found papillary thyroid cancer (PTC) and review similar cases in the literature. Immunohistochemistry and next-generation sequencing (NGS) were performed. A 66-year-old women was incidentally found to have a large, androgen-secreting right adrenal mass. 18F-Fluorodeoxyglucose positron emission tomography showed intense uptake (SUVmax 88.7) of this mass and found a hypermetabolic right thyroid mass. Open adrenalectomy was performed for this highly suspicious adrenal mass. Histopathology revealed benign AO that was BRAFV600E negative, with low Ki-67, and no somatic mutation found on NGS. Thyroidectomy revealed invasive, BRAFV600E-positive PTC. At 6 months follow-up, androgen levels returned to normal, and no recurrence was seen on imaging. To our knowledge, this is the first report of an androgen-secreting AO with concomitant PTC. Possibly the simultaneous discovery of two independent neoplasms was observed. In conclusion, this case highlights that care should be given to exclude concomitant neoplasms. Long-term and regular imaging with biochemical follow-up is warranted, since the outcome and clinical behavior of AO remains uncertain.
Collapse
Affiliation(s)
- Michele Podetta
- Department of Visceral Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Department of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | - Christian Toso
- Department of Visceral Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Samira Mercedes Sadowski
- Department of Thoracic and Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
- *Correspondence: Samira Mercedes Sadowski,
| |
Collapse
|
38
|
Därr R, Nambuba J, Del Rivero J, Janssen I, Merino M, Todorovic M, Balint B, Jochmanova I, Prchal JT, Lechan RM, Tischler AS, Popovic V, Miljic D, Adams KT, Prall FR, Ling A, Golomb MR, Ferguson M, Nilubol N, Chen CC, Chew E, Taïeb D, Stratakis CA, Fojo T, Yang C, Kebebew E, Zhuang Z, Pacak K. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer 2016; 23:899-908. [PMID: 27679736 PMCID: PMC5096964 DOI: 10.1530/erc-16-0231] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Worldwide, the syndromes of paraganglioma (PGL), somatostatinoma (SOM) and early childhood polycythemia are described in only a few patients with somatic mutations in the hypoxia-inducible factor 2 alpha (HIF2A). This study provides detailed information about the clinical aspects and course of 7 patients with this syndrome and brings into perspective these experiences with the pertinent literature. Six females and one male presented at a median age of 28 years (range 11-46). Two were found to have HIF2A somatic mosaicism. No relatives were affected. All patients were diagnosed with polycythemia before age 8 and before PGL/SOM developed. PGLs were found at a median age of 17 years (range 8-38) and SOMs at 29 years (range 22-38). PGLs were multiple, recurrent and metastatic in 100, 100 and 29% of all cases, and SOMs in 40, 40 and 60%, respectively. All PGLs were primarily norepinephrine-producing. All patients had abnormal ophthalmologic findings and those with SOMs had gallbladder disease. Computed tomography (CT) and magnetic resonance imaging revealed cystic lesions at multiple sites and hemangiomas in 4 patients (57%), previously thought to be pathognomonic for von Hippel-Lindau disease. The most accurate radiopharmaceutical to detect PGL appeared to be [18F]-fluorodihydroxyphenylalanine ([18F]-FDOPA). Therefore, [18F]-FDOPA PET/CT, not [68Ga]-(DOTA)-[Tyr3]-octreotate ([68Ga]-DOTATATE) PET/CT is recommended for tumor localization and aftercare in this syndrome. The long-term prognosis of the syndrome is unknown. However, to date no deaths occurred after 6 years follow-up. Physicians should be aware of this unique syndrome and its diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Roland Därr
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joan Nambuba
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaydira Del Rivero
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingo Janssen
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Merino
- Laboratory of PathologyNational Institutes of Health, Bethesda, Maryland, USA
| | - Milena Todorovic
- Institute of HematologyClinical Center of Serbia and Medical Faculty University of Belgrade, Belgrade, Serbia
| | - Bela Balint
- Institute of Transfusiology and Hemobiology of Military Medical Academy and Institute for Medical ResearchUniversity of Belgrade, Belgrade, Serbia
| | - Ivana Jochmanova
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- 1st Department of Internal MedicineFaculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovakia
| | - Josef T Prchal
- Division of HematologyUniversity of Utah, Salt Lake City, Utah, USA
| | - Ronald M Lechan
