1
|
García S A, Costa M, Perez A, Pastor O. CardioGraph: a platform to study variations associated with familiar cardiopathies. BMC Med Inform Decis Mak 2024; 23:303. [PMID: 39434095 PMCID: PMC11494761 DOI: 10.1186/s12911-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Familiar cardiopathies are genetic disorders that affect the heart. Cardiologists face a significant problem when treating patients suffering from these disorders: most DNA variations are novel (i.e., they have not been classified before). To facilitate the analysis of novel variations, we present CardioGraph, a platform specially designed to support the analysis of novel variations and help determine whether they are relevant for diagnosis. To do this, CardioGraph identifies and annotates the consequence of variations and provides contextual information regarding which heart structures, pathways, and biological processes are potentially affected by those variations. METHODS We conducted our work through three steps. First, we define a data model to support the representation of the heterogeneous information. Second, we instantiate this data model to integrate and represent all the genomics knowledge available for familiar cardiopathies. In this step, we consider genomic data sources and the scientific literature. Third, the design and implementation of the CardioGraph platform. A three-tier structure was used: the database, the backend, and the frontend. RESULTS Three main results were obtained: the data model, the knowledge base generated with the instantiation of the data model, and the platform itself. The platform code has been included as supplemental material in this manuscript. Besides, an instance is publicly available in the following link: https://genomics-hub.pros.dsic.upv.es:3090 . CONCLUSION CardioGraph is a platform that supports the analysis of novel variations. Future work will expand the body of knowledge about familiar cardiopathies and include new information about hotspots, functional studies, and previously reported variations.
Collapse
Affiliation(s)
- Alberto García S
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain.
| | - Mireia Costa
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Ana Perez
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Oscar Pastor
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| |
Collapse
|
2
|
Senthivel V, Jolly B, Vr A, Bajaj A, Bhoyar R, Imran M, Vignesh H, Divakar MK, Sharma G, Rai N, Kumar K, Mp J, Krishna M, Shenthar J, Ali M, Abqari S, Nadri G, Scaria V, Naik N, Sivasubbu S. Whole genome sequencing of families diagnosed with cardiac channelopathies reveals structural variants missed by whole exome sequencing. J Hum Genet 2024; 69:455-465. [PMID: 38890497 DOI: 10.1038/s10038-024-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Cardiac channelopathies are a group of heritable disorders that affect the heart's electrical activity due to genetic variations present in genes coding for ion channels. With the advent of new sequencing technologies, molecular diagnosis of these disorders in patients has paved the way for early identification, therapeutic management and family screening. The objective of this retrospective study was to understand the efficacy of whole-genome sequencing in diagnosing patients with suspected cardiac channelopathies who were reported negative after whole exome sequencing and analysis. We employed a 3-tier analysis approach to identify nonsynonymous variations and loss-of-function variations missed by exome sequencing, and structural variations that are better resolved only by sequencing whole genomes. By performing whole genome sequencing and analyzing 25 exome-negative cardiac channelopathy patients, we identified 3 pathogenic variations. These include a heterozygous likely pathogenic nonsynonymous variation, CACNA1C:NM_000719:exon19:c.C2570G:p. P857R, which causes autosomal dominant long QT syndrome in the absence of Timothy syndrome, a heterozygous loss-of-function variation CASQ2:NM_001232.4:c.420+2T>C classified as pathogenic, and a 9.2 kb structural variation that spans exon 2 of the KCNQ1 gene, which is likely to cause Jervell-Lange-Nielssen syndrome. In addition, we also identified a loss-of-function variation and 16 structural variations of unknown significance (VUS). Further studies are required to elucidate the role of these identified VUS in gene regulation and decipher the underlying genetic and molecular mechanisms of these disorders. Our present study serves as a pilot for understanding the utility of WGS over clinical exomes in diagnosing cardiac channelopathy disorders.
Collapse
Affiliation(s)
- Vigneshwar Senthivel
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bani Jolly
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Bajaj
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Bhoyar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harie Vignesh
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gautam Sharma
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitin Rai
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Kumar
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jayakrishnan Mp
- Government Medical College, Kozhikode, Kerala, 673008, India
| | - Maniram Krishna
- Tiny Hearts Fetal and Pediatric Clinic, Thanjavur, Tamil Nadu, 613001, India
| | - Jeyaprakash Shenthar
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Muzaffar Ali
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Shaad Abqari
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gulnaz Nadri
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Vinod Scaria
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sridhar Sivasubbu
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kamara J, Ponnusamy S, Licenik R, Nwabufor PC, Rather MI. An Unusual First Presentation of Stroke and Seizure in a 32-Year-Old Patient With Brugada Syndrome Type 2 Electrocardiogram Pattern. Cureus 2023; 15:e44630. [PMID: 37799229 PMCID: PMC10548144 DOI: 10.7759/cureus.44630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
We report a case of a 32-year-old lady who was admitted to the hospital with right-sided weakness that preceded an episode of seizure. On the day of admission, she woke up early in the morning with mild right-sided weakness and numbness. She had difficulty walking and later had a seizure, which was witnessed by her son. She had no signs of infection prior to this. She had no fever, chest or abdominal pain, or urinary symptoms. In the emergency department, she complained of left-sided chest tightness and heaviness, which lasted for a few minutes with associated tachycardia, electrocardiogram (ECG) was consistent with Brugada syndrome type 2. A magnetic resonant imaging (MRI) scan of her head shows a left hemispheric infarct involving the frontoparietal cortex. She was treated for an ischaemic stroke and seizure. She made a good recovery and was discharged home on secondary stroke prevention medication with community physiotherapy. She was followed up in the cardiology, genetics, and stroke outpatient clinics. The occurrence of ECG changes consistent with Brugada syndrome, stroke, and seizure in a young patient with no other risk factors for stroke is rare.
Collapse
Affiliation(s)
- John Kamara
- Cardiology, Peterborough City Hospital, Peterborough, GBR
| | | | - Radim Licenik
- Stroke, Peterborough City Hospital, Peterborough, GBR
| | | | | |
Collapse
|
4
|
Gigli L, Sala S, Preda A, Okubo K, Peretto G, Frontera A, Varrenti M, Baroni M, Carbonaro M, Vargiu S, Di Resta C, Striano P, Mazzone P, Della Bella P. Electrocardiogram Changes in the Postictal Phase of Epileptic Seizure: Results from a Prospective Study. J Clin Med 2023; 12:4098. [PMID: 37373791 DOI: 10.3390/jcm12124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The brain and heart are strictly linked and the electrical physiologies of these organs share common pathways and genes. Epilepsy patients have a higher prevalence of electrocardiogram (ECG) abnormalities compared to healthy people. Furthermore, the relationship between epilepsy, genetic arrhythmic diseases and sudden death is well known. The association between epilepsy and myocardial channelopathies, although already proposed, has not yet been fully demonstrated. The aim of this prospective observational study is to assess the role of the ECG after a seizure. MATERIALS AND METHODS From September 2018 to August 2019, all patients admitted to the emergency department of San Raffaele Hospital with a seizure were enrolled in the study; for each patient, neurological, cardiological and ECG data were collected. The ECG was performed at the time of the admission (post-ictal ECG) and 48 h later (basal ECG) and analyzed by two blinded expert cardiologists looking for abnormalities known to indicate channelopathies or arrhythmic cardiomyopathies. In all patients with abnormal post-ictal ECG, next generation sequencing (NGS) analysis was performed. RESULTS One hundred and seventeen patients were enrolled (females: 45, median age: 48 ± 12 years). There were 52 abnormal post-ictal ECGs and 28 abnormal basal ECGs. All patients with an abnormal basal ECG also had an abnormal post-ictal ECG. In abnormal post-ictal ECG, a Brugada ECG pattern (BEP) was found in eight patients (of which two had BEP type I) and confirmed in two basal ECGs (of which zero had BEP type I). An abnormal QTc interval was identified in 20 patients (17%), an early repolarization pattern was found in 4 patients (3%) and right precordial abnormalities were found in 5 patients (4%). Any kind modification of post-ictal ECG was significantly more pronounced in comparison with an ECG recorded far from the seizure (p = 0.003). A 10:1 higher prevalence of a BEP of any type (particularly in post-ictal ECG, p = 0.04) was found in our population compared to general population. In three patients with post-ictal ECG alterations diagnostic for myocardial channelopathy (BrS and ERP), not confirmed at basal ECG, a pathogenic gene variant was identified (KCNJ8, PKP2 and TRMP4). CONCLUSION The 12-lead ECG after an epileptic seizure may show disease-related alterations otherwise concealed in a population at a higher incidence of sudden death and channelopathies. Post-ictal BEP incidence was higher in cases of nocturnal seizure.
