1
|
Jum’ah HA, Otteson GE, Timm MM, Weybright MJ, Shi M, Horna P, Jevremovic D, Reichard KK, Olteanu H. Measurable Residual Disease Analysis by Flow Cytometry: Assay Validation and Characterization of 385 Consecutive Cases of Acute Myeloid Leukemia. Cancers (Basel) 2025; 17:1155. [PMID: 40227672 PMCID: PMC11987847 DOI: 10.3390/cancers17071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background/Objectives: Acute myeloid leukemia (AML) is a biologically heterogeneous malignancy with a variable prognosis. Despite many patients achieving complete remission, relapse remains common, underscoring the need for effective prognostic markers. Measurable residual disease (MRD) has emerged as a critical prognostic indicator, associated with higher relapse risk and shorter survival. This study reports on our initial experience of MRD detection by flow cytometry in 385 bone marrow samples from 126 AML patients. Methods: The flow cytometry MRD assay, validated according to stringent consensus recommendations, consists of a 3-tube, 10-color panel incorporating a broad spectrum of lineage differentiation markers. Analytical specificity, sensitivity, precision, and reproducibility were evaluated, demonstrating the assay's robustness. Results: The results reveal distinct immunophenotypic aberrancies in all AML cases, with consistent identification of aberrant immunophenotypes in follow-up specimens. AML MRD was detected in 32 out of 126 patients (25%) and in 77 out of 385 analyses (20%), with a median aberrant blast percentage of 1.87% (range, 0.01-12). A change in immunophenotype was documented in 21% of the MRD-positive cases. MRD positivity detected in the first sample studied was associated with reduced overall survival (HR: 5.153; p < 0.0001). Conclusions: Our findings support the integration of flow cytometric MRD analysis into routine clinical practice to enhance risk stratification and treatment planning for AML patients, as currently recommended by professional guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Horatiu Olteanu
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.A.J.)
| |
Collapse
|
2
|
Valerio Ikoma-Colturato MR, Furtado FM, de Oliveira E, Gevert F, Mendonça R. How I Investigate Measurable Residual Disease in B-Cell Precursor Acute Lymphoblastic Leukemia After Therapy With Bi-Specific Monoclonal Antibodies and 19CAR-T Cells. Int J Lab Hematol 2025. [PMID: 40007453 DOI: 10.1111/ijlh.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Measurable residual disease (MRD) in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) following anti-CD19 targeted therapies requires specific strategies to identify residual blast cells due to loss or reduced CD19 expression that makes it inconsistent as a primitive marker for B-cell gating. OBJECTIVE Due to the increased access of BCP-ALL patients to therapies with CD3/CD19 bispecific T-cell engagers (BiTe) and CD19-targeted chimeric antigen receptor T-Cell (CAR-T), it is essential that flow cytometry laboratories are prepared to evaluate therapeutic responses. MATERIAL AND METHODS Here, validated strategies for MRD detection in the context of anti-CD19 therapies are described, accessible to flow cytometry laboratories according to their different facilities. The paper includes an 8-color flow cytometry (FC) strategy for BCP-ALL MRD based on alternative gating without the use of additional markers (Euroflow protocol), as well as other strategies using alternative markers to CD19, comprising 2 protocols using 8 colors, one using 10 colors and another 14 colors/15 markers. CONCLUSION Different strategies are needed to detect MRD without using CD19 for B-cell population gating after CD19-targeted therapies. However, it is essential that validated protocols are used according to the available resources to ensure reliable results for clinical decision-making.
Collapse
Affiliation(s)
| | - Felipe Magalhães Furtado
- Hospital da Criança de Brasília José Alencar, Brasília, Brazil
- Sabin Medicina Diagnóstica, Brasília, Brazil
| | - Elen de Oliveira
- Instituto de Puericultura e Pediatria e Martagão Gesteira (IPPMG/UFRJ), Rio de Janeiro, Brazil
| | - Fabiola Gevert
- Hospital Pequeno Príncipe, Curitiba, Brazil
- Hospital Erasto Gaertner, Curitiba, Brazil
| | | |
Collapse
|
3
|
de Azambuja AP, Beltrame MP, Malvezzi M, Schluga YC, Justus JLP, Lima ACM, Funke VAM, Bonfim C, Pasquini R. Impact of high-sensitivity flow cytometry on peri-transplant minimal residual disease kinetics in acute leukemia. Sci Rep 2025; 15:6942. [PMID: 40011589 DOI: 10.1038/s41598-025-91936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/24/2025] [Indexed: 02/28/2025] Open
Abstract
Minimal residual disease (MRD) detected before hematopoietic cell transplantation (HCT) is associated with adverse outcomes in patients with high-risk acute leukemia. However, the ideal time points for post-transplant MRD assessment and the clinical significance of low levels of residual disease in this context are unclear. We conducted a prospective real-world analysis of high-sensitivity flow cytometry MRD performed before and after transplant (at days 30, 60 and 100) in 77 acute leukemia patients. The aim was to evaluate the kinetics of disease elimination and correlate it with transplant outcomes. Pre-transplant MRD was negative in 42 (MRD-) and positive in 35 patients (MRD+). Post-transplant MRD assessment was feasible at day 30 (n = 30, 38.9%), day 60 (n = 27, 35.0%) and day 100 (n = 60, 77.9%). Relapses occurred in 8 patients in the MRD + group (22.9%) and three in the MRD-negative group (7.1%), p = 0.02. Pre-transplant MRD correlated with a decrease in overall survival (OS; 87.9% MRD- vs. 54.0% MRD+) and event-free survival (EFS; 85.3% MRD- vs. 51.1% MRD+), p = 0.001. Cumulative incidence of relapse (CIR) was 17.5% in MRD + vs. 2.6% in MRD- (p = 0.049). Non-relapse mortality (NRM) was 31.4% in MRD + vs. 12.1% in MRD- (p = 0.019). One-year OS was higher in patients with negative MRD at d100 (92.4%, 95% CI: 0.81-0.971) than positive d100 MRD (53.3%, 95% CI: 0.177-0.796), p < 0.0001. Disease status and d100 MRD were associated with OS, EFS and CIR. Differences in NRM between leukemia types (ALL: 18.9% MRD- vs. 50% MRD+, and AML 0% MRD- vs. 21.7% MRD+, p = 0.0158) were also observed. In conclusion, pre-transplant MRD assessed by highly sensitive flow cytometry accurately identified patients with adverse prognoses. Persistent MRD after HCT could predict relapse with high specificity and clinical sensitivity. These results highlight the importance of incorporating peri-transplant MRD kinetics into the routine treatment of acute leukemia, particularly in low/middle-income countries.
Collapse
Affiliation(s)
- Ana Paula de Azambuja
- Bone Marrow Transplantation Unit, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil.
