1
|
Ghadamyari N, Zolfaghari MR, Tolouei Azar J, Fattahi A. The effect of 8 weeks of endurance and resistance exercises on the serum levels of FGF23 and s-Klotho in type 2 diabetic women. Int J Diabetes Dev Ctries 2024. [DOI: 10.1007/s13410-024-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/22/2024] [Indexed: 01/05/2025] Open
|
2
|
Yu J, Li J, Li M, Wang L, Xu X, Li M. Association between serum Klotho concentration and hypertension in postmenopausal women, a cross-sectional study from NHANES 2013-2016. BMC Geriatr 2023; 23:466. [PMID: 37528365 PMCID: PMC10394796 DOI: 10.1186/s12877-023-04191-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The objective of this study was to examine the correlation between serum Klotho protein concentration and postmenopausal hypertension. METHODS A cross-sectional study design was used, in which 1713 postmenopausal women who participated in the National Health and Nutrition Examination Survey (NHANES) 2013-2016 were included. Multivariate logistic regression models were applied to assess the association between serum Klotho concentration and postmenopausal hypertension. RESULTS A weighted analysis was executed, revealing a noteworthy hypertension prevalence rate of 53.44% among the study participants. Participants with lower quartile of serum Klotho concentration had a higher prevalence of hypertension than those in higher quartiles (Q1:62.29% vs. Q2: 48.52% vs. Q3: 47.33% vs. Q4: 55.02%, p < 0.001). Furthermore, a multivariate logistic regression analysis confirmed that participants with higher quartiles of serum Klotho concentration had a significantly reduced risk of postmenopausal hypertension compared to those in the lowest quartile. Subgroup analysis displayed consistent findings in those following subgroups: aged ≥ 65 years, obesity, nonsmokers, individuals without diabetes and coronary heart disease, and those with higher levels of estradiol and estimated glomerular filtration rate. Based on the results, we concluded that there is a significant association between serum Klotho concentration and postmenopausal hypertension. CONCLUSION The findings of this study revealed a significant inverse association between serum Klotho concentration and hypertension among postmenopausal women. Serum Klotho concentration may serve as a valuable biomarker for risk stratification in postmenopausal women who are at risk of developing hypertension.
Collapse
Affiliation(s)
- Jingli Yu
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China.
| | - Jinfeng Li
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China
| | - Mingxia Li
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China
| | - Ling Wang
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China
| | - Xia Xu
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China
| | - Miao Li
- Department of Physiological Obstetrics, Zhu Ma Dian Central Hospital, Women and Children's Hospital, No.747 Zhonghua Road, Yicheng District, Zhu Ma Dian City, Henan Province, China
| |
Collapse
|
3
|
Donate-Correa J, Matos-Perdomo E, González-Luis A, Martín-Olivera A, Ortiz A, Mora-Fernández C, Navarro-González JF. The Value of Klotho in Kidney Transplantation. Transplantation 2023; 107:616-627. [PMID: 36253904 DOI: 10.1097/tp.0000000000004331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kidney transplant recipients have better survival rates and improved quality of life than long-term dialysis patients. However, delayed graft function, immunosuppressive therapy nephrotoxicity, and rejection episodes may compromise graft and patient survival. The KL gene is highly expressed in kidney tubular cells and encodes the antiaging and kidney-protective protein Klotho, which has membrane-anchored and soluble forms and regulates mineral metabolism. Klotho expression decreases during acute kidney injury or chronic kidney disease, and human chronic kidney disease shares features of accelerated aging with murine Klotho deficiency. In this work, we review clinical studies on the relationship between Klotho and kidney transplantation. Specifically, we address the dynamics of serum and kidney Klotho levels in donors and kidney transplant recipients, the role of Klotho as a marker of current graft function and graft outcomes, and the potential impact of Klotho on kidney protection in the transplantation context. A better understanding of the potential biomarker and therapeutic utility of Klotho in kidney transplant recipients may provide new insights into the control of graft function and new therapeutic strategies to preserve allograft function.