Collapse
Affiliation(s)
- Lorenzo Gigli
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Simone Sala
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alberto Preda
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Kenji Okubo
- Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka 238-8558, Japan
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | | | - Marisa Varrenti
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Matteo Baroni
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Marco Carbonaro
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Sara Vargiu
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Patrizio Mazzone
- De Gasperis Cardiocenter, Electrophisiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Paolo Della Bella
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
5
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Ahammed MR, Ananya FN. Association of Cardiac Electrical Disorders With KCND3 Gene Mutation. Cureus 2023; 15:e34597. [PMID: 36883079 PMCID: PMC9985904 DOI: 10.7759/cureus.34597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, cardiac channelopathies leading to electrical disorders are responsible for a significant number of sudden cardiac deaths without structural heart disease. Many genes encoding different ion channels in the heart were identified and their impairment was found to be associated with life-threatening cardiac abnormalities. KCND3, one of the genes expressed both in the heart and brain, is reported to have an association with Brugada syndrome, early-onset atrial fibrillation, early repolarization syndrome, and sudden unexplained death syndrome. KCND3 genetic screening could be a promising tool for functional studies for an understanding of the pathogenesis and genetic determinants of the above-mentioned electrical disorders.
Collapse
Affiliation(s)
- Md Ripon Ahammed
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | | |
Collapse
|
7
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Artificial Intelligence and Cardiovascular Genetics. Life (Basel) 2022; 12:life12020279. [PMID: 35207566 PMCID: PMC8875522 DOI: 10.3390/life12020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.
Collapse
|
9
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
10
|
Ghimire A, Banoub RW, Tobias JD. Anesthetic Care of a Child Harboring the KCNH2 Gene. J Med Cases 2022; 13:40-43. [PMID: 35211235 PMCID: PMC8827253 DOI: 10.14740/jmc3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a heterogeneous group of disorders characterized by recurrent and generally unprovoked seizures. Genetic mutations may play an important role in the etiology of epilepsy. Over the past few years, genetic mutations in various genes have been identified in patients with epilepsy. One of the more common mutations responsible for seizures involves the KCNH2 gene. The KCNH2 gene encodes the Kv11.1 protein, which involves the pore-forming subunit of a rapidly activating-delayed rectifier potassium channel. This channel plays an essential role in phases 2 and 3 of the cardiac action potential involving cardiac repolarization as well as being expressed in various parts of the central nervous system where it regulates neuronal function. As such, patients presenting with this gene mutation may be at risk not only for seizures, but also abnormalities in cardiac repolarization leading to lethal arrhythmias. We present an 11-year-old girl who required general anesthesia for magnetic resonance imaging as part of her evaluation for non-convulsive status epilepticus. An epilepsy gene panel evaluated revealed a KCNH2 gene mutation. End-organ involvement of KCNH2 gene mutations is presented, previous reports of anesthetic care for these patients are reviewed, and options for anesthetic care are discussed.
Collapse
Affiliation(s)
- Anuranjan Ghimire
- Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA,Corresponding Author: Anuranjan Ghimire, Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA.
| | - Rita W. Banoub
- Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA,Department of Anesthesiology and Pain Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph D. Tobias
- Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA,Department of Anesthesiology and Pain Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Johannsen EB, Baughn LB, Sharma N, Zjacic N, Pirooznia M, Elhaik E. The Genetics of Sudden Infant Death Syndrome-Towards a Gene Reference Resource. Genes (Basel) 2021; 12:216. [PMID: 33540853 PMCID: PMC7913088 DOI: 10.3390/genes12020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is the unexpected death of an infant under one year of age that remains unexplained after a thorough investigation. Despite SIDS remaining a diagnosis of exclusion with an unexplained etiology, it is widely accepted that SIDS can be caused by environmental and/or biological factors, with multiple underlying candidate genes. However, the lack of biomarkers raises questions as to why genetic studies on SIDS to date are unable to provide a clearer understanding of the disease etiology. We sought to improve the identification of SIDS-associated genes by reviewing the SIDS genetic literature and objectively categorizing and scoring the reported genes based on the strength of evidence (from C1 (high) to C5 (low)). This was followed by analyses of function, associations between genes, the enrichment of gene ontology (GO) terms, and pathways and gender difference in tissue gene expression. We constructed a curated database for SIDS gene candidates consisting of 109 genes, 14 of which received a category 4 (C4) and 95 genes received the lowest category of C5. That none of the genes was classified into the higher categories indicates the low level of supporting evidence. We found that genes of both scoring categories show distinct networks and are highly diverse in function and involved in many GO terms and pathways, in agreement with the perception of SIDS as a heterogeneous syndrome. Genes of both scoring categories are part of the cardiac system, muscle, and ion channels, whereas immune-related functions showed enrichment for C4 genes. A limited association was found with neural development. Overall, inconsistent reports and missing metadata contribute to the ambiguity of genetic studies. Considering those parameters could help improve the identification of at-risk SIDS genes. However, the field is still far from offering a full-pledged genetic test to identify at-risk infants and is still hampered with methodological challenges and misunderstandings of the vulnerabilities of vital biological mechanisms.
Collapse
Affiliation(s)
| | - Linda B. Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.B.B.); (N.S.)
| | - Neeraj Sharma
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (L.B.B.); (N.S.)
| | - Nicolina Zjacic
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK;
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eran Elhaik
- Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
12
|
Abdelghani MS, Chapra A, Asaad N, Hayat SA. Epilepsy and Brugada Syndrome: Association or Uncommon Presentation? Heart Views 2020; 21:114-117. [PMID: 33014305 PMCID: PMC7507913 DOI: 10.4103/heartviews.heartviews_34_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/04/2022] Open
Abstract
Brugada syndrome (BrS) is a rare genetic disease, of which its clinical manifestations include, but not limited to, syncope or sudden cardiac death. A 30-year-old Bangladeshi male patient with a past medical history of epilepsy was admitted following successful resuscitation from an out of hospital cardiac arrest secondary to ventricular fibrillation. Electrocardiogram (ECG) upon admission was suggestive of BrS type I. His old medical record showed similar ECG 2 months earlier when he had presented with syncope and was diagnosed with seizure. The correlation between BrS and epilepsy has been reported in the literature, discussing whether seizure is an uncommon presentation of BrS or whether epilepsy and BrS share similar genetic mutations that have the potential to cause both arrhythmia and seizures in some patients. Patients who present with seizure and ECG suggestive of Brugada pattern should be evaluated to rule out associated or underlying cardiac arrhythmia.