- Flow Cytometry Laboratory, Hospital de Clínicas Universidade Federal do Paraná, Avenida Nossa Senhora da Luz, 487, apto 601, 82510-020, Curitiba, Paraná, Brazil.
| | | | - Mariester Malvezzi
- Flow Cytometry Laboratory, Hospital de Clínicas Universidade Federal do Paraná, Avenida Nossa Senhora da Luz, 487, apto 601, 82510-020, Curitiba, Paraná, Brazil
| | - Yara Carolina Schluga
- Flow Cytometry Laboratory, Hospital de Clínicas Universidade Federal do Paraná, Avenida Nossa Senhora da Luz, 487, apto 601, 82510-020, Curitiba, Paraná, Brazil
| | - Julie Lillian Pimentel Justus
- Flow Cytometry Laboratory, Hospital de Clínicas Universidade Federal do Paraná, Avenida Nossa Senhora da Luz, 487, apto 601, 82510-020, Curitiba, Paraná, Brazil
| | | | | | - Carmem Bonfim
- Instituto de Pesquisa Pele Pequeno Príncipe/Faculdades Pequeno Principe Príncipe, Curitiba, Brazil
| | - Ricardo Pasquini
- Bone Marrow Transplantation Unit, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Jen WY, Sasaki K, Ravandi F, Kadia TM, Wang SA, Wang W, Loghavi S, Daver NG, DiNardo CD, Issa GC, Abbas HA, Nasnas C, Bataller A, Urrutia S, Karrar OS, Pierce S, Kantarjian HM, Short NJ. Impact of measurable residual disease clearance kinetics in patients with AML undergoing intensive chemotherapy. Blood Adv 2025; 9:783-792. [PMID: 39631072 PMCID: PMC11869955 DOI: 10.1182/bloodadvances.2024013826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT The prognostic impact of measurable residual disease (MRD) in acute myeloid leukemia (AML) is unequivocal; however, the optimal time point for achieving undetectable MRD is unclear. We retrospectively studied patients with newly diagnosed (ND) AML who achieved remission with frontline intensive chemotherapy and had MRD assessed by flow cytometry after induction (time point 1 [TP1]) and after cycles 2 or 3 (TP2). Cases were grouped into MRD negative (Neg)/Neg, positive (Pos)/Neg, or Pos/Pos at TP1 and TP2, respectively. Of 1980 patients with ND AML, 277 met the inclusion criteria and were included in this analysis. The median relapse-free survival (RFS) was 73 months, 22 months, and 5 months for the MRD Neg/Neg, Pos/Neg, and Pos/Pos groups, respectively (P < .01). There was a significant difference between the Neg/Neg and Pos/Neg groups (P = .05), suggesting benefit to early MRD negativity. The median overall survival (OS) was 81 months, 40 months, and 9 months, respectively (P < .01), but the difference between Neg/Neg and Pos/Neg was not statistically significant (P = .19). Landmark analysis demonstrated the benefit of stem cell transplant (SCT), particularly in Neg/Neg intermediate-risk AML (median RFS, not reached vs 15 months; P < .01). On multivariable analysis, MRD Pos/Neg was independently associated with a worse RFS than Neg/Neg (hazard ratio, 1.73; 95% confidence interval, 1.09-2.75; P = .02) but not for OS (P = .15). In conclusion, undetectable flow MRD after induction is associated with better RFS than undetectable MRD achieved later during consolidation. SCT benefited patients with intermediate-risk AML, regardless of MRD kinetics.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sa A. Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval G. Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cedric Nasnas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samuel Urrutia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Omer S. Karrar
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
5
|
Gang M, Othus M, Walter RB. Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells 2025; 14:290. [PMID: 39996762 PMCID: PMC11853423 DOI: 10.3390/cells14040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains an important curative-intent treatment for many patients with acute myeloid leukemia (AML), but AML recurrence after allografting is common. Many factors associated with relapse after allogeneic HCT have been identified over the years. Central among these is measurable ("minimal") residual disease (MRD) as detected by multiparameter flow cytometry, quantitative polymerase chain reaction, and/or next-generation sequencing. Demonstration of a strong, independent prognostic role of pre- and early post-HCT MRD has raised hopes MRD could also serve as a predictive biomarker to inform treatment decision-making, with emerging data indicating the potential value to guide candidacy assessment for allografting as a post-remission treatment strategy, the selection of conditioning intensity, use of small molecule inhibitors as post-HCT maintenance therapy, and preemptive infusion of donor lymphocytes. Monitoring for leukemia recurrence after HCT and surrogacy for treatment response are other considerations for the clinical use of MRD data. In this review, we will outline the current landscape of MRD as a biomarker for patients with AML undergoing HCT and discuss areas of uncertainty and ongoing research.
Collapse
Affiliation(s)
- Margery Gang
- Hematology and Oncology Fellowship Program, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA;
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Blackmon A, Afkhami M, Yang D, Mokhtari S, Samara Y, Pourhassan H, Ball B, Salhotra A, Agrawal V, Sandhu K, Desai A, Otoukesh S, Arslan S, Amanam I, Koller P, Tinajero J, Aribi A, Aldoss I, Becker P, Artz A, Ali H, Stein A, Smith E, Pullarkat V, Forman SJ, Marcucci G, Nakamura R, Al Malki MM. Fludarabine melphalan reduced intensity conditioning vs radiation-based myeloablative conditioning in patients undergoing allogeneic transplantation for acute myeloid leukemia with measurable residual disease. Bone Marrow Transplant 2025; 60:165-174. [PMID: 39695333 PMCID: PMC11810767 DOI: 10.1038/s41409-024-02491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Patients with AML and measurable residual disease (MRD) undergoing allogeneic hematopoietic cell transplantation (HCT) may benefit from myeloablative conditioning (MAC) when feasible to reduce relapse risk. Fludarabine-Melphalan (FluMel) is a common reduced intensity conditioning (RIC) regimen; however, data in MRD+ patients is sparse. We performed a retrospective review of AML patients who underwent their first HCT (2016-2021) without morphologic disease at City of Hope who had pre-transplant marrow evaluated for MRD using multicolor flow cytometry (MFC) and received radiation-based MAC or FluMel conditioning. We identified 312 patients; 44 with MRD+ disease pre-HCT. The 24-month overall survival (OS), leukemia-free survival (LFS) and cumulative incidence of relapse (CIR) were 47.7%, 40.9%, and 38.6% in MRD+, and 78.0%, 73.9%, and 14.6% in MRD- patients. Radiation-based MAC was given to 136 (43.5%) patients (n = 20 with MRD+) and FluMel was given to 174 (55.8%) patients (n = 24 with MRD+). In patients with MRD+, there was no statistically significant difference between those who received MAC vs. FluMel in 24-month OS (60% vs. 38%, p = 0.21), or CIR (35% vs. 42%, p = 0.59), respectively. Our data substantiates the adverse impact of MRD in patients with AML undergoing HCT; FluMel is a reasonable option for MRD+ patients unfit for MAC.
Collapse
Affiliation(s)
- Amanda Blackmon
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| | - Michelle Afkhami
- : Department of Pathology City of Hope National Medical Center, Duarte, CA, USA
| | - Dongyun Yang
- : Department of Computational and Quantitative Medicine, Beckman Research, Institute of City of Hope, Duarte, CA, USA
| | - Sally Mokhtari
- : Department of Clinical and Translational Project Development, City of Hope National Medical Center, Duarte, CA, USA
| | - Yazeed Samara
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Hoda Pourhassan
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Brian Ball
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Amandeep Salhotra
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vaibhav Agrawal
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Amrita Desai
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Salman Otoukesh
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Shukaib Arslan
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Idoroenyi Amanam
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Koller
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jose Tinajero
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ahmed Aribi
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Pamela Becker
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Andy Artz
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Haris Ali
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Anthony Stein
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Eileen Smith
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vinod Pullarkat
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Monzr M Al Malki
- : Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
7
|
Zhao Z, Lan J. Detection methods and prognosis implications of measurable residual disease in acute myeloid leukemia. Ann Hematol 2024; 103:4869-4881. [PMID: 39283479 DOI: 10.1007/s00277-024-06008-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/11/2024] [Indexed: 01/16/2025]
Abstract
Measurable residual disease (MRD) in acute myeloid leukemia (AML) refers to the quantity of residual leukemic cells in a patient after treatment.According to the latest agreements, MRD in AML offering essential prognostic insights. However, there is ongoing debate regarding MRD-based monitoring and treatment strategies. There are multiple platforms for detecting MRD, each varying in sensitivity and suitability for different patients. MRD not only predicts treatment outcomes but also serves as an indicator of treatment effectiveness and a prognostic biomarker. In AML, most retrospective studies indicate that patients who are MRD-positive or show increasing MRD levels at specific time points during remission have significantly higher risks of relapse and mortality compared to MRD-negative patients. Although achieving MRD-negative status can improve patient prognosis, the possibility of relapse remains. Despite the correlation between MRD and clinical outcomes, MRD assessment methods are not yet standardized, leading to discrepancies in results across different techniques. To provide reliable MRD results, it is essential to optimize and standardize MRD detection methods. Methods for assessing MRD include multiparameter flow cytometry (MFC) and molecular assays, chosen based on disease characteristics. This review focuses on currently available MRD detection methods and discusses how the prognostic value of MRD test results informs personalized treatment strategies for AML patients.