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Emiliano Matos-Perdomo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, University of La Laguna, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, University of La Laguna, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria Fundación Jiménez-Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, University of La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel) 2023; 12:239. [PMID: 36829798 PMCID: PMC9952437 DOI: 10.3390/antiox12020239] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Reducing oxidative stress stands at the center of a prevention and control strategy for mitigating cellular senescence and aging. Kidney disease is characterized by a premature aging syndrome, and to find a modulator targeting against oxidative stress, mitochondrial dysfunction, and cellular senescence in kidney cells could be of great significance to prevent and control the progression of this disease. This review focuses on the pathogenic mechanisms related to the appearance of oxidative stress damage and mitochondrial dysfunction in kidney disease. In this scenario, the anti-aging Klotho protein plays a crucial role by modulating signaling pathways involving the manganese-containing superoxide dismutase (Mn-SOD) and the transcription factors FoxO and Nrf2, known antioxidant systems, and other known mitochondrial function regulators, such as mitochondrial uncoupling protein 1 (UCP1), B-cell lymphoma-2 (BCL-2), Wnt/β-catenin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), transcription factor EB, (TFEB), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Therefore, Klotho is postulated as a very promising new target for future therapeutic strategies against oxidative stress, mitochondria abnormalities, and cellular senescence in kidney disease patients.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martín-Carro
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge B. Cannata-Andía
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
5
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Nah SY, Ko SK, Byun JK, Lee Y, Lei XG, Kim DJ, Nabeshima T, Kim HC. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 2022; 189:2-19. [PMID: 35840016 DOI: 10.1016/j.freeradbiomed.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.
Collapse
Affiliation(s)
- Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Effect of combined aerobic and resistance exercise on serum Klotho secretion in healthy young men -a pilot study-. Curr Res Physiol 2022; 5:246-250. [PMID: 35756695 PMCID: PMC9218281 DOI: 10.1016/j.crphys.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
|
7
|
Morishima T, Ochi E. Impact of a single bout of resistance exercise on serum Klotho in healthy young men. Physiol Rep 2021; 9:e15087. [PMID: 34713986 PMCID: PMC8554772 DOI: 10.14814/phy2.15087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It has been shown that Klotho protects vascular endothelial function. Given that a single bout of resistance-exercise-induced hypertensive stimulus causes endothelial dysfunction, we postulated that acute resistance exercise would reduce serum Klotho levels. In this respect, the reduction in serum Klotho levels would be associated with the response of flow-mediated dilation (FMD). Therefore, the purpose of this study was to investigate the impact of acute resistance exercise on the Klotho response in serum. In addition, we examined the relationship between the serum Klotho and FMD responses following acute resistance exercise. METHODS Twelve untrained men participated in this study (20.4 ± 0.3 years). Following baseline measurements (blood pressure, blood collection, FMD), subjects performed leg extensions, which consisted of 10 repetitions for five sets at 70% of one-repetition maximum. After the exercise, measurement of blood pressure, blood collection, and FMD assessment were repeated for 60 min. We analyzed Klotho and endothelin-1 (ET-1) concentrations in blood serum. RESULTS As expected, the exercise significantly elevated blood pressure and led to decreased FMD (p < 0.05). However, Klotho concentrations were significantly increased following exercise (p < 0.05). No correlation was observed in Klotho and FMD responses following acute resistance exercise. However, there was a significant positive correlation between Klotho and ET-1 in response to resistance exercise (p < 0.05). CONCLUSION In conclusion, the present study reveals that serum Klotho significantly increased following a single bout of resistance exercise. However, the increase in Klotho may not associate with the acute reduction in endothelial function.