- Tupper Research Institute and Department of MedicineDivision of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory MedicineTufts Medical Center, Boston, Massachusetts, USA
| | - Vera Popovic
- Institute of EndocrinologyClinical Center of Serbia, Medical Faculty, University Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Institute of EndocrinologyClinical Center of Serbia, Medical Faculty, University Belgrade, Belgrade, Serbia
| | - Karen T Adams
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - F Ryan Prall
- Department of OphthalmologyEugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Ling
- Department of Radiology and Imaging SciencesClinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Meredith R Golomb
- Division of Child NeurologyDepartment of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael Ferguson
- Riley Hospital for Children at Indiana University HealthIndianapolis, Indiana, USA
| | - Naris Nilubol
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Clara C Chen
- Division of Nuclear MedicineDepartment of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Chew
- Division of Epidemiology and Clinical ApplicationsNational Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David Taïeb
- Department of Nuclear MedicineLa Timone University Hospital & CERIMED & Inserm UMR1068 Marseille Cancerology Research Center, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Constantine A Stratakis
- Division of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Tito Fojo
- Medical Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology BranchCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology BranchCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
New Insights Into the Mechanism of COP9 Signalosome-Cullin-RING Ubiquitin-Ligase Pathway Deregulation in Urological Cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:181-229. [PMID: 26944622 DOI: 10.1016/bs.ircmb.2015.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urological cancers are a very common type of cancer worldwide and have alarming high incidence and mortality rates, especially in kidney cancers, illustrate the urgent need for new therapeutic targets. Recent publications point to a deregulated COP9 signalosome (CSN)-cullin-RING ubiquitin-ligase (CRL) pathway which is here considered and investigated as potential target in urological cancers with strong focus on renal cell carcinomas (RCC). The CSN forms supercomplexes with CRLs in order to preserve protein homeostasis and was found deregulated in several cancer types. Examination of selected CSN-CRL pathway components in RCC patient samples and four RCC cell lines revealed an interesting deregulated p27(Kip1)-Skp2-CAND1 axis and two p27(Kip1) point mutations in 786-O cells; p27(Kip1)V109G and p27(Kip1)I119T. The p27(Kip1) mutants were detected in patients with RCC and appear to be responsible for an accelerated growth rate in 786-O cells. The occurrence of p27(Kip1)V109G and p27(Kip1)I119T in RCC makes the CSN-CRL pathway an attractive therapeutic target.
Collapse
|
40
|
Angelousi A, Zilbermint M, Berthon A, Espiard S, Stratakis CA. Diagnosis and Management of Hereditary Adrenal Cancer. Recent Results Cancer Res 2016; 205:125-47. [PMID: 27075352 DOI: 10.1007/978-3-319-29998-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Benign adrenocortical tumours (ACT) are relatively frequent lesions; on the contrary, adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with unfavourable prognosis. Recent advances in the molecular understanding of adrenal cancer offer promise for better therapies in the future. Many of these advances stem from the molecular elucidation of genetic conditions predisposing to the development of ACC. Six main clinical syndromes have been described to be associated with hereditary adrenal cancer. In these conditions, genetic counselling plays an important role for the early detection and follow-up of the patients and the affected family members.
Collapse
Affiliation(s)
- Anna Angelousi
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Mihail Zilbermint
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stéphanie Espiard
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Abstract
Endocrine tumors may present as sporadic events or as part of familial endocrine syndromes. Familial endocrine syndromes (or inherited tumor/neoplasm syndromes) are characterized by multiple tumors in multiple organs. Some morphologic findings in endocrine tumor histopathology may prompt the possibility of familial endocrine syndromes, and these recognized histologic features may lead to further molecular genetic evaluation of the patient and family members. Subsequent evaluation for these syndromes in asymptomatic patients and family members may then be performed by genetic screening.