Collapse
Affiliation(s)
- Zihan Zhao
- The Second Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianping Lan
- Cancer Center, Department of Hematology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, Hangzhou, 310014, China.
| |
Collapse
|
8
|
Shen Q, Gong X, Feng Y, Hu Y, Wang T, Yan W, Zhang W, Qi S, Gale RP, Chen J. Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways? Blood Rev 2024; 68:101226. [PMID: 39164126 DOI: 10.1016/j.blre.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Measurable residual disease (MRD)-testing is used in many haematological cancers to estimate relapse risk and to direct therapy. Sometimes MRD-test results are used for regulatory approval. However, some people including regulators wrongfully believe results of MRD-testing are highly accurate and of proven efficacy in directing therapy. We review MRD-testing technologies and evaluate the accuracy of MRD-testing for predicting relapse and the strength of evidence supporting efficacy of MRD-guided therapy. We show that at the individual level MRD-test results are often an inaccurate relapse predictor. Also, no convincing data indicate that increasing therapy-intensity based on a positive MRD-test reduces relapse risk or improves survival. We caution against adjusting therapy-intensity based solely on results of MRD-testing.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
9
|
Revoltar M, van der Linde R, Cromer D, Gatt PN, Smith S, Fernandez MA, Vaughan L, Blyth E, Curnow J, Tegg E, Brown DA, Sasson SC. Indeterminate measurable residual disease by multiparameter flow cytometry is associated with an intermediate risk of clinical relapse in adult patients with acute leukaemia. Pathology 2024; 56:882-888. [PMID: 39025727 DOI: 10.1016/j.pathol.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 07/20/2024]
Abstract
Measurable residual disease (MRD) is useful for prognostication and for monitoring response to treatment in patients with acute leukaemia. MRD by multiparametric flow cytometry (MFC-MRD) utilises the leukaemia-associated immunophenotype (LAIP) and difference from normal (DfN) strategies to identify the leukaemic clone. Difficulties arise when the LAIP overlaps with normal regeneration, there is clonal evolution, or when the abnormal clone population is exceptionally small e.g., <0.01% of CD45+ cells. Such cases are reported as 'indeterminate'; however, there is little international consensus on this reporting. The relationship between clinical outcomes and indeterminate MFC-MRD is unknown. Here we determine the rate of indeterminate MFC-MRD reporting, its relationship to concurrent molecular MRD results when available, and to clinical outcomes to 12 months. We performed an internal audit of all adult testing for MFC-MRD between January and December 2021. A total of 153 consecutive patients with a diagnosis of acute leukaemia were included. Successive MFC-MRD results and clinical outcomes were recorded over a 12-month period from time of inclusion into the study. In total, 460 MFC-MRD tests from 153 patients were reviewed and 73 (16%) MFC-MRD tests from 54 (35%) patients were reported as indeterminate. The majority (70%) were at low levels between 0.01-0.1% of CD45+ cells. Compared to patients with a negative result, acute myeloid leukaemia (AML) was more frequent in patients who had an indeterminate MFC-MRD (70% vs 36%), and B-cell acute lymphoblastic leukaemia was less common (20% vs 55%). In patients with indeterminate MFC-MRD results, one-third had received either chemotherapy or allogeneic haemopoietic stem cell transplant (aHSCT) within the preceding 3 months. Agreement between MFC and molecular MRD testing was low. Patients with indeterminate MFC-MRD had leukaemia relapse rates below patients with a positive MFC-MRD, but greater than those with negative MFC-MRD (positive 33% vs indeterminate 21% vs negative 8%, p = 0.038). Overall, these findings indicate that indeterminate MFC-MRD results are more common in adults with AML and also in those who have received chemotherapy or aHSCT within the previous 3 months. We report for the first time that indeterminate MFC-MRD is a finding of potential clinical significance, which associates with a numerically higher median relapse rate within 12 months when compared to a negative MFC-MRD result.
Collapse
Affiliation(s)
- Maxine Revoltar
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia.
| | - Riana van der Linde
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Deborah Cromer
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Prudence N Gatt
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Sandy Smith
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Marian A Fernandez
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Lachlin Vaughan
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Emily Blyth
- Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Curnow
- Department of Clinical Haematology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth Tegg
- Department of Laboratory Haematology, ICPMR, Westmead Hospital, NSW Health Pathology, Westmead, NSW, Australia; Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - David A Brown
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Westmead Institute for Medical Research, Westmead, NSW, Australia; Department of Clinical Immunology, Westmead Hospital, Westmead, NSW, Australia
| | - Sarah C Sasson
- Flow Cytometry Unit, ICPMR, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Rodríguez-Arbolí E, Othus M, Freeman SD, Buccisano F, Ngai LL, Thomas I, Palmieri R, Cloos J, Johnson S, Meddi E, Russell NH, Venditti A, Gradowska P, Ossenkoppele GJ, Löwenberg B, Walter RB. Optimal prognostic threshold for measurable residual disease positivity by multiparameter flow cytometry in acute myeloid leukemia (AML). Leukemia 2024; 38:2266-2269. [PMID: 39169114 PMCID: PMC11438566 DOI: 10.1038/s41375-024-02378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Eduardo Rodríguez-Arbolí
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC), University of Seville, Seville, Spain
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ian Thomas
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sean Johnson
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Elisa Meddi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Hartzell CM, Shaver AC, Mason EF. Flow Cytometric Assessment of Malignant Hematologic Disorders. Clin Lab Med 2024; 44:465-477. [PMID: 39089752 DOI: 10.1016/j.cll.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multiparameter flow cytometry (MPF) is an essential component of the diagnostic workup of hematologic malignancies. Recently developed tools have expanded the utility of MPF in detecting T-cell clonality and myelomonocytic dysplasia. Minimal/measurable residual disease analysis has long been established as critical in the management of B-lymphoblastic leukemia and is emerging as a useful tool in myeloid malignancies. With the continued increased complexity of MPF assays, emerging tools for data collection and analysis will allow users to take full advantage of MPF in the diagnosis of hematologic disease.