Collapse
Affiliation(s)
| | - Eisuke Ochi
- Faculty of Bioscience and Applied ChemistryHosei UniversityTokyoJapan
| |
Collapse
|
8
|
Montoro-Molina S, Quesada A, O'Valle F, Morales NM, de Gracia MDC, Rodríguez-Gómez I, Osuna A, Wangensteen R, Vargas F. The Long-Term Study of Urinary Biomarkers of Renal Injury in Spontaneously Hypertensive Rats. Kidney Blood Press Res 2021; 46:502-513. [PMID: 34237745 DOI: 10.1159/000516843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The age-related increase in blood pressure in spontaneously hypertensive rats (SHRs) is associated to cardiac hypertrophy, heart failure, and renal injury. Here, we investigated for the first time the urinary enzymatic activities of glutamil aminopeptidase (GluAp), alanyl aminopeptidase (AlaAp), dipeptidyl peptidase-4 (DPP4), and Klotho urinary levels, proteins that are strongly expressed in the kidney, as early biomarkers of renal injury in SHRs. METHODS Male SHR and Wistar Kyoto (WKY) rats were studied from 2 to 8 months old. Systolic blood pressure (SBP), the heart rate (HR), metabolic variables, and urinary markers were measured monthly. At the end of the study, a histopathological evaluation of the kidney was performed. RESULTS Kidneys of SHR did not develop signs of relevant histopathological changes, but showed increased glomerular area and cellularity. Plasma creatinine was decreased, and creatinine clearance was augmented in SHR at the end of the study. Urinary excretion of Klotho was higher in SHR at 5 and 8 months old, whereas plasma Klotho levels were similar to WKY. GluAp, AlaAp, and DPP4 urinary activities were increased in SHR throughout the time-course study. A positive correlation between glomerular area and cellularity with creatinine clearance was observed. Urinary GluAp, AlaAp, DPP4, and Klotho showed positive correlations with SBP. CONCLUSIONS GluAp, AlaAp, DPP4, and Klotho in the urine are useful tools for the evaluation of renal damage at early stages, before the whole histopathological and biochemical manifestations of renal disease are established. Moreover, these observations may represent a novel and noninvasive diagnostic approach to assess the evolution of kidney function in hypertension and other chronic diseases.
Collapse
Affiliation(s)
| | - Andrés Quesada
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, Granada, Spain
| | - Francisco O'Valle
- Departamento de Anatomía Patológica e Instituto de Biomedicina Regenerativa (IBIMER), Facultad de Medicina, Granada, Spain
| | - Natividad Martín Morales
- Departamento de Anatomía Patológica e Instituto de Biomedicina Regenerativa (IBIMER), Facultad de Medicina, Granada, Spain
| | | | | | - Antonio Osuna
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| |
Collapse
|
9
|
Chen Z, Xiong L, Jin H, Yu J, Li X, Fu H, Wen L, Qi H, Tong C, Saffery R, Kilby MD, Baker PN. Advanced maternal age causes premature placental senescence and malformation via dysregulated α-Klotho expression in trophoblasts. Aging Cell 2021; 20:e13417. [PMID: 34105233 PMCID: PMC8282245 DOI: 10.1111/acel.13417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (AMA) pregnancy is associated with higher risks of adverse perinatal outcomes, which may result from premature senescence of the placenta. α-Klotho is a well-known antiaging protein; however, its expression and effect on the placenta in AMA pregnancies have not yet been fully elucidated. The expression patterns of α-Klotho in mouse and human placentas from AMA pregnancies were determined by Western blotting and immunohistochemistry (IHC) staining. α-Klotho expression in JAR cells was manipulated to investigate its role in trophoblastic senescence, and transwell assays were performed to assess trophoblast invasion. The downstream genes regulated by α-Klotho in JAR cells were first screened by mRNA sequencing in α-Klotho-knockdown and control JAR cells and then validated. α-Klotho-deficient mice were generated by injecting klotho-interfering adenovirus (Ad-Klotho) via the tail vein on GD8.5. Ablation of α-Klotho resulted in not only a senescent phenotype and loss of invasiveness in JAR cells but also a reduction in the transcription of cell adhesion molecule (CAM) genes. Overexpression of α-Klotho significantly improved invasion but did not alter the expression of senescence biomarkers. α-Klotho-deficient mice exhibited placental malformation and, consequently, lower placental and fetal weights. In conclusion, AMA results in reduced α-Klotho expression in placental trophoblasts, therefore leading to premature senescence and loss of invasion (possibly through the downregulation of CAMs), both of which ultimately result in placental malformation and adverse perinatal outcomes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huili Jin
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Jiaxiao Yu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Xin Li
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huijia Fu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Li Wen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Hongbo Qi