Collapse
Affiliation(s)
| | - Ammar Chapra
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nidal Asaad
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Sajad A Hayat
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
Shimizu A, Zankov DP, Sato A, Komeno M, Toyoda F, Yamazaki S, Makita T, Noda T, Ikawa M, Asano Y, Miyashita Y, Takashima S, Morita H, Ishikawa T, Makita N, Hitosugi M, Matsuura H, Ohno S, Horie M, Ogita H. Identification of transmembrane protein 168 mutation in familial Brugada syndrome. FASEB J 2020; 34:6399-6417. [PMID: 32175648 DOI: 10.1096/fj.201902991r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Brugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS. A heterozygous 1616G>A substitution (R539Q mutation) was identified in the transmembrane protein 168 (TMEM168) gene of symptomatic individuals. Similar to endogenous TMEM168, both TMEM168 wild-type (WT) and mutant proteins that were ectopically induced in HL-1 cells showed nuclear membrane localization. A significant decrease in Na+ current and Nav 1.5 protein expression was observed in HL-1 cardiomyocytes expressing mutant TMEM168. Ventricular tachyarrhythmias and conduction disorders were induced in the heterozygous Tmem168 1616G>A knock-in mice by pharmacological stimulation, but not in WT mice. Na+ current was reduced in ventricular cardiomyocytes isolated from the Tmem168 knock-in heart, and Nav 1.5 expression was also impaired. This impairment was dependent on increased Nedd4-2 binding to Nav 1.5 and subsequent ubiquitination. Collectively, our results show an association between the TMEM168 1616G>A mutation and arrhythmogenesis in a family with BrS.
Collapse
Affiliation(s)
- Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Futoshi Toyoda
- Division of Cell Physiology, Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Yamazaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshinori Makita
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Osaka Red Cross Hospital, Osaka, Japan
| | - Taichi Noda
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Matsuura
- Division of Cell Physiology, Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
14
|
Ohlsson MA, Kennedy LMA, Juhlin T, Melander O. Risk prediction of future cardiac arrest by evaluation of a genetic risk score alone and in combination with traditional risk factors. Resuscitation 2020; 146:74-79. [PMID: 31759070 DOI: 10.1016/j.resuscitation.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Coronary heart disease (CHD) is a leading cause of death globally, commonly through sudden cardiac death. Cardiac arrest of cardiac origin (CA) is associated with a poor prognosis and there is a great need for risk assessment and intensified preventive actions. In this study we aim to assess if a genetic risk score for CHD, composed of 50 common CHD susceptibility variants (GRS), predicts CA and to evaluate a novel composite risk score including traditional risk factors as well as GRS. METHODS The GRS score alone and in combination with traditional CHD risk factors were examined in relation to CA incidence among 23 000 middle aged subjects during 18.9 years of follow-up. The cohort excluded patients with a diagnosed history of CHD, heart failure or stroke. RESULTS Two-hundred-fifty-two patients suffered a cardiac arrest during the follow up, of which 181 were CA. In a multivariate model with CHD risk factors, high versus low genetic risk predicted CA with a hazard ratio (HR) of 2.49 {(95% CI 1.50-4.12) (P < 0.001)}, surpassed only by higher estimates for male sex {HR = 2.91 (95% CI 2.09-4.06) (P < 0.001)}, ages 50-65 {HR = 2.74 (95% CI 1.42-5.25) (P = 0.003)} and ages 65-74 {HR = 5.10 (95% CI 2.56-10.16) (P < 0.001)}. Smoking, dyslipidemia, hypertension and diabetes mellitus also predicted CA but with lower HRs than GRS. A novel composite risk score including CHD risk factors as well as GRS predicted CA with a HR = 110.81 {(95% CI 15.43-795.63) (P < 0.001)} for the highest (5) versus the lowest quintile (1) of the risk score. CONCLUSIONS Genetic risk of CHD is strongly associated with incident CA and when combined with traditional CHD risk factors may identify individuals who benefit from intensified preventive pharmacological treatment.
Collapse
Affiliation(s)
- Marcus Andreas Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Linn Maria Anna Kennedy
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tord Juhlin
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Cortada E, Brugada R, Verges M. Trafficking and Function of the Voltage-Gated Sodium Channel β2 Subunit. Biomolecules 2019; 9:biom9100604. [PMID: 31614896 PMCID: PMC6843408 DOI: 10.3390/biom9100604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel is vital for cardiomyocyte function, and consists of a protein complex containing a pore-forming α subunit and two associated β subunits. A fundamental, yet unsolved, question is to define the precise function of β subunits. While their location in vivo remains unclear, large evidence shows that they regulate localization of α and the biophysical properties of the channel. The current data support that one of these subunits, β2, promotes cell surface expression of α. The main α isoform in an adult heart is NaV1.5, and mutations in SCN5A, the gene encoding NaV1.5, often lead to hereditary arrhythmias and sudden death. The association of β2 with cardiac arrhythmias has also been described, which could be due to alterations in trafficking, anchoring, and localization of NaV1.5 at the cardiomyocyte surface. Here, we will discuss research dealing with mechanisms that regulate β2 trafficking, and how β2 could be pivotal for the correct localization of NaV1.5, which influences cellular excitability and electrical coupling of the heart. Moreover, β2 may have yet to be discovered roles on cell adhesion and signaling, implying that diverse defects leading to human disease may arise due to β2 mutations.
Collapse
Affiliation(s)
- Eric Cortada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), C/ Doctor Castany, s/n-Edifici IDIBGI, 17190 Girona, Spain.
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain.
| | - Ramon Brugada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), C/ Doctor Castany, s/n-Edifici IDIBGI, 17190 Girona, Spain.
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain.
- Medical Sciences Department, University of Girona Medical School, 17003 Girona, Spain.
- Cardiology Department, Hospital Josep Trueta, 17007 Girona, Spain.
| | - Marcel Verges
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), C/ Doctor Castany, s/n-Edifici IDIBGI, 17190 Girona, Spain.
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain.
- Medical Sciences Department, University of Girona Medical School, 17003 Girona, Spain.