Collapse
Affiliation(s)
- Connor M Hartzell
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA
| | - Aaron C Shaver
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA
| | - Emily F Mason
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 445 Great Circle Road, Nashville, TN 37228, USA.
| |
Collapse
|
12
|
Suri S, Boora GS, Kaur R, Chauhan A, Ghoshal S, Pal A. Recent advances in minimally invasive biomarkers of OSCC: from generalized to personalized approach. FRONTIERS IN ORAL HEALTH 2024; 5:1426507. [PMID: 39157206 PMCID: PMC11327221 DOI: 10.3389/froh.2024.1426507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Oral cancer is the 6th most common type of cancer worldwide, and oral squamous cell carcinoma (OSCC) accounts for >90% of oral cancers. It is a major health problem, particularly in low- and middle-income countries (LMICs), due to both its high incidence and significant mortality and morbidity. Despite being a global burden, and even with the significant advancement in the management of OSCC, the overall outcome of the disease is still abysmal. With the advent of time, advanced diagnostic and treatment approaches have come into practice, but the burden of the disease has not improved significantly. Major reasons attributed to the poor outcome are delay in diagnosis, locoregional recurrence and resistance to the currently available treatment regimen. In this review, we have highlighted the existing challenges in the diagnosis and have emphasized the advancements in minimally invasive biomarkers. Additionally, the importance of collaborative multidimensional approaches involving clinicians and researchers has been discussed, as well as the need to redefine and establish better utility and management of existing diagnostic and treatment protocols along with the minimally invasive/non-invasive biomarkers.
Collapse
Affiliation(s)
- Smriti Suri
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Geeta S. Boora
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Rajandeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Anshika Chauhan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| |
Collapse
|
13
|
McCarthy N, Gui G, Dumezy F, Roumier C, Andrew G, Green S, Jenkins M, Adams A, Khan N, Craddock C, Hourigan CS, Plesa A, Freeman S. Pre-emptive detection and evolution of relapse in acute myeloid leukemia by flow cytometric measurable residual disease surveillance. Leukemia 2024; 38:1667-1673. [PMID: 38890448 PMCID: PMC11286513 DOI: 10.1038/s41375-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Measurable residual disease (MRD) surveillance in acute myeloid leukemia (AML) may identify patients destined for relapse and thus provide the option of pre-emptive therapy to improve their outcome. Whilst flow cytometric MRD (Flow-MRD) can be applied to high-risk AML/ myelodysplasia patients, its diagnostic performance for detecting impending relapse is unknown. We evaluated this in a cohort comprising 136 true positives (bone marrows preceding relapse by a median of 2.45 months) and 155 true negatives (bone marrows during sustained remission). At an optimal Flow-MRD threshold of 0.040%, clinical sensitivity and specificity for relapse was 74% and 87% respectively (51% and 98% for Flow-MRD ≥ 0.1%) by 'different-from-normal' analysis. Median relapse kinetics were 0.78 log10/month but significantly higher at 0.92 log10/month for FLT3-mutated AML. Computational (unsupervised) Flow-MRD (C-Flow-MRD) generated optimal MRD thresholds of 0.036% and 0.082% with equivalent clinical sensitivity to standard analysis. C-Flow-MRD-identified aberrancies in HLADRlow or CD34+CD38low (LSC-type) subpopulations contributed the greatest clinical accuracy (56% sensitivity, 90% specificity) and notably, by longitudinal profiling expanded rapidly within blasts in > 40% of 86 paired MRD and relapse samples. In conclusion, flow MRD surveillance can detect MRD relapse in high risk AML and its evaluation may be enhanced by computational analysis.
Collapse
MESH Headings
- Humans
- Neoplasm, Residual/diagnosis
- Flow Cytometry/methods
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Middle Aged
- Male
- Female
- Aged
- Adult
- Recurrence
- Aged, 80 and over
- Young Adult
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/diagnosis
- Prognosis
- Immunophenotyping/methods
Collapse
Affiliation(s)
- Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Gege Gui
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Florent Dumezy
- Laboratory of Hematology, Lille University Hospital, Lille, France
| | | | - Georgia Andrew
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Green
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Plesa
- Lyon University Hospital, CHU-HCL, Lyon Sud, Pierre Benite, France
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Ikoma-Colturato MRV, Severino AR, Dos Santos Tosi JF, Bertolucci CM, Cuoco YMN, de Mattos ER, Colturato I, Silva FBR, de Souza MP, Simione AJ, Colturato VAR. Clinical validation of a 10-color flow cytometry panel to detect measurable residual disease in acute myeloid leukemia. Leuk Res 2024; 140:107482. [PMID: 38552548 DOI: 10.1016/j.leukres.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 05/06/2024]
Affiliation(s)
| | | | | | | | | | | | - Iago Colturato
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | | | - Mair Pedro de Souza
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | - Anderson João Simione
- Bone Marrow Transplantation Service, Hospital Amaral Carvalho - Jau - São Paulo, Brazil
| | | |
Collapse
|
15
|
Ahmed S, Elsherif M, Yassin D, Elsharkawy N, Mohamed AS, Yasser N, Elnashar A, Hafez H, Kolb EA, Elhaddad A. Integration of measurable residual disease by WT1 gene expression and flow cytometry identifies pediatric patients with high risk of relapse in acute myeloid leukemia. Front Oncol 2024; 14:1340909. [PMID: 38720804 PMCID: PMC11077298 DOI: 10.3389/fonc.2024.1340909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Background Molecular testing plays a pivotal role in monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML), aiding in the refinement of risk stratification and treatment guidance. Wilms tumor gene 1 (WT1) is frequently upregulated in pediatric AML and serves as a potential molecular marker for MRD. This study aimed to evaluate WT1 predictive value as an MRD marker and its impact on disease prognosis. Methods Quantification of WT1 expression levels was analyzed using the standardized European Leukemia Network real-time quantitative polymerase chain reaction assay (qRT-PCR) among a cohort of 146 pediatric AML patients. Post-induction I and intensification I, MRD response by WT1 was assessed. Patients achieving a ≥2 log reduction in WT1MRD were categorized as good responders, while those failing to reach this threshold were classified as poor responders. Results At diagnosis, WT1 overexpression was observed in 112 out of 146 (76.7%) patients. Significantly high levels were found in patients with M4- FAB subtype (p=0.018) and core binding fusion transcript (CBF) (RUNX1::RUNX1T1, p=0.018, CBFB::MYH11, p=0.016). Following induction treatment, good responders exhibited a reduced risk of relapse (2-year cumulative incidence of relapse [CIR] 7.9% vs 33.2%, p=0.008). Conversely, poor responders' post-intensification I showed significantly lower overall survival (OS) (51% vs 93.2%, p<0.001), event-free survival (EFS) (33.3% vs 82.6%, p<0.001), and higher CIR (66.6% vs 10.6%, p<0.001) at 24 months compared to good responders. Even after adjusting for potential confounders, it remained an independent adverse prognostic factor for OS (p=0.04) and EFS (p=0.008). High concordance rates between WT1-based MRD response and molecular MRD were observed in CBF patients. Furthermore, failure to achieve either a 3-log reduction by RT-PCR or a 2-log reduction by WT1 indicated a high risk of relapse. Combining MFC-based and WT1-based MRD results among the intermediate-risk group identified patients with unfavorable prognosis (positive predictive value [PPV] 100%, negative predictive value [NPV] 85%, and accuracy 87.5%). Conclusion WT1MRD response post-intensification I serves as an independent prognostic factor for survival in pediatric AML. Integration of WT1 and MFC-based MRD results enhances the reliability of MRD-based prognostic stratification, particularly in patients lacking specific leukemic markers, thereby influencing treatment strategies.