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Chao Tong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- Cancer, Disease and Developmental epigenetics, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Mark D. Kilby
- Centre for Women's and Newborn HealthInstitute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Philip N. Baker
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- College of Life SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
10
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Liu Y, Lai P, Deng J, Hao Q, Li X, Yang M, Wang H, Dong B. Micro-RNA335-5p targeted inhibition of sKlotho and promoted oxidative stress–mediated aging of endothelial cells. Biomark Med 2019; 13:457-466. [PMID: 30785341 DOI: 10.2217/bmm-2018-0430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: MiR-335-5p expression might induce endothelial cells (ECs) aging and target inhibit sKlotho. This study aimed to investigate whether oxidative stress evoked miR-335-5p expression and whether miR-335-5p-regulated ECs function through sKlotho. Methods: The expression of miR-335-5p was detected in human umbilical vein endothelial cells treated with H2O2. Subsequently, endothelial function and sKlotho expression were measured in human umbilical vein endothelial cells treated with H2O2 and transfected with miR-335-5p mimics or inhibitor sequences. Vector containing reporting system of sKlotho3′- untranslated region with a miR-335-5p-binding site was constructed. Results: H2O2 stimulation significantly increased miR-335-5p expression. Force overexpression miR-335-5p suppress ECs function and sKlotho expression. MiR-335-5p target regulated sKlotho. Conclusion: MiR-335-5p might serve as a negative factor for endothelial homeostasis and a potential treatment target for atherosclerosis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Geriatrics, West China Hospital of SCU, Chengdu, PR China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Geriatric Health Care & Medical Research Center, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Peng Lai
- School of Food & Bioengineering, Xihua University, Chengdu, PR China
| | - Juelin Deng
- Cardiology Department, Hainan Branch of PLA General Hospital, Sanya, 572000, PR China
| | - Qiukui Hao
- Department of Geriatrics, West China Hospital of SCU, Chengdu, PR China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Geriatric Health Care & Medical Research Center, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Xinyi Li
- Nephrology & Endocrinology Department, Aviation Industry Corporation of China 363 Hospital, Chengdu, PR China
| | - Ming Yang
- Department of Geriatrics, West China Hospital of SCU, Chengdu, PR China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Geriatric Health Care & Medical Research Center, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Hui Wang
- Department of Geriatrics, West China Hospital of SCU, Chengdu, PR China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Geriatric Health Care & Medical Research Center, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Birong Dong
- Department of Geriatrics, West China Hospital of SCU, Chengdu, PR China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
- Geriatric Health Care & Medical Research Center, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
12
|
Abstract
Chronic kidney disease (CKD) is an inherently systemic disease that refers to a long-term loss of kidney function. The progression of CKD has repercussions for other organs, leading to many kinds of extrarenal complications. Intensive studies are now being undertaken to reveal the risk factors and pathophysiological mechanism of this disease. During the past 20 years, increasing evidence from clinical and basic studies has indicated that klotho, which was initially known as an anti-aging gene and is mainly expressed in the kidney, is significantly correlated with the development and progression of CKD and its complications. Here, we discuss in detail the role and pathophysiological implications of klotho in ion disorders, the inflammation response, vascular calcification, mineral bone disorders, and renal fibrosis in CKD. Based on the pathogenic mechanism of klotho deficiency and klotho decline in urine early in CKD stage 2 and even earlier in CKD stage 1, it is not difficult to understand that soluble klotho can serve as an early and sensitive marker of CKD. Moreover, the prevention of klotho decline by several mechanisms can attenuate renal injuries, retard CKD progression, ameliorate extrarenal complications, and improve renal function. In this review, we focus on the functions and pathophysiological implications of klotho in CKD and its extrarenal complications as well as its potential applications as a diagnostic and/or prognostic biomarker for CKD and as a novel treatment strategy to improve and decrease the burden of comorbidity in CKD.