| |
Collapse
|
16
|
Nastou KC, Batskinis MA, Litou ZI, Hamodrakas SJ, Iconomidou VA. Analysis of Single-Nucleotide Polymorphisms in Human Voltage-Gated Ion Channels. J Proteome Res 2019; 18:2310-2320. [DOI: 10.1021/acs.jproteome.9b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katerina C. Nastou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Michail A. Batskinis
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| |
Collapse
|
17
|
Bonfiglio F, Henström M, Nag A, Hadizadeh F, Zheng T, Cenit MC, Tigchelaar E, Williams F, Reznichenko A, Ek WE, Rivera NV, Homuth G, Aghdassi AA, Kacprowski T, Männikkö M, Karhunen V, Bujanda L, Rafter J, Wijmenga C, Ronkainen J, Hysi P, Zhernakova A, D'Amato M. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 2018; 30:e13358. [PMID: 29673008 DOI: 10.1111/nmo.13358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) shows genetic predisposition, however, large-scale, powered gene mapping studies are lacking. We sought to exploit existing genetic (genotype) and epidemiological (questionnaire) data from a series of population-based cohorts for IBS genome-wide association studies (GWAS) and their meta-analysis. METHODS Based on questionnaire data compatible with Rome III Criteria, we identified a total of 1335 IBS cases and 9768 asymptomatic individuals from 5 independent European genotyped cohorts. Individual GWAS were carried out with sex-adjusted logistic regression under an additive model, followed by meta-analysis using the inverse variance method. Functional annotation of significant results was obtained via a computational pipeline exploiting ontology and interaction networks, and tissue-specific and gene set enrichment analyses. KEY RESULTS Suggestive GWAS signals (P ≤ 5.0 × 10-6 ) were detected for 7 genomic regions, harboring 64 gene candidates to affect IBS risk via functional or expression changes. Functional annotation of this gene set convincingly (best FDR-corrected P = 3.1 × 10-10 ) highlighted regulation of ion channel activity as the most plausible pathway affecting IBS risk. CONCLUSION & INFERENCES Our results confirm the feasibility of population-based studies for gene-discovery efforts in IBS, identify risk genes and loci to be prioritized in independent follow-ups, and pinpoint ion channels as important players and potential therapeutic targets warranting further investigation.
Collapse
Affiliation(s)
- F Bonfiglio
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M Henström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - A Nag
- Department of Twin Research & Genetic Epidemiology, King's College London, London, England
| | - F Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - T Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M C Cenit
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - E Tigchelaar
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - F Williams
- Department of Twin Research & Genetic Epidemiology, King's College London, London, England
| | - A Reznichenko
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - W E Ek
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | - N V Rivera
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - G Homuth
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - A A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Männikkö
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - V Karhunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - L Bujanda
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - J Rafter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - C Wijmenga
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - J Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Primary Health Care Center, Tornio, Finland
| | - P Hysi
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - A Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - M D'Amato
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute, Bilbao, Spain.,IKERBASQUE, Basque Science Foundation, Bilbao, Spain
| |
Collapse
|
18
|
Chua HC, Servatius H, Asatryan B, Schaller A, Rieubland C, Noti F, Seiler J, Roten L, Baldinger SH, Tanner H, Fuhrer J, Haeberlin A, Lam A, Pless SA, Medeiros-Domingo A. Unexplained cardiac arrest: a tale of conflicting interpretations of KCNQ1 genetic test results. Clin Res Cardiol 2018; 107:670-678. [DOI: 10.1007/s00392-018-1233-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
|
19
|
Abstract
INTRODUCTION AND OBJECTIVES The importance of sodium channels for the normal electrical activity of the heart is emphasized by the fact that mutations (inherited or de novo) in genes that encode for these channels or their associated proteins cause arrhythmogenic syndromes such as the Brugada syndrome and the long QT syndrome (LQTS). The aim of this study is to conduct a review of the literature on the mutations in the sodium channel complex responsible for heart disease and the implications of a close relationship between genetics and the clinical aspects of the main cardiac channelopathies, namely at the level of diagnosis, risk stratification, prognosis, screening of family members and treatment. METHODS The online Pubmed® database was used to search for articles published in this field in indexed journals. The MeSH database was used to define the following query: "Mutation [Mesh] AND Sodium Channels [Mesh] AND Heart Diseases [Mesh]", and articles published in the last 15 years, written in English or Portuguese and referring to research in human beings were included. CONCLUSIONS In the past few years, significant advances have been made to clarify the genetic and molecular basis of these syndromes. A greater understanding of the underlying pathophysiological mechanisms showed the importance of the relationship between genotype and phenotype and led to progress in the clinical approach to these patients. However, it is still necessary to improve diagnostic capacity, optimize risk stratification, and develop new specific treatments according to the genotype-phenotype binomial.
Collapse
|
20
|
Fonseca DJ, Vaz da Silva MJ. Cardiac channelopathies: The role of sodium channel mutations. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.repce.2017.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
21
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
22
|
Chen TJ, He HL, Shiue YL, Yang CC, Lin LC, Tian YF, Chen SH. High chloride channel accessory 1 expression predicts poor prognoses in patients with rectal cancer receiving chemoradiotherapy. Int J Med Sci 2018; 15:1171-1178. [PMID: 30123054 PMCID: PMC6097263 DOI: 10.7150/ijms.26685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Concurrent chemoradiotherapy (CCRT) has now become the standard of treatments for advanced rectal cancer before surgery. To search the biological molecules with prognostic and therapeutic potential of CCRT could be beneficial for these patients. Recently, aberrant expression of chloride channels has been linked to radio-resistance in glioblastoma; however, its clinical implication has not been well-studied in rectal cancers. Therefore, we examined the clinical significance of targetable drivers associated with chloride channel activity in patients with rectal cancer receiving CCRT. Methods: After datamining from a published transcriptome of rectal cancers, upregulation of CLCA1 gene was recognized to be significantly correlated with non-responders of CCRT. In validation cohort of rectal cancers, the expression levels of CLCA1 were accessed by using immunohistochemistry assays in 172 tumor specimens that were obtained before any treatment. Expression levels of CLCA1 were statistically analyzed with principal clinicopathological features and survival outcomes in this substantial cohort. Results: In validation cohort, high expression of CLCA1 was significantly associated with higher pre-treatment tumor nodal stages (P=0.032), vascular invasion (P=0.028), and inferior tumor regression grade (P=0.042). In survival evaluations, high expression of CLCA1 was significantly correlated with worse local recurrence-free survival (LRFS; P=0.0012), metastasis-free survival (MeFS; P =0.0114), and disease-specific survival (DSS; P=0.0041). Furthermore, high expression of CLCA1 remained an independent prognosticator of shorter LRFS (P=0.029, hazard ratio=2.555), MeFS (P=0.044, hazard ratio=2.125) and DSS (P=0.044, hazard ratio=2.172). Conclusions: High expression of CLCA1 is significantly associated with poor therapeutic response and survival outcomes in rectal cancer patients with CCRT treatment before surgery. With the development of specific inhibitors, our findings indicate not only prognostic but also therapeutic potential of CLCA1 in rectal cancers.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Rueda M, Wagner JL, Phillips TC, Topol SE, Muse ED, Lucas JR, Wagner GN, Topol EJ, Torkamani A. Molecular Autopsy for Sudden Death in the Young: Is Data Aggregation the Key? Front Cardiovasc Med 2017; 4:72. [PMID: 29181379 PMCID: PMC5694161 DOI: 10.3389/fcvm.2017.00072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
The Scripps molecular autopsy study seeks to incorporate genetic testing into the postmortem examination of cases of sudden death in the young (<45 years old). Here, we describe the results from the first 2 years of the study, which consisted of whole exome sequencing (WES) of a cohort of 50 cases predominantly from San Diego County. Apart from the individual description of cases, we analyzed the data at the cohort-level, which brought new perspectives on the genetic causes of sudden death. We investigated the advantages and disadvantages of using WES compared to a gene panel for cardiac disease (usually the first genetic test used by medical examiners). In an attempt to connect complex clinical phenotypes with genotypes, we classified samples by their genetic fingerprint. Finally, we studied the benefits of analyzing the mitochondrial DNA genome. In this regard, we found that half of the cases clinically diagnosed as sudden infant death syndrome had an increased ratio of heteroplasmic variants, and that the variants were also present in the mothers. We believe that community-based data aggregation and sharing will eventually lead to an improved classification of variants. Allele frequencies for the all cases can be accessed via our genomics browser at https://genomics.scripps.edu/browser.