Collapse
Affiliation(s)
- Peter M Sadow
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Vania Nosé
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Flynn N, Getz A, Visser F, Janes TA, Syed NI. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis. PLoS One 2014; 9:e111103. [PMID: 25347295 PMCID: PMC4210270 DOI: 10.1371/journal.pone.0111103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/27/2014] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors (NTFs) support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK) activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF) act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1) and the expression of excitatory nicotinic acetylcholine receptors (nAChRs). We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.
Collapse
Affiliation(s)
- Nichole Flynn
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Angela Getz
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Frank Visser
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Tara A. Janes
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Naweed I. Syed
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
43
|
Winston KY, Dawrant J. A rare case of hypoglycaemia due to insulinoma in an adolescent with acutely altered mental status. J Pediatr Endocrinol Metab 2014; 27:773-6. [PMID: 24756045 DOI: 10.1515/jpem-2013-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is an inherited neoplasia syndrome that generally presents with hypercalcaemia due to hyperparathyroidism. Insulin-producing tumours are less common components of the syndrome that emerge later during the course of the disease. We report here a case of an adolescent who presented with symptomatic hypoglycaemia as the first indication of MEN1. CASE A 14-year-old boy, known to use illicit drugs, was brought to the hospital with altered mental status. He was hypoglycaemic and further investigations revealed two pancreatic insulinomas. Despite having no relevant family history, genetic evaluation showed a mutation consistent with MEN1. CONCLUSION Insulinomas in adolescents are generally rare and even less common as a first presentation of MEN1. This diagnosis carries implications for potential future neoplasms, both benign and malignant. While intoxication is a more common case of altered mental status in adolescents, clinicians must maintain a high index of suspicion for organic disease.
Collapse
|
44
|
Abstract
Pituitary adenomas are benign intracranial neoplasms that present a major clinical concern due to hormone overproduction and/or tumor mass effects. The majority of pituitary adenomas occur sporadically; however, familial cases are increasingly being recognized, such as multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), and familial isolated pituitary adenoma (FIPA). Familial pituitary tumors appear to differ from their sporadic counterparts both in their genetic basis and in clinical characteristics. Evidence suggests that, especially in MEN1 and FIPA, tumors are more aggressive and affect patients at a younger age, therefore justifying the importance of early diagnosis, while in Carney complex pituitary hyperplasia is common. The genetic alterations responsible for the formation of familial pituitary syndromes include the MEN1 gene, responsible for about 80% of MEN1 cases, the regulatory subunit of the protein kinase A, PRKAR1A, responsible for about 70% of Carney complex cases, and AIP, the gene coding the aryl hydrocarbon receptor interacting protein, responsible for about 20% of FIPA cases. Rarely other genes have also been found responsible for familial pituitary adenoma cases. McCune-Albright syndrome (MAS) also has a genetic origin due to mosaic mutations in the G protein-coupled α subunit coded by the GNAS1 gene. In this chapter, we summarize the genetic and clinical characteristics of these familial pituitary syndromes and MAS.
Collapse
Affiliation(s)
- Neda Alband
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
45
|
Nelson Wohllk G, René Diaz T. Neoplasias endocrinas múltiples. desde el laboratorio al paciente. REVISTA MÉDICA CLÍNICA LAS CONDES 2013. [DOI: 10.1016/s0716-8640(13)70223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Toledo SPA, Lourenço DM, Toledo RA. A differential diagnosis of inherited endocrine tumors and their tumor counterparts. Clinics (Sao Paulo) 2013; 68:1039-56. [PMID: 23917672 PMCID: PMC3715026 DOI: 10.6061/clinics/2013(07)24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/26/2013] [Indexed: 12/15/2022] Open
Abstract
Inherited endocrine tumors have been increasingly recognized in clinical practice, although some difficulties still exist in differentiating these conditions from their sporadic endocrine tumor counterparts. Here, we list the 12 main topics that could add helpful information and clues for performing an early differential diagnosis to distinguish between these conditions. The early diagnosis of patients with inherited endocrine tumors may be performed either clinically or by mutation analysis in at-risk individuals. Early detection usually has a large impact in tumor management, allowing preventive clinical or surgical therapy in most cases. Advice for the clinical and surgical management of inherited endocrine tumors is also discussed. In addition, recent clinical and genetic advances for 17 different forms of inherited endocrine tumors are briefly reviewed.