Collapse
|
13
|
Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, Hayashi M, Suzuki H. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant 2018; 32:791-800. [PMID: 27798196 DOI: 10.1093/ndt/gfw340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Klotho protein interacts with the transforming growth factor β (TGF-β) receptor and Wnt, which contribute to the progression of renal disease, inhibiting their signals. Renal and circulating klotho levels are diminished in chronic kidney disease. Methods Experiments were performed to assess whether supplementation of klotho protein could have protective effects on the kidney. Rats were injected with adriamycin (5 mg/kg) and divided into three groups: those treated with vehicle, those treated with klotho protein and those treated with klotho plus 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD). Rats without adriamycin treatment were used as a control. Results Adriamycin reduced the serum klotho concentration and renal expression of klotho and E-cadherin. Adriamycin also increased the renal expression of Wnt, TGF-β, and angiotensinogen, as well as the renal abundance of β-catenin and angiotensin II. Klotho supplementation suppressed adriamycin-induced elevations of β-catenin and angiotensin II with sustained Wnt expression. Combined treatment with klotho and TDZD reversed the klotho-induced improvements in the renal abundance of β-catenin and angiotensin II as well as the expression of TGF-β and angiotensinogen without affecting E-cadherin. Conclusions Our data indicate that Wnt is involved in the pathogenesis of adriamycin nephropathy. Furthermore, klotho supplementation inhibited Wnt signaling, ameliorating renal angiotensin II. Finally, klotho protein appears to suppress epithelial-mesenchymal transition by inhibiting TGF-β and Wnt signaling.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| | - Hiroyuki Kobori
- Department of Medicine, International University of Health and Welfare, 8-10-16 Akasaka, Minato, Tokyo 107-0052, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kida, Kagawa, Japan
| | - Naohito Ishii
- Department of Clinical Chemistry, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Saitama, Japan
| |
Collapse
|
14
|
Endothelin-1, α-Klotho, 25(OH) Vit D levels and severity of disease in scleroderma patients. Rheumatol Int 2017; 37:1651-1657. [PMID: 28831601 DOI: 10.1007/s00296-017-3797-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Considering the role of endothelin-1 (ET-1) in tissue remodeling and fibrosis during the development of scleroderma as well as the effect of α-Klotho in pathogenesis of calcinosis and/or endothelial cell injury and its correlation with severity of disease, this study aimed to evaluate serum ET-1, α-Klotho and 25(OH) vitamin D levels in patients with limited and diffuse scleroderma compared to healthy subjects. In this cross-sectional study, 60 scleroderma patients according to the ACR/EULAR 2013 criteria and 60 age- and sex-matched healthy controls were included. In patients, clinical examination was performed and Medsger severity scale was assessed. Serum ET-1, soluble α-Klotho and 25(OH)D3 levels were measured using ELISA kits. The mean ± SD age of patients and controls was 46.2 ± 9.6 and 47.2 ± 7.0 years, respectively. Compared to healthy controls, serum ET-1 was significantly higher in SSc patients (p = 0.001); whilst serum α-Klotho and 25(OH)D3 were significantly lower in patients (p = 0.001). The most common organs involved in patients were skin, lung, peripheral vascular and gastrointestinal system and the severity of involvement was mainly mild and/or moderate. There were no significant differences in serum ET-1 and α-Klotho levels according to the severity of different organ involvement (p > 0.05). There was no significant correlation between presence or absence of calcinosis and negative or positivity of auto-antibodies with ET-1, α-Klotho and 25(OH)D3 levels. Although our study revealed higher serum ET-1 and lower serum α-Klotho levels in SSc patients compared to healthy controls, there were not any significant correlations between their serum levels with severity of organ involvement.