Collapse
Affiliation(s)
- Manuel Rueda
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Jennifer L Wagner
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Tierney C Phillips
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Sarah E Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| | - Evan D Muse
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Jonathan R Lucas
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Glenn N Wagner
- Medical Examiner Department, San Diego County, San Diego, CA, United States
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States.,Division of Cardiology, Scripps Clinic, La Jolla, CA, United States
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Jeevaratnam K, Chadda KR, Salvage SC, Valli H, Ahmad S, Grace AA, Huang CLH. Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:38-45. [PMID: 28024120 PMCID: PMC5763326 DOI: 10.1111/1440-1681.12721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.
Collapse
Affiliation(s)
- Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,School of Medicine, Perdana University-Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
| | - Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Physiological Laboratory, University of Cambridge, Cambridge, UK
| | | | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Ahmed M, Jalily Hasani H, Ganesan A, Houghton M, Barakat K. Modeling the human Na v1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade. Drug Des Devel Ther 2017; 11:2301-2324. [PMID: 28831242 PMCID: PMC5552146 DOI: 10.2147/dddt.s133944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel's selectivity filters to reach the channel's central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed "state-of-the-art" steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure-property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel.
Collapse
Affiliation(s)
| | | | | | - Michael Houghton
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
- Department of Medical Microbiology and Immunology, Katz Centre for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
| |
Collapse
|
26
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Suktitipat B, Sathirareuangchai S, Roothumnong E, Thongnoppakhun W, Wangkiratikant P, Vorasan N, Krittayaphong R, Pithukpakorn M, Boonyapisit W. Molecular investigation by whole exome sequencing revealed a high proportion of pathogenic variants among Thai victims of sudden unexpected death syndrome. PLoS One 2017; 12:e0180056. [PMID: 28704380 PMCID: PMC5509116 DOI: 10.1371/journal.pone.0180056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction Sudden unexpected death syndrome (SUDS) is an important cause of death in young healthy adults with a high incident rate in Southeast Asia; however, there are no molecular autopsy reports about these victims. We performed a combination of both a detailed autopsy and a molecular autopsy by whole exome sequencing (WES) to investigate the cause of SUDS in Thai sudden death victims. Materials and methods A detailed forensic autopsy was performed to identify the cause of death, followed by a molecular autopsy, in 42 sudden death victims who died between January 2015 and August 2015. The coding sequences of 98 SUDS-related genes were sequenced using WES. Potentially causative variants were filtered based on the variant functions annotated in the dbNSFP database. Variants with inconclusive clinical significance evidence in ClinVar were resolved with a variant prediction algorithm, metaSVM, and the frequency data of the variants found in public databases, such as the 1000 Genome Project, ESP6500 project, and the Exome Aggregation Consortium (ExAc) project. Results Combining both autopsy and molecular autopsy enabled the potential identification of cause of death in 81% of the cases. Among the 25 victims with WES data, 72% (18/25) were found to have potentially causative SUDS mutations. The majority of the victims had at a mutation in the TTN gene (8/18 = 44%), and only one victim had an SCN5A mutation. Conclusions WES can help to identify the genetic causes in victims of SUDS and may help to further guide investigations into their relatives to prevent additional SUDS victims.
Collapse
Affiliation(s)
- Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Bangkok, Thailand
| | - Sakda Sathirareuangchai
- Department of Forensic Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Purin Wangkiratikant
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nutchavadee Vorasan
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungroj Krittayaphong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warangkna Boonyapisit
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
28
|
Abstract
Precision medicine aims to achieve improved survival by strategies that recognize the genetic and phenotypic individuality of patients and stratify treatment accordingly. Genetic cardiomyopathies represent an ideal disease group to fully embark on this concept: they are in total frequent diseases with a marked morbidity and mortality and there is ample knowledge about their predisposing genetic factors and associated functional mechanisms. The current review highlights the genetic etiology and gives examples of the diverse treatment strategies that are envisaged in the future.
Collapse
|
29
|
Madan N, Carvalho KS. Neurological Complications of Cardiac Disease. Semin Pediatr Neurol 2017; 24:3-13. [PMID: 28779863 DOI: 10.1016/j.spen.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article focuses on the complex interactions between the cardiovascular and neurologic systems. Initially, we focus on neurological complications in children with congenital heart disease both secondary to the underlying cardiac disease and complications of interventions. We later discuss diagnosis and management of common syncope syndromes with emphasis on vasovagal syncope. We also review the diagnosis, classification, and management of children and adolescents with postural orthostatic tachycardia syndrome. Lastly, we discuss long QT syndrome and sudden unexpected death in epilepsy (SUDEP), reviewing advances in genetics and current knowledge of pathophysiology of these conditions. This article attempts to provide an overview of these disorders with focus on pathophysiology, advances in molecular genetics, and current medical interventions.
Collapse
Affiliation(s)
- Nandini Madan
- From the Section of Cardiology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Karen S Carvalho
- Section of Neurology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
30
|
Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases. Eur J Hum Genet 2017; 25:404-409. [PMID: 28074886 DOI: 10.1038/ejhg.2016.199] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is described as the sudden and unexplained death of an apparently healthy infant younger than one year of age. Genetic studies indicate that up to 35% of SIDS cases might be explained by familial or genetic diseases such as cardiomyopathies, ion channelopathies or metabolic disorders that remained undetected during conventional forensic autopsy procedures. Post-mortem genetic testing by using massive parallel sequencing (MPS) approaches represents an efficient and rapid tool to further investigate unexplained death cases and might help to elucidate pathogenic genetic variants and mechanisms in cases without a conclusive cause of death. In this study, we performed whole-exome sequencing (WES) in 161 European SIDS infants with focus on 192 genes associated with cardiovascular and metabolic diseases. Potentially causative variants were detected in 20% of the SIDS cases. The majority of infants had variants with likely functional effects in genes associated with channelopathies (9%), followed by cardiomyopathies (7%) and metabolic diseases (1%). Although lethal arrhythmia represents the most plausible and likely cause of death, the majority of SIDS cases still remains elusive and might be explained by a multifactorial etiology, triggered by a combination of different genetic and environmental risk factors. As WES is not substantially more expensive than a targeted sequencing approach, it represents an unbiased screening of the exome, which could help to investigate different pathogenic mechanisms within the genetically heterogeneous SIDS cohort. Additionally, re-analysis of the datasets provides the basis to identify new candidate genes in sudden infant death.
Collapse
|
31
|
Epilepsy and Brugada syndrome. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Sanchez O, Campuzano O, Fernández-Falgueras A, Sarquella-Brugada G, Cesar S, Mademont I, Mates J, Pérez-Serra A, Coll M, Pico F, Iglesias A, Tirón C, Allegue C, Carro E, Gallego MÁ, Ferrer-Costa C, Hospital A, Bardalet N, Borondo JC, Vingut A, Arbelo E, Brugada J, Castellà J, Medallo J, Brugada R. Natural and Undetermined Sudden Death: Value of Post-Mortem Genetic Investigation. PLoS One 2016; 11:e0167358. [PMID: 27930701 PMCID: PMC5145162 DOI: 10.1371/journal.pone.0167358] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background Sudden unexplained death may be the first manifestation of an unknown inherited cardiac disease. Current genetic technologies may enable the unraveling of an etiology and the identification of relatives at risk. The aim of our study was to define the etiology of natural deaths, younger than 50 years of age, and to investigate whether genetic defects associated with cardiac diseases could provide a potential etiology for the unexplained cases. Methods and Findings Our cohort included a total of 789 consecutive cases (77.19% males) <50 years old (average 38.6±12.2 years old) who died suddenly from non-violent causes. A comprehensive autopsy was performed according to current forensic guidelines. During autopsy a cause of death was identified in most cases (81.1%), mainly due to cardiac alterations (56.87%). In unexplained cases, genetic analysis of the main genes associated with sudden cardiac death was performed using Next Generation Sequencing technology. Genetic analysis was performed in suspected inherited diseases (cardiomyopathy) and in unexplained death, with identification of potentially pathogenic variants in nearly 50% and 40% of samples, respectively. Conclusions Cardiac disease is the most important cause of sudden death, especially after the age of 40. Close to 10% of cases may remain unexplained after a complete autopsy investigation. Molecular autopsy may provide an explanation for a significant part of these unexplained cases. Identification of genetic variations enables genetic counseling and undertaking of preventive measures in relatives at risk.