Collapse
Affiliation(s)
- Sergio P A Toledo
- Division of Endocrinology, Endocrine Genetics Unit (LIM-25), Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil.
| | | | | |
Collapse
|
47
|
Zhan HX, Cong L, Zhao YP, Zhang TP, Chen G. Risk factors for the occurrence of insulinoma: a case-control study. Hepatobiliary Pancreat Dis Int 2013; 12:324-8. [PMID: 23742779 DOI: 10.1016/s1499-3872(13)60051-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The etiology of insulinoma is poorly understood. Few studies investigated the possible roles of environmental factors and lifestyle in the pathogenesis of insulinoma. The aim of this study is to identify risk factors associated with occurrence of insulinoma in the Chinese population. METHODS This study consisted of 196 patients with insulinoma and 233 controls. Demographic information of the patients and controls and risk factors of the disease were analyzed. Univariate and unconditional multivariable logistic regression analyses were made to estimate odds ratios (ORs) and possible risk factors. RESULTS Approximately 68.88% (135/196) of the patients were from rural areas in contrast to 10.30% (24/233) of the controls (P<0.0001). This difference was confirmed by the multivariate analysis (OR=4.950; 95% CI: 2.928-8.370). Family history of pancreatic endocrine tumor (OR=16.754; 95% CI: 2.125-132.057) and other cancers (OR=2.360; 95% CI: 1.052-5.291) was also related to a high-risk population of insulinoma. CONCLUSION Rural residents or people who have a family history of pancreatic endocrine tumor and other cancers are a high-risk population of insulinoma.
Collapse
Affiliation(s)
- Han-Xiang Zhan
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | | | | | | | | |
Collapse
|
48
|
Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Invest 2012; 35:1003-14. [PMID: 23310926 DOI: 10.1007/bf03346742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial pituitary tumors are increasingly recognized. While some of these cases are related to wellknown syndromic conditions such as multiple endocrine neoplasia type 1 (MEN1) or Carney complex, others belong to the familial isolated pituitary adenoma (FIPA) patient group. The discovery of heterozygous, loss-of-function germline mutations in the gene encoding the aryl hydrocarbon receptor interacting protein (AIP) in 2006 has subsequently enabled the identification of a mutation in this gene in 20% of FIPA families and 20% of childhood-onset simplex soma- totroph adenomas. The exact mechanism by which the lack of AIP leads to pituitary adenomas is not clear. AIP mutations cause a low penetrance autosomal dominant disease with often a distinct phenotype characterized by young-onset, aggressive, large GH, mixed GH and PRL or PRL-secreting adenomas. This review aims to summarize currently available clinical data on AIP mutation-positive and negative FIPA patients.
Collapse
Affiliation(s)
- F Martucci
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | |
Collapse
|
49
|
Luzi E, Marini F, Giusti F, Galli G, Cavalli L, Brandi ML. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the "Knudson's second hit". PLoS One 2012; 7:e39767. [PMID: 22761894 PMCID: PMC3384621 DOI: 10.1371/journal.pone.0039767] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 02/08/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson’s two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3′UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a “negative feedback loop” between miR-24-1 and menin protein, that mimics the second hit of Knudson’s hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the “two-hit dogma”. The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers.
Collapse
Affiliation(s)
- Ettore Luzi
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
| | - Francesca Marini
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
| | - Francesca Giusti
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
| | - Gianna Galli
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
| | - Loredana Cavalli
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
50
|
Rinke A, Galan S, Fendrich V, Kann P, Bartsch D, Gress T. Hereditäre neuroendokrine Tumoren. Internist (Berl) 2012; 53:400-7. [DOI: 10.1007/s00108-011-2989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|