Collapse
Affiliation(s)
- Sonia Ahmed
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Mariam Elsherif
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Dina Yassin
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nahla Elsharkawy
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman S. Mohamed
- Department of Clinical Pathology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Nouran Yasser
- Department of Research and Biostatistics, Children’s Cancer Hospital (CCHE-57357), Cairo, Egypt
| | - Amr Elnashar
- Department of Research and Biostatistics, Children’s Cancer Hospital (CCHE-57357), Cairo, Egypt
| | - Hanafy Hafez
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Edward A. Kolb
- Department of Pediatric Hematology and Oncology, Nemours Center for Cancer and Blood Disorders, Wilmington, DE, United States
- Leukemia and Lymphoma Society, Rye Brook, NY, United States
| | - Alaa Elhaddad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children’s Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| |
Collapse
|
16
|
Fokken H, Waclawski J, Kattre N, Kloos A, Müller S, Ettinger M, Kacprowski T, Heuser M, Maetzig T, Schwarzer A. A 19-color single-tube full spectrum flow cytometry assay for the detection of measurable residual disease in acute myeloid leukemia. Cytometry A 2024; 105:181-195. [PMID: 37984809 DOI: 10.1002/cyto.a.24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia. However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional FlowMRD routines.
Collapse
Affiliation(s)
- Hendrik Fokken
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julian Waclawski
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nadine Kattre
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Kloos
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sebastian Müller
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Max Ettinger
- Department of Orthopedic Surgery, Hannover Medical School, Hannover, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Tobias Maetzig
- Department of Pediatric Hematology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Adrian Schwarzer
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- CCC-MV and Department of Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Tettero JM, Heidinga ME, Mocking TR, Fransen G, Kelder A, Scholten WJ, Snel AN, Ngai LL, Bachas C, van de Loosdrecht AA, Ossenkoppele GJ, de Leeuw DC, Cloos J, Janssen JJWM. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia 2024; 38:630-639. [PMID: 38272991 PMCID: PMC10912027 DOI: 10.1038/s41375-024-02158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Measurable residual disease (MRD) measured in the bone marrow (BM) of acute myeloid leukemia (AML) patients after induction chemotherapy is an established prognostic factor. Hemodilution, stemming from peripheral blood (PB) mixing within BM during aspiration, can yield false-negative MRD results. We prospectively examined hemodilution by measuring MRD in BM aspirates obtained from three consecutive 2 mL pulls, along with PB samples. Our results demonstrated a significant decrease in MRD percentages between the first and second pulls (P = 0.025) and between the second and third pulls (P = 0.025), highlighting the impact of hemodilution. Initially, 39% of MRD levels (18/46 leukemia-associated immunophenotypes) exceeded the 0.1% cut-off, decreasing to 30% (14/46) in the third pull. Additionally, we assessed the performance of six published methods and parameters for distinguishing BM from PB samples, addressing or compensating for hemodilution. The most promising results relied on the percentages of CD16dim granulocytic population (scarce in BM) and CD117high mast cells (exclusive to BM). Our findings highlight the importance of estimating hemodilution in MRD assessment to qualify MRD results, particularly near the common 0.1% cut-off. To avoid false-negative results by hemodilution, it is essential to collect high-quality BM aspirations and preferably utilizing the initial pull for MRD testing.
Collapse
Affiliation(s)
- Jesse M Tettero
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike E Heidinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tim R Mocking
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Glenn Fransen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Alexander N Snel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - David C de Leeuw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Chea M, Rigolot L, Canali A, Vergez F. Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts. Int J Mol Sci 2024; 25:2150. [PMID: 38396825 PMCID: PMC10889505 DOI: 10.3390/ijms25042150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients.
Collapse
Affiliation(s)
- Mathias Chea
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
| | - Lucie Rigolot
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Alban Canali
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Francois Vergez
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
19
|
Dillon LW, Higgins J, Nasif H, Othus M, Beppu L, Smith TH, Schmidt E, Valentine Iii CC, Salk JJ, Wood BL, Erba HP, Radich JP, Hourigan CS. Quantification of measurable residual disease using duplex sequencing in adults with acute myeloid leukemia. Haematologica 2024; 109:401-410. [PMID: 37534515 PMCID: PMC10828764 DOI: 10.3324/haematol.2023.283520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials and discrepancies have been observed between different techniques for MRD assessment. In 62 patients with AML, aged 18-60 years, in first complete remission after intensive induction therapy on the randomized phase III SWOG-S0106 clinical trial (clinicaltrials gov. Identifier: NCT00085709), MRD detection by centralized, high-quality multiparametric flow cytometry was compared with a 29-gene panel utilizing duplex sequencing (DS), an ultrasensitive next-generation sequencing method that generates double-stranded consensus sequences to reduce false positive errors. MRD as defined by DS was observed in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs. 13%; hazard ratio [HR] =8.8; 95% confidence interval [CI]: 3.2-24.5; P<0.001) and decreased survival (32% vs. 82%; HR=5.6; 95% CI: 2.3-13.8; P<0.001) at 5 years. DS MRD strongly outperformed multiparametric flow cytometry MRD, which was observed in ten (16%) patients and marginally associated with higher rates of relapse (50% vs. 30%; HR=2.4; 95% CI: 0.9-6.7; P=0.087) and decreased survival (40% vs. 68%; HR=2.5; 95% CI: 1.0-6.3; P=0.059) at 5 years. Furthermore, the prognostic significance of DS MRD status at the time of remission for subsequent relapse was similar on both randomized arms of the trial. These findings suggest that next-generation sequencing-based AML MRD testing is a powerful tool that could be developed for use in patient management and for early anti-leukemic treatment assessment in clinical trials.
Collapse
Affiliation(s)
- Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Hassan Nasif
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | | | - Brent L Wood
- Dept. of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | | | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
20
|
Mannelli F, Piccini M, Bencini S, Gianfaldoni G, Peruzzi B, Caporale R, Scappini B, Fasano L, Quinti E, Ciolli G, Pasquini A, Crupi F, Pilerci S, Pancani F, Signori L, Tarantino D, Maccari C, Paradiso V, Annunziato F, Guglielmelli P, Vannucchi AM. Effect of age and treatment on predictive value of measurable residual disease: implications for clinical management of adult patients with acute myeloid leukemia. Haematologica 2024; 109:60-71. [PMID: 37345475 PMCID: PMC10772533 DOI: 10.3324/haematol.2023.283196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Measurable residual disease (MRD) is a powerful predictor of outcome in acute myeloid leukemia. In the early phases of treatment, MRD refines initial disease risk stratification and is used for the allocation to allogeneic transplant. Despite its well-established role, a relatively high fraction of patients eventually relapses albeit achieving MRDneg status. The aim of this work was to assess specifically the influence of baseline features and treatment intensity on the predictive value of an MRDneg status, particularly focusing on MRD2, measured after two consecutive chemotherapy cycles. Among baseline features, younger MRD2neg patients (<55 years) had a significantly longer disease-free survival (median not reached) compared to their older counterparts (median 25.0 months, P=0.013, hazard ratio=2.08). Treatment intensity, specifically the delivery of a high dose of cytarabine in induction or first consolidation, apparently had a pejorative effect on the outcome of MRD2neg patients compared to standard dose (P=0.048, hazard ratio=1.80), a finding also confirmed by the analysis of data extracted from the literature. The combination of age and treatment intensity allowed us to identify categories of patients, among those who reached a MRD2neg status, characterized by significantly different disease-free survival rate. Our data showed that variables such as age and intensity of treatment administered can influence the predictive value of MRD in patients with acute myeloid leukemia. In addition to underscoring the need for further improvement of MRD analysis, these findings call for a reasoned application of MRD data, as currently available, to modulate consolidation therapy on adequately estimated relapse rates.