Collapse
|
15
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone 2017; 100:41-49. [PMID: 28115282 PMCID: PMC5474175 DOI: 10.1016/j.bone.2017.01.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
The extracellular domain of transmembrane alpha-Klotho (αKlotho, hereinafter simply called Klotho) is cleaved by secretases and released into the circulation as soluble Klotho. Soluble Klotho in the circulation starts to decline early in chronic kidney disease (CKD) stage 2 and urinary Klotho possibly even earlier in CKD stage 1. Therefore soluble Klotho could serve as an early and sensitive marker of kidney function decline. Moreover, preclinical animal data support Klotho deficiency is not just merely a biomarker, but a pathogenic factor for CKD progression and extrarenal CKD complications including cardiovascular disease and disturbed mineral metabolism. Prevention of Klotho decline, re-activation of endogenous Klotho production or supplementation of exogenous Klotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiomyopathy, and alleviation of vascular calcification in CKD. Therefore Klotho is not only a diagnostic and/or prognostic marker for CKD, but the treatment of Klotho deficiency may be a promising strategy to prevent, retard, and decrease the burden of comorbidity in CKD.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA
| | - Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA.
| |
Collapse
|
17
|
Moskalev AA, Proshkina EN, Belyi AA, Solovyev IA. Genetics of aging and longevity. RUSSIAN JOURNAL OF GENETICS: APPLIED RESEARCH 2017; 7:369-384. [DOI: 10.1134/s2079059717040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Saghiv MS, Sira DB, Goldhammer E, Sagiv M. The effects of aerobic and anaerobic exercises on circulating soluble-Klotho and IGF-I in young and elderly adults and in CAD patients. J Circ Biomark 2017; 6:1849454417733388. [PMID: 29081845 PMCID: PMC5644364 DOI: 10.1177/1849454417733388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
Different studies support the notion that chronic aerobic exercises training can influence the circulating levels of soluble-Klotho (s-Klotho) and insulin-like growth factor 1 (IGF-I). The effects of s-Klotho include improving the quality of life, alleviating the negative impact of age on the body's work capacity, and possibly increasing longevity. This review provides an overview of the latest findings in this field of research in humans. The different modes of dynamic exercise and their impact on circulating levels of s-Klotho and IGF-I in young adult athletes, untrained young adults, trained healthy older adults, untrained healthy older adults, and coronary artery disease (CAD) patients are reviewed and discussed. Together these findings suggest that long-lasting (chronic) aerobic exercise training is probably one of the antiaging factors that counteract the aging and CAD process by increasing the circulating s-Klotho and lowering the IGF-I levels. However, following anaerobic exercise training the opposite occurs. The exact metabolic and physiological pathways involved in the activity of these well-trained young and master sportsmen should be further studied and elucidated. The purpose of this review was to provide a clarification regarding the roles of s-Klotho and intensities and durations of different exercise on human health.
Collapse
Affiliation(s)
- Moran S Saghiv
- Exercise Physiology Department, University of Mary, Bismarck, ND, USA
| | - D Ben Sira
- Life Sciences Department, Wingate College, Wingate, Israel
| | - E Goldhammer
- Heart Institute Bnai-Zion Haifa Medical Center, Technion Institute, Haifa, Israel
| | - M Sagiv
- Life Sciences Department, Wingate College, Wingate, Israel
| |
Collapse
|
19
|
Chen PGF, Sun Z. AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension. Hum Gene Ther 2016; 28:190-199. [PMID: 27736201 DOI: 10.1089/hum.2016.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.