Collapse
Affiliation(s)
- Olallo Sanchez
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
- Department of Medical Sciences, School of Medicine, University of Girona, Girona (Spain)
| | - Anna Fernández-Falgueras
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
- Cardiovascular Genetics Unit, Hospital Josep Trueta, Girona (Spain)
| | | | - Sergi Cesar
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona (Spain)
| | - Irene Mademont
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Jesus Mates
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | | | - Monica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Ferran Pico
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Coloma Tirón
- Cardiovascular Genetics Unit, Hospital Josep Trueta, Girona (Spain)
| | - Catarina Allegue
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
| | - Esther Carro
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona (Spain)
| | - María Ángeles Gallego
- Forensic Pathology Service, Institut Medicina Legal Ciències Mèdiques Catalunya, Barcelona (Spain)
| | | | - Anna Hospital
- Forensic Pathology Service, Institut Medicina Legal i Ciències Forenses de Catalunya, Girona (Spain)
| | - Narcís Bardalet
- Forensic Pathology Service, Institut Medicina Legal i Ciències Forenses de Catalunya, Girona (Spain)
| | - Juan Carlos Borondo
- Histopathology Unit, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona (Spain)
| | - Albert Vingut
- Histopathology Unit, Instituto Nacional de Toxicología y Ciencias Forenses, Barcelona (Spain)
| | - Elena Arbelo
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona (Spain)
| | - Josep Brugada
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona (Spain)
- Arrhythmia Unit, Hospital Clinic de Barcelona, University of Barcelona, Barcelona (Spain)
| | - Josep Castellà
- Forensic Pathology Service, Institut Medicina Legal Ciències Mèdiques Catalunya, Barcelona (Spain)
| | - Jordi Medallo
- Forensic Pathology Service, Institut Medicina Legal Ciències Mèdiques Catalunya, Barcelona (Spain)
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona (Spain)
- Department of Medical Sciences, School of Medicine, University of Girona, Girona (Spain)
- Cardiovascular Genetics Unit, Hospital Josep Trueta, Girona (Spain)
- * E-mail:
| |
Collapse
|
33
|
Koh W, Wong C, Tang WHW. Genetic Predispositions to Heart Failure. CURRENT CARDIOVASCULAR RISK REPORTS 2016. [DOI: 10.1007/s12170-016-0525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
A hypertrophic and dilated cardiomyopathic sudden cardiac death case; de novo mutations in TTN and SGCD genes. Anatol J Cardiol 2016; 16:887-888. [PMID: 27488758 PMCID: PMC5324894 DOI: 10.14744/anatoljcardiol.2016.7270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Krexi L, Georgiou R, Krexi D, Sheppard MN. Sudden cardiac death with stress and restraint: The association with sudden adult death syndrome, cardiomyopathy and coronary artery disease. MEDICINE, SCIENCE, AND THE LAW 2016; 56:85-90. [PMID: 25628339 DOI: 10.1177/0025802414568483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The aim of this study was to report on sudden cardiac death (SCD) during or immediately after a stressful event in a predominately young cohort. METHODS This study used retrospective non-case-controlled analysis. A total of 110 cases of SCD in relation to a stressful event such as altercation (45%), physical restraint (31%) in police custody (10%), exams/school/job stress (7.27%), receiving bad news (4%), or a car accident without injuries (2.73%) were retrospectively investigated. The majority of the subjects experiencing SCD were male (80.91%). The mean age was 36 ± 16 years (range 5-82 years). Twenty-three cases (20.91%) were psychiatric patients on antipsychotic medication. RESULTS Fifty-three per cent of cases died with a negative autopsy and a morphologically normal heart, indicating sudden adult death which is linked to cardiac channelopathies predisposing to stress-induced SCD. Cardiomyopathy was found in 16 (14.5%) patients and coronary artery pathology in 19 (17%) patients, with atherosclerosis predominating in older patients. CONCLUSIONS This study highlights SCD during psychological stress, mostly in young males where the sudden death occurred in the absence of structural heart disease. This may reflect the proarrhythmic potential of high catecholamines on the structurally normal heart in those genetically predisposed because of cardiac channelopathy. Structural cardiomyopathies and coronary artery disease also feature prominently. Cases of SCD associated with altercation and restraint receive mass media attention especially when police/other governmental bodies are involved. This study highlights the rare but important risk of SCD associated with psychological stress and restraint in morphologically normal hearts and the importance of an expert cardiac opinion where prolonged criminal investigations and medico-legal issues often ensue.
Collapse
Affiliation(s)
- Lydia Krexi
- Medical School, Aristotle University of Thessaloniki, Greece
| | - Roxani Georgiou
- CRY Centre for Cardiovascular Pathology, St Georges Medical School, UK
| | - Dimitra Krexi
- Medical School, Aristotle University of Thessaloniki, Greece
| | - Mary N Sheppard
- CRY Centre for Cardiovascular Pathology, St Georges Medical School, UK
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Recent international expert consensus statements have updated the clinical and genetic diagnoses of patients suffering from arrhythmogenic diseases. However, a lack of genotype-phenotype correlations has hampered the development of a risk stratification scale for sudden cardiac death. RECENT FINDINGS The improvement in the field of genetics has prompted the discovery of new genes associated with sudden cardiac death. Sudden cardiac death is a socially devastating event, especially when it occurs in the pediatric population. Physical activity can often trigger the arrhythmia and sudden death may be the first symptom. These inherited cardiac diseases may be difficult to diagnose, leaving family members also at risk. Thanks to the development of new high-throughput technologies, genetics may be used in the diagnosis of these diseases and even cases that remain unexplained after a comprehensive autopsy. Genetic testing cannot only identify the causative genetic variant in the index case, but it enables the detection of relatives at risk of sudden death, despite remaining clinically asymptomatic. SUMMARY We review the recent advances in the genetics of inherited arrhythmias associated with sudden cardiac death. We focus on the pediatric population, the main group of people suffering from lethal inherited arrhythmias.