Collapse
Affiliation(s)
- Francesco Mannelli
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze.
| | - Matteo Piccini
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze
| | - Sara Bencini
- Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Firenze
| | | | - Benedetta Peruzzi
- Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Firenze
| | - Roberto Caporale
- Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Firenze
| | | | - Laura Fasano
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze
| | - Elisa Quinti
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze
| | - Gaia Ciolli
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze
| | | | | | - Sofia Pilerci
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze
| | - Fabiana Pancani
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| | - Leonardo Signori
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| | - Danilo Tarantino
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| | - Chiara Maccari
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| | | | | | - Paola Guglielmelli
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| | - Alessandro M Vannucchi
- SOD Ematologia, Università di Firenze, AOU Careggi, Firenze, Italy; Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, Firenze
| |
Collapse
|
21
|
Walter RB. Perspective on measurable residual disease testing in acute myeloid leukemia. Leukemia 2024; 38:10-13. [PMID: 37973819 DOI: 10.1038/s41375-023-02084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Cloos J. Understanding differential technologies for detection of MRD and how to incorporate into clinical practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:682-690. [PMID: 38066915 PMCID: PMC10727023 DOI: 10.1182/hematology.2023000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Patient- and leukemia-specific factors assessed at diagnosis classify patients with acute myeloid leukemia (AML) in risk categories that are prognostic for outcome. The induction phase with intensive chemotherapy in fit patients aims to reach a complete remission (CR) of less than 5% blasts in bone marrow by morphology. To deepen and sustain the response, induction is followed by consolidation treatment. This postremission treatment of patients with AML is graduated in intensity based on this favorable, intermediate, or adverse risk group classification as defined in the European Leukemia Network (ELN) 2022 recommendations. The increment of evidence that measurable residual disease (MRD) after induction can be superimposed on risk group at diagnosis is instrumental in tailoring further treatment accordingly. Several techniques are applied to detect MRD such as multiparameter flow cytometry (MFC), quantitative (digital) polymerase chain reaction (PCR), and next-generation sequencing. The clinical implementation of MRD and the technique used differ among institutes, leading to the accumulation of a wide range of data, and therefore harmonization is warranted. Currently, evidence for MRD guidance is limited to the time point after induction using MFC or quantitative PCR for NPM1 and core binding factor abnormalities in intermediate-risk patients. The role of MRD in targeted or nonintensive therapies needs to be clarified, although some data show improved survival in patients achieving CR-MRD negativity. Potential application of MRD for selection of conditioning before stem cell transplantation, monitoring after consolidation, and use as an intermediate end point in clinical trials need further evaluation.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Ravandi F, Cloos J, Buccisano F, Dillon R, Döhner K, Freeman SD, Hourigan CS, Ossenkoppele GJ, Roboz GJ, Subklewe M, Thiede C, Arnhardt I, Valk PJM, Venditti A, Wei AH, Walter RB, Heuser M. Measurable residual disease monitoring in patients with acute myeloid leukemia treated with lower-intensity therapy: Roadmap from an ELN-DAVID expert panel. Am J Hematol 2023; 98:1847-1855. [PMID: 37671649 PMCID: PMC10841357 DOI: 10.1002/ajh.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
With the availability of effective targeted agents, significant changes have occurred in the management of patients with acute myeloid leukemia (AML) over the past several years, particularly for those considered unfit for intensive chemotherapy. While testing for measurable residual disease (MRD) is now routinely performed in patients treated with intensive chemotherapy to refine prognosis and, possibly, inform treatment decision-making, its value in the context of lower-intensity regimens is unclear. As such regimens have gained in popularity and can be associated with higher response rates, the need to better define the role of MRD assessment and the appropriate time points and assays used for this purpose has increased. This report outlines a roadmap for MRD testing in patients with AML treated with lower-intensity regimens. Experts from the European LeukemiaNet (ELN)-DAVID AML MRD working group reviewed all available data to propose a framework for MRD testing in future trials and clinical practice. A Delphi poll served to optimize consensus. Establishment of uniform standards for MRD assessments in lower-intensity regimens used in treating patients with AML is clinically relevant and important for optimizing testing and, ultimately, improving treatment outcomes of these patients.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King’s College, London, United Kingdom
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancy, Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda
| | - Gerrit J Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Isabell Arnhardt
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, Italy
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne and Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Nachmias B, Krichevsky S, Gatt ME, Gross Even-Zohar N, Shaulov A, Haran A, Aumann S, Vainstein V. Standardization of Molecular MRD Levels in AML Using an Integral Vector Bearing ABL and the Mutation of Interest. Cancers (Basel) 2023; 15:5360. [PMID: 38001621 PMCID: PMC10670136 DOI: 10.3390/cancers15225360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Quantitative PCR for specific mutation is being increasingly used in Acute Myeloid Leukemia (AML) to assess Measurable Residual Disease (MRD), allowing for more tailored clinical decisions. To date, standardized molecular MRD is limited to typical NPM1 mutations and core binding factor translocations, with clear prognostic and clinical implications. The monitoring of other identified mutations lacks standardization, limiting its use and incorporation in clinical trials. To overcome this problem, we designed a plasmid bearing both the sequence of the mutation of interest and the ABL reference gene. This allows the use of commercial standards for ABL to determine the MRD response in copy number. We provide technical aspects of this approach as well as our experience with 19 patients with atypical NPM1, RUNX1 and IDH1/2 mutations. In all cases, we demonstrate a correlation between response and copy number. We further demonstrate how copy number monitoring can modulate the clinical management. Taken together, we provide proof of concept of a novel yet simple tool, which allows in-house MRD monitoring for identified mutations, with ABL-based commercial standards. This approach would facilitate large multi-center studies assessing the clinical relevance of selected MRD monitoring.
Collapse
|
25
|
Tettero JM, Dakappagari N, Heidinga ME, Oussoren-Brockhoff Y, Hanekamp D, Pahuja A, Burns K, Kaur P, Alfonso Z, van der Velden VHJ, Te Marvelde JG, Hobo W, Slomp J, Bachas C, Kelder A, Nguyen K, Cloos J. Analytical assay validation for acute myeloid leukemia measurable residual disease assessment by multiparametric flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:426-439. [PMID: 37766649 DOI: 10.1002/cyto.b.22144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Measurable residual disease (MRD) assessed by multiparametric flow cytometry (MFC) has gained importance in clinical decision-making for acute myeloid leukemia (AML) patients. However, complying with the recent In Vitro Diagnostic Regulations (IVDR) in Europe and Food and Drug Administration (FDA) guidance in the United States requires rigorous validation prior to their use in investigational clinical trials and diagnostics. Validating AML MRD-MFC assays poses challenges due to the unique underlying disease biology and paucity of patient specimens. In this study, we describe an experimental framework for validation that meets regulatory expectations. METHODS Our validation efforts focused on evaluating assay accuracy, analytical specificity, analytical and functional sensitivity (limit of blank (LoB), detection (LLoD) and quantitation (LLoQ)), precision, linearity, sample/reagent stability and establishing the assay background frequencies. RESULTS Correlation between different MFC methods was highly significant (r = 0.99 for %blasts and r = 0.93 for %LAIPs). The analysis of LAIP specificity accurately discriminated from negative control cells. The assay demonstrated a LoB of 0.03, LLoD of 0.04, and LLoQ of 0.1%. Precision experiments yielded highly reproducible results (Coefficient of Variation <20%). Stability experiments demonstrated reliable measurement of samples up to 96 h from collection. Furthermore, the reference range of LAIP frequencies in non-AML patients was below 0.1%, ranging from 0.0% to 0.04%. CONCLUSION In this manuscript, we present the validation of an AML MFC-MRD assay using BM/PB patient specimens, adhering to best practices. Our approach is expected to assist other laboratories in expediting their validation activities to fulfill recent health authority guidelines.