Collapse
Affiliation(s)
- Peter Gin-Fu Chen
- 2 Departments of Medicine and Physiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Zhongjie Sun
- 1 Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma.,2 Departments of Medicine and Physiology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
20
|
Varshney R, Ali Q, Wu C, Sun Z. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity. Hypertension 2016; 68:1255-1263. [PMID: 27672025 DOI: 10.1161/hypertensionaha.116.08184] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity.
Collapse
Affiliation(s)
- Rohan Varshney
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Quaisar Ali
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Chengxiang Wu
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
21
|
Gao D, Zuo Z, Tian J, Ali Q, Lin Y, Lei H, Sun Z. Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity. Hypertension 2016; 68:1191-1199. [PMID: 27620389 DOI: 10.1161/hypertensionaha.116.07709] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by ≈45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity and blood pressure in Klotho-haplodeficient (KL+/-) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL+/- mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/d, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL+/- mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase α (AMPKα) and endothelial NO synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension.
Collapse
Affiliation(s)
- Diansa Gao
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhong Zuo
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Jing Tian
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Quaisar Ali
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Yi Lin
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Han Lei
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.)
| | - Zhongjie Sun
- From the Department of Cardiology (D.G., Z.Z., H.L., Z.S.) and Department of Physical Examination (J.T.), the First Affiliated Hospital, Chongqing Medical University, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (D.G., Q.A., Y.L., Z.S.).
| |
Collapse
|
22
|
Cannatà A, Camparini L, Sinagra G, Giacca M, Loffredo FS. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res 2016; 111:142-53. [DOI: 10.1093/cvr/cvw106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
|
23
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
24
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
25
|
Chen K, Zhou X, Sun Z. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy. Hypertension 2015; 66:1006-13. [PMID: 26324504 DOI: 10.1161/hypertensionaha.115.06033] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/09/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively.
Collapse
Affiliation(s)
- Kai Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., X.Z., Z.S.); and Department of Cardiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China (X.Z.)
| | - Xiaoli Zhou
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., X.Z., Z.S.); and Department of Cardiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China (X.Z.)
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (K.C., X.Z., Z.S.); and Department of Cardiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China (X.Z.).
| |
Collapse
|
26
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
27
|
Ding HY, Ma HX. Significant roles of anti-aging protein klotho and fibroblast growth factor23 in cardiovascular disease. J Geriatr Cardiol 2015; 12:439-47. [PMID: 26347327 PMCID: PMC4554784 DOI: 10.11909/j.issn.1671-5411.2015.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/06/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
The klotho gene has been identified as an aging suppressor that encodes a protein involved in cardiovascular disease (CVD). The inactivation of the klotho gene causes serious systemic disorders resembling human aging, such as atherosclerosis, diffuse vascular calcification and shortened life span. Klotho has been demonstrated to ameliorate vascular endothelial dysfunction and delay vascular calcification. Furthermore, klotho gene polymorphisms in the human are associated with various cardiovascular events. Recent experiments show that klotho may reduce transient receptor potential canonical6 (TRPC6) channels, resulting in protecting the heart from hypertrophy and systolic dysfunction. Fibroblast growth factor23 (FGF23) is a bone-derived hormone that plays an important role in the regulation of phosphate and vitamin D metabolism. FGF23 accelerates urinary phosphate excretion and suppresses 1,25-dihydroxy vitaminD3 (1,25(OH)2D3) synthesis in the presence of FGF receptor1 (FGFR1) and its co-receptor klotho, principally in the kidney. The hormonal affects of circulating klotho protein and FGF23 on vascular and heart have contributed to an understanding of their roles in the pathophysiology of arterial stiffness and left ventricular hypertrophy. Klotho and FGF23 appear to play a critical role in the pathogenesis of vascular disease, and may represent a novel potential therapeutic strategy for clinical intervention.
Collapse
Affiliation(s)
- Hong-Ying Ding
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hou-Xun Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Abstract
The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
29
|
|