Collapse
|
37
|
Rare Titin (TTN) Variants in Diseases Associated with Sudden Cardiac Death. Int J Mol Sci 2015; 16:25773-87. [PMID: 26516846 PMCID: PMC4632826 DOI: 10.3390/ijms161025773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023] Open
Abstract
A leading cause of death in western countries is sudden cardiac death, and can be associated with genetic disease. Next-generation sequencing has allowed thorough analysis of genes associated with this entity, including, most recently, titin. We aimed to identify potentially pathogenic genetic variants in titin. A total of 1126 samples were analyzed using a custom sequencing panel including major genes related to sudden cardiac death. Our cohort was divided into three groups: 432 cases from patients with cardiomyopathies, 130 cases from patients with channelopathies, and 564 post-mortem samples from individuals showing anatomical healthy hearts and non-conclusive causes of death after comprehensive autopsy. None of the patients included had definite pathogenic variants in the genes analyzed by our custom cardio-panel. Retrospective analysis comparing the in-house database and available public databases also was performed. We identified 554 rare variants in titin, 282 of which were novel. Seven were previously reported as pathogenic. Of these 554 variants, 493 were missense variants, 233 of which were novel. Of all variants identified, 399 were unique and 155 were identified at least twice. No definite pathogenic variants were identified in any of genes analyzed. We identified rare, mostly novel, titin variants that seem to play a potentially pathogenic role in sudden cardiac death. Additional studies should be performed to clarify the role of these variants in sudden cardiac death.
Collapse
|
38
|
Farrugia A, Keyser C, Hollard C, Raul J, Muller J, Ludes B. Targeted next generation sequencing application in cardiac channelopathies: Analysis of a cohort of autopsy-negative sudden unexplained deaths. Forensic Sci Int 2015; 254:5-11. [DOI: 10.1016/j.forsciint.2015.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022]
|
39
|
Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Mol Pharmacol 2015; 88:203-17. [PMID: 25904555 PMCID: PMC4468639 DOI: 10.1124/mol.115.097998] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.
Collapse
Affiliation(s)
- Hongjie Yuan
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Chian-Ming Low
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Olivia A Moody
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Andrew Jenkins
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Stephen F Traynelis
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| |
Collapse
|
40
|
Camacho Velásquez JL, Rivero Sanz E, Velazquez Benito A, Mauri Llerda JA. Epilepsy and Brugada syndrome. Neurologia 2015; 32:58-60. [PMID: 26037409 DOI: 10.1016/j.nrl.2015.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/17/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- J L Camacho Velásquez
- Servicio de Neurología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España.
| | - E Rivero Sanz
- Servicio de Neurología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - A Velazquez Benito
- Servicio de Neurología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - J A Mauri Llerda
- Servicio de Neurología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| |
Collapse
|
41
|
Wang T, McDonald C, Petrenko NB, Leblanc M, Wang T, Giguere V, Evans RM, Patel VV, Pei L. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Mol Cell Biol 2015; 35:1281-98. [PMID: 25624346 PMCID: PMC4355525 DOI: 10.1128/mcb.01156-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function.
Collapse
Affiliation(s)
- Ting Wang
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Caitlin McDonald
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nataliya B Petrenko
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tao Wang
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent Giguere
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec, Canada
| | - Ronald M Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Vickas V Patel
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Risk of cardiovascular abnormalities in relatives of SUDEP victims: How should we proceed? Epilepsy Behav 2015; 45:223-4. [PMID: 25819951 DOI: 10.1016/j.yebeh.2015.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/20/2022]
|
43
|
Campuzano O, Allegue C, Fernandez A, Iglesias A, Brugada R. Determining the pathogenicity of genetic variants associated with cardiac channelopathies. Sci Rep 2015; 5:7953. [PMID: 25608792 PMCID: PMC4302303 DOI: 10.1038/srep07953] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023] Open
Abstract
Advancements in genetic screening have generated massive amounts of data on genetic variation; however, a lack of clear pathogenic stratification has left most variants classified as being of unknown significance. This is a critical limitation for translating genetic data into clinical practice. Genetic screening is currently recommended in the guidelines for diagnosis and treatment of cardiac channelopathies, which are major contributors to sudden cardiac death in young people. We propose to characterize the pathogenicity of genetic variants associated with cardiac channelopathies using a stratified scoring system. The development of this system was considered by using all of the tools currently available to define pathogenicity. The use of this scoring system could help clinicians to understand the limitations of genetic associations with a disease, and help them better define the role that genetics can have in their clinical routine.
Collapse
Affiliation(s)
- Oscar Campuzano
- 1] Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain [2] Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Anna Fernandez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Ramon Brugada
- 1] Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain [2] Medical Science Department, School of Medicine, University of Girona, Girona, Spain [3] Cardiology Service, Hospital Josep Trueta, Girona, Spain
| |
Collapse
|
44
|
Tiron C, Campuzano O, Pérez-Serra A, Mademont I, Coll M, Allegue C, Iglesias A, Partemi S, Striano P, Oliva A, Brugada R. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 2015; 25:65-7. [PMID: 25645639 DOI: 10.1016/j.seizure.2015.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Ion channels are expressed both in the heart and in the brain, being advocated as responsible for sudden unexpected death in epilepsy but few pathogenic mutations have been identified. We aim to identify a novel gen associated with channelopathies and epilepsy in a family. METHODS We assessed a family showing epilepsy concomitant with LQTS. Index case showed prolonged QT interval. His father suffers of LQT and epilepsy. We performed a direct sequencing analysis of KCNQ1, KCNH2, KCNE1, KCNE2 and SCN5A genes. RESULTS We identified a non-synonymous heterozygous missense pathogenic mutation (p.L273F) in exon 6 of the KCNQ1 gene. All clinically affected relatives carried the same mutation. CONCLUSION We report, for a first time, a KCNQ1 mutation in a family suffering of both phenotypes, suggesting that KCNQ1 genetic variations may confer susceptibility for recurrent seizure activity increasing the risk or lead to sudden death.
Collapse
Affiliation(s)
- Coloma Tiron
- Cardiology Service, Hospital Josep Trueta, Girona, Spain; Cardiology Department, Hospital of Palamós, Palamós, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain
| | - Irene Mademont
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain
| | - Monica Coll
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain
| | - Sara Partemi
- Institute of Public Health Section of Legal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, "G. Gaslini" Institute, Genova, Italy
| | - Antonio Oliva
- Institute of Public Health Section of Legal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Ramon Brugada
- Cardiology Service, Hospital Josep Trueta, Girona, Spain; Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona-IDIBGI, Unversitat de Girona, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
45
|
Mahida S, Derval N, Sacher F, Berte B, Yamashita S, Hooks DA, Denis A, Lim H, Amraoui S, Aljefairi N, Hocini M, Jais P, Haissaguerre M. History and clinical significance of early repolarization syndrome. Heart Rhythm 2015; 12:242-9. [PMID: 25257090 DOI: 10.1016/j.hrthm.2014.09.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 02/07/2023]
Abstract
The early repolarization (ER) pattern has historically been regarded as a benign ECG variant. However, in recent years this view has been challenged based on multiple reports linking the ER pattern with an increased risk of sudden cardiac death. The mechanistic basis of ventricular arrhythmogenesis in ER syndrome is presently incompletely understood. Furthermore, strategies for risk stratification and therapy for ER syndrome remain suboptimal. The recent emergence of novel mapping techniques for cardiac arrhythmia has ushered a new era of research into the mechanistic basis of ER syndrome. This review provides an overview of current evidence relating to ER and risk of ventricular arrhythmias and discusses potential future areas of research to elucidate the mechanisms of ventricular arrhythmogenesis.