Collapse
Affiliation(s)
- Jesse M Tettero
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Maaike E Heidinga
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yvonne Oussoren-Brockhoff
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anil Pahuja
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Kerri Burns
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Pavinder Kaur
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Zeni Alfonso
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | | | - Jeroen G Te Marvelde
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennichjen Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angele Kelder
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kevin Nguyen
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Darwish C, Farina K, Tremblay D. The core concepts of core binding factor acute myeloid leukemia: Current considerations for prognosis and treatment. Blood Rev 2023; 62:101117. [PMID: 37524647 DOI: 10.1016/j.blre.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Core binding factor acute myeloid leukemia (CBF AML), defined by t(8;21) or inv(16), is a subset of favorable risk AML. Despite its association with a high complete remission rate after induction and relatively good prognosis overall compared with other subtypes of AML, relapse risk after induction chemotherapy remains high. Optimizing treatment planning to promote recurrence free survival and increase the likelihood of survival after relapse is imperative to improving outcomes. Recent areas of research have included evaluation of the role of gemtuzumab in induction and consolidation, the relative benefit of increased cycles of high dose cytarabine in consolidation, the utility of hypomethylating agents and kinase inhibitors, and the most appropriate timing of stem cell transplant. Surveillance with measurable residual disease testing is increasingly being utilized for monitoring disease in remission, and ongoing investigation seeks to determine how to use this tool for early identification of patients who would benefit from proceeding to transplant. In this review, we outline the current therapeutic approach from diagnosis to relapse while highlighting the active areas of investigation in each stage of treatment.
Collapse
Affiliation(s)
- Christina Darwish
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA
| | - Kyle Farina
- Department of Pharmacy Practice, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
27
|
Lucas F, Hergott CB. Advances in Acute Myeloid Leukemia Classification, Prognostication and Monitoring by Flow Cytometry. Clin Lab Med 2023; 43:377-398. [PMID: 37481318 DOI: 10.1016/j.cll.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Although final classification of acute myeloid leukemia (AML) integrates morphologic, cytogenetic, and molecular data, flow cytometry remains an essential component of modern AML diagnostics. Here, we review the current role of flow cytometry in the classification, prognostication, and monitoring of AML. We cover immunophenotypic features of key genetically defined AML subtypes and their effects on biological and clinical behaviors, review clinically tractable strategies to differentiate leukemias with ambiguous immunophenotypes more accurately and discuss key principles of standardization for measurable residual disease monitoring. These advances underscore flow cytometry's continued growth as a powerful diagnostic, management, and discovery tool.
Collapse
Affiliation(s)
- Fabienne Lucas
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Schulz E, Aplan PD, Freeman SD, Pavletic SZ. Moving toward a conceptualization of measurable residual disease in myelodysplastic syndromes. Blood Adv 2023; 7:4381-4394. [PMID: 37267435 PMCID: PMC10432617 DOI: 10.1182/bloodadvances.2023010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Approximately 90% of patients with myelodysplastic syndromes (MDSs) have somatic mutations that are known or suspected to be oncogenic in the malignant cells. The genetic risk stratification of MDSs has evolved substantially with the introduction of the clinical molecular international prognostic scoring system, which establishes next-generation sequencing at diagnosis as a standard of care. Furthermore, the International Consensus Classification of myeloid neoplasms and acute leukemias has refined the MDS diagnostic criteria with the introduction of a new MDS/acute myeloid leukemia category. Monitoring measurable residual disease (MRD) has historically been used to define remission status, improve relapse prediction, and determine the efficacy of antileukemic drugs in patients with acute and chronic leukemias. However, in contrast to leukemias, assessment of MRD, including tracking of patient-specific mutations, has not yet been formally defined as a biomarker for MDS. This article summarizes current evidence and challenges and provides a conceptual framework for incorporating MRD into the treatment of MDS and future clinical trials.
Collapse
Affiliation(s)
- Eduard Schulz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Sylvie D. Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
El Chaer F, Hourigan CS, Zeidan AM. How I treat AML incorporating the updated classifications and guidelines. Blood 2023; 141:2813-2823. [PMID: 36758209 PMCID: PMC10447497 DOI: 10.1182/blood.2022017808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The European LeukemiaNet recently revised both the clinical (2022) and measurable residual disease testing (2021) guidelines for acute myeloid leukemia (AML). The updated World Health Organization and International Consensus Classification for myeloid neoplasms were also published in 2022. Together, these documents update the classification, risk stratification, prognostication, monitoring recommendations, and response assessment of patients with AML. Increased appreciation of the genetic drivers of AML over the past decade and our increasingly sophisticated understanding of AML biology have been translated into novel therapies and more complex clinical treatment guidelines. Somatic genetic abnormalities and germ line predispositions now define and guide treatment and counseling for the subtypes of this hematologic malignancy. In this How I Treat article, we discuss how we approach AML in daily clinical practice, considering the recent updates in the context of new treatments and discoveries over the past decade.
Collapse
Affiliation(s)
- Firas El Chaer
- Division of Hematology and Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Comprehensive Cancer Center, Yale University, New Haven, CT
| |
Collapse
|
30
|
Wong ZC, Dillon LW, Hourigan CS. Measurable residual disease in patients undergoing allogeneic transplant for acute myeloid leukemia. Best Pract Res Clin Haematol 2023; 36:101468. [PMID: 37353292 PMCID: PMC10291441 DOI: 10.1016/j.beha.2023.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/25/2023]
Abstract
The most common indication for allogeneic hematopoietic cell transplant (alloHCT) is maintenance of remission after initial treatment for patients with acute myeloid leukemia (AML). Loss of remission, relapse, remains however the most frequent cause of alloHCT failure. There is strong evidence that detectable persistent disease burden ("measurable residual disease", MRD) in patients with AML in remission prior to alloHCT is associated with increased risk of post-transplant relapse. MRD status as a summative assessment of response to pre-transplant therapy may allow superior patient-personalized risk stratification compared with models solely incorporating pre-treatment variables. An optimal methodology for AML MRD detection has not yet been established, but molecular methods such as DNA-sequencing may have additional prognostic utility compared to current approaches. There is growing evidence that intervention on AML MRD positivity may improve post-transplant outcomes. New initiatives will generate actionable data on the clinical utility of AML MRD testing for patients undergoing alloHCT.
Collapse
Affiliation(s)
- Zoë C Wong
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M. Novel Tools for Diagnosis and Monitoring of AML. Curr Oncol 2023; 30:5201-5213. [PMID: 37366878 DOI: 10.3390/curroncol30060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, major advances in the understanding of acute myeloid leukemia (AML) pathogenesis, together with technological progress, have led us into a new era in the diagnosis and follow-up of patients with AML. A combination of immunophenotyping, cytogenetic and molecular studies are required for AML diagnosis, including the use of next-generation sequencing (NGS) gene panels to screen all genetic alterations with diagnostic, prognostic and/or therapeutic value. Regarding AML monitoring, multiparametric flow cytometry and quantitative PCR/RT-PCR are currently the most implemented methodologies for measurable residual disease (MRD) evaluation. Given the limitations of these techniques, there is an urgent need to incorporate new tools for MRD monitoring, such as NGS and digital PCR. This review aims to provide an overview of the different technologies used for AML diagnosis and MRD monitoring and to highlight the limitations and challenges of current versus emerging tools.