Collapse
Affiliation(s)
- Saagar Mahida
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France.
| | - Nicolas Derval
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Frederic Sacher
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Benjamin Berte
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Seigo Yamashita
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Darren A Hooks
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Arnaud Denis
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Han Lim
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Sana Amraoui
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Nora Aljefairi
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Meleze Hocini
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Pierre Jais
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| | - Michel Haissaguerre
- Hôpital Cardiologique du Haut-Lévêque and Université Victor Segalen Bordeaux II, Bordeaux, France
| |
Collapse
|
46
|
Identification of Genetic Alterations, as Causative Genetic Defects in Long QT Syndrome, Using Next Generation Sequencing Technology. PLoS One 2014; 9:e114894. [PMID: 25494010 PMCID: PMC4262446 DOI: 10.1371/journal.pone.0114894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/15/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Long QT Syndrome is an inherited channelopathy leading to sudden cardiac death due to ventricular arrhythmias. Despite that several genes have been associated with the disease, nearly 20% of cases remain without an identified genetic cause. Other genetic alterations such as copy number variations have been recently related to Long QT Syndrome. Our aim was to take advantage of current genetic technologies in a family affected by Long QT Syndrome in order to identify the cause of the disease. METHODS Complete clinical evaluation was performed in all family members. In the index case, a Next Generation Sequencing custom-built panel, including 55 sudden cardiac death-related genes, was used both for detection of sequence and copy number variants. Next Generation Sequencing variants were confirmed by Sanger method. Copy number variations variants were confirmed by Multiplex Ligation dependent Probe Amplification method and at the mRNA level. Confirmed variants and copy number variations identified in the index case were also analyzed in relatives. RESULTS In the index case, Next Generation Sequencing revealed a novel variant in TTN and a large deletion in KCNQ1, involving exons 7 and 8. Both variants were confirmed by alternative techniques. The mother and the brother of the index case were also affected by Long QT Syndrome, and family cosegregation was observed for the KCNQ1 deletion, but not for the TTN variant. CONCLUSIONS Next Generation Sequencing technology allows a comprehensive genetic analysis of arrhythmogenic diseases. We report a copy number variation identified using Next Generation Sequencing analysis in Long QT Syndrome. Clinical and familiar correlation is crucial to elucidate the role of genetic variants identified to distinguish the pathogenic ones from genetic noise.
Collapse
|
47
|
Beltran-Alvarez P, Tarradas A, Chiva C, Pérez-Serra A, Batlle M, Pérez-Villa F, Schulte U, Sabidó E, Brugada R, Pagans S. Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J Mol Cell Cardiol 2014; 76:126-9. [PMID: 25172307 DOI: 10.1016/j.yjmcc.2014.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022]
Abstract
The α subunit of the cardiac voltage-gated sodium channel, NaV1.5, provides the rapid sodium inward current that initiates cardiomyocyte action potentials. Here, we analyzed for the first time the post-translational modifications of NaV1.5 purified from end-stage heart failure human cardiac tissue. We identified R526 methylation as the major post-translational modification of any NaV1.5 arginine or lysine residue. Unexpectedly, we found that the N terminus of NaV1.5 was: 1) devoid of the initiation methionine, and 2) acetylated at the resulting initial alanine residue. This is the first evidence for N-terminal acetylation in any member of the voltage-gated ion channel superfamily. Our results open the door to explore NaV1.5 N-terminal acetylation and arginine methylation levels as drivers or markers of end-stage heart failure.
Collapse
Affiliation(s)
- Pedro Beltran-Alvarez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, 17003 Girona, Spain.
| | - Anna Tarradas
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, 17003 Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Cristina Chiva
- Proteomics Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, 17003 Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Montserrat Batlle
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Félix Pérez-Villa
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Uwe Schulte
- Logopharm GmbH, 79232 March-Buchheim, Germany
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, 17003 Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain.
| | - Sara Pagans
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona, 17003 Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain.
| |
Collapse
|
48
|
Partemi S, Vidal MC, Striano P, Campuzano O, Allegue C, Pezzella M, Elia M, Parisi P, Belcastro V, Casellato S, Giordano L, Mastrangelo M, Pietrafusa N, Striano S, Zara F, Bianchi A, Buti D, La Neve A, Tassinari CA, Oliva A, Brugada R. Genetic and forensic implications in epilepsy and cardiac arrhythmias: a case series. Int J Legal Med 2014; 129:495-504. [PMID: 25119684 DOI: 10.1007/s00414-014-1063-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/05/2014] [Indexed: 12/27/2022]
Abstract
Epilepsy affects approximately 3% of the world's population, and sudden death is a significant cause of death in this population. Sudden unexpected death in epilepsy (SUDEP) accounts for up to 17% of all these cases, which increases the rate of sudden death by 24-fold as compared to the general population. The underlying mechanisms are still not elucidated, but recent studies suggest the possibility that a common genetic channelopathy might contribute to both epilepsy and cardiac disease to increase the incidence of death via a lethal cardiac arrhythmia. We performed genetic testing in a large cohort of individuals with epilepsy and cardiac conduction disorders in order to identify genetic mutations that could play a role in the mechanism of sudden death. Putative pathogenic disease-causing mutations in genes encoding cardiac ion channel were detected in 24% of unrelated individuals with epilepsy. Segregation analysis through genetic screening of the available family members and functional studies are crucial tasks to understand and to prove the possible pathogenicity of the variant, but in our cohort, only two families were available. Despite further research should be performed to clarify the mechanism of coexistence of both clinical conditions, genetic analysis, applied also in post-mortem setting, could be very useful to identify genetic factors that predispose epileptic patients to sudden death, helping to prevent sudden death in patients with epilepsy.
Collapse
Affiliation(s)
- Sara Partemi
- Institute of Legal Medicine, School of Medicine, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. J Membr Biol 2014; 247:1083-127. [DOI: 10.1007/s00232-014-9716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
|
50
|
Brion M, Blanco-Verea A, Sobrino B, Santori M, Gil R, Ramos-Luis E, Martinez M, Amigo J, Carracedo A. Next generation sequencing challenges in the analysis of cardiac sudden death due to arrhythmogenic disorders. Electrophoresis 2014; 35:3111-6. [PMID: 24981977 DOI: 10.1002/elps.201400148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/02/2014] [Accepted: 06/21/2014] [Indexed: 01/11/2023]
Abstract
Inherited arrhythmogenic disorders is a relatively common cause of cardiac sudden death in young people. Diagnosis has been difficult so far due to the genetic heterogeneity of the disease. Next generation sequencing (NGS) is offering a new scenario for diagnosis. The purpose of our study was to validate NGS for the analysis of twenty-eight genes known to be associated with inherited arrhythmogenic disorders and therefore with sudden cardiac death. SureSelect hybridization was used to enrich DNA from 53 samples, prior to be sequenced with the SOLID™ System of Life Technologies. Depth of coverage, consistency of coverage across samples, and location of variants identified were assessed. All the samples showed a depth of coverage over 200×, except one of them discarded because of its coverage below 30×. Average percentage of target bp covered at least 20× was 96.45%. In the remaining samples, following a prioritization process 46 possible variants in 31 samples were found, of which 45 were confirmed by Sanger sequencing. After filtering variants according to their minor allele frequency in the Exome Sequencing Project 27 putative pathogenic variants in 20 samples remained. With the use of in silico tools, 13 variants in 11 samples were classified as likely pathogenic. In conclusion, NGS allowed us to accurately detect arrhythmogenic disease causing mutations in a fast and cost-efficient manner that is suitable for daily clinical and forensic practice of genetic testing of this type of disorders.
Collapse
Affiliation(s)
- Maria Brion
- Grupo de Xenética de enfermidades cardiovasculares e oftalmolóxicas, IDIS, RIC Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|