Collapse
Affiliation(s)
- Francesca Guijarro
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Neus Villamor
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jordi Esteve
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Hematology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
32
|
Dillon LW, Higgins J, Nasif H, Othus M, Beppu L, Smith TH, Schmidt E, Valentine CC, Salk JJ, Wood BL, Erba HP, Radich JP, Hourigan CS. Quantification of measurable residual disease using duplex sequencing in adults with acute myeloid leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287367. [PMID: 37034683 PMCID: PMC10081409 DOI: 10.1101/2023.03.26.23287367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials. Discrepancies have been observed between different techniques for MRD assessment and there remains a need to compare centralized, high-quality multiparametric flow cytometry (MFC) and ultrasensitive next-generation sequencing (NGS) in AML patients with diverse mutational profiles. In 62 patients with AML, aged 18-60, in first complete remission after intensive induction therapy on the randomized phase 3 SWOG-S0106 clinical trial, MRD detection by MFC was compared with a 29 gene panel utilizing duplex sequencing (DS), an NGS method that generates double-stranded consensus sequences to reduce false positive errors. Using DS, detection of a persistent mutation utilizing defined criteria was seen in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs 13% at year 5; HR, 8.8; 95% CI, 3.2-24.5; P<0.001) and decreased survival (32% vs 82% at year 5; HR, 5.6; 95% CI, 2.3-13.8; P<0.001). MRD as defined by DS strongly outperformed MFC, which was observed in 10 (16%) patients and marginally associated with higher rates of relapse (50% vs 30% at year 5; HR, 2.4; 95% CI, 0.9-6.7; P=0.087) and decreased survival (40% vs 68% at year 5; HR, 2.5; 95% CI, 1.0-6.3; P=0.059). Furthermore, the prognostic significance of DS MRD status at the time of remission was similar on both randomized arms of the trial, predicting S0106 clinical trial outcomes. These findings suggest that DS is a powerful tool that could be used in patient management and for early treatment assessment in clinical trials.
Collapse
Affiliation(s)
- Laura W. Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Hassan Nasif
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | | | - Brent L Wood
- Dept. of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
33
|
Burgos L, Tamariz-Amador LE, Puig N, Cedena MT, Guerrero C, Jelínek T, Johnson S, Milani P, Cordon L, Perez JJ, Lasa M, Termini R, Oriol A, Hernandez MT, Palomera L, Martinez-Martinez R, de la Rubia J, de Arriba F, Rios R, Gonzalez ME, Gironella M, Cabañas V, Casanova M, Krsnik I, Perez-Montaña A, González-Calle V, Rodriguez-Otero P, Maisnar V, Hajek R, Van Rhee F, Jimenez-Zepeda V, Palladini G, Merlini G, Orfao A, de la Cruz J, Martinez-Lopez J, Lahuerta JJ, Rosiñol L, Blade J, Mateos MV, San-Miguel JF, Paiva B. Definition and Clinical Significance of the Monoclonal Gammopathy of Undetermined Significance-Like Phenotype in Patients With Monoclonal Gammopathies. J Clin Oncol 2023; 41:3019-3031. [PMID: 36930848 DOI: 10.1200/jco.22.01916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
PURPOSE The existence of patients with multiple myeloma (MM) and light-chain (AL) amyloidosis who present with a monoclonal gammopathy of undetermined significance (MGUS)-like phenotype has been hypothesized, but methods to identify this subgroup are not standardized and its clinical significance is not properly validated. PATIENTS AND METHODS An algorithm to identify patients having MGUS-like phenotype was developed on the basis of the percentages of total bone marrow (BM) plasma cells (PC) and of clonal PC within the BM PC compartment, determined at diagnosis using flow cytometry in 548 patients with MGUS and 2,011 patients with active MM. The clinical significance of the algorithm was tested and validated in 488 patients with smoldering MM, 3,870 patients with active MM and 211 patients with AL amyloidosis. RESULTS Patients with smoldering MM with MGUS-like phenotype showed significantly lower rates of disease progression (4.5% and 0% at 2 years in two independent series). There were no statistically significant differences in time to progression between treatment versus observation in these patients. In active newly diagnosed MM, MGUS-like phenotype retained independent prognostic value in multivariate analyses of progression-free survival (PFS; hazard ratio [HR], 0.49; P = .001) and overall survival (OS; HR, 0.56; P = .039), together with International Staging System, lactate dehydrogenase, cytogenetic risk, transplant eligibility, and complete remission status. Transplant-eligible patients with active MM with MGUS-like phenotype showed PFS and OS rates at 5 years of 79% and 96%, respectively. In this subgroup, there were no differences in PFS and OS according to complete remission and measurable residual disease status. Application of the algorithm in two independent series of patients with AL predicted for different survival. CONCLUSION We developed an open-access algorithm for the identification of MGUS-like patients with distinct clinical outcomes. This phenotypic classification could become part of the diagnostic workup of MM and AL amyloidosis.
Collapse
Affiliation(s)
- Leire Burgos
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Luis-Esteban Tamariz-Amador
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Noemi Puig
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Maria-Teresa Cedena
- Hematology Department, Hospital Universitario 12 de Octubre, CIBERONC, Instituto de Investigación IMAS12, Madrid, Spain
| | - Camila Guerrero
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Tomas Jelínek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Sarah Johnson
- Myeloma Center/Division of Hematology Oncology/Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia and Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Jose J Perez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Marta Lasa
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Rosalinda Termini
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Albert Oriol
- Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Barcelona, Spain
| | | | - Luis Palomera
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | | | - Felipe de Arriba
- Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Rafael Rios
- Hospital Universitario Puerta de Hierro, Hospital, Madrid, Spain
| | | | - Mercedes Gironella
- Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Valentin Cabañas
- Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca. University of Murcia, Murcia, Spain
| | - Maria Casanova
- Hematology Department, Hospital Costa del Sol Marbella, Marbella, Spain
| | - Isabel Krsnik
- Hospital Universitario Puerta de Hierro, Hospital, Madrid, Spain
| | | | - Verónica González-Calle
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Paula Rodriguez-Otero
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Vladimir Maisnar
- 4th Department of Medicine-Haematology, Charles University Hospital, Hradec Králové, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Fritz Van Rhee
- Myeloma Center/Division of Hematology Oncology/Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Victor Jimenez-Zepeda
- Tom Baker Cancer Center, Department of Hematology, University of Calgary, Calgary, AB, Canada
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia and Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia and Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alberto Orfao
- Hospital Universitario de Salamanca (HUSAL), IBSAL, Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service, University of Salamanca, CIBERONC, Salamanca, Spain
| | - Javier de la Cruz
- Hematology Department, Hospital Universitario 12 de Octubre, CIBERONC, Instituto de Investigación IMAS12, Madrid, Spain
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital Universitario 12 de Octubre, CIBERONC, Instituto de Investigación IMAS12, Madrid, Spain
| | - Juan-Jose Lahuerta
- Hematology Department, Hospital Universitario 12 de Octubre, CIBERONC, Instituto de Investigación IMAS12, Madrid, Spain
| | - Laura Rosiñol
- Amyloidosis and Myeloma Unit. Department of Hematology. Hospital Clínic de Barcelona. IDIBAPS., Barcelona, Spain
| | - Joan Blade
- Amyloidosis and Myeloma Unit. Department of Hematology. Hospital Clínic de Barcelona. IDIBAPS., Barcelona, Spain
| | - Maria-Victoria Mateos
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Jesus F San-Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | | |
Collapse
|
34
|
Dillon LW, Gui G, Page KM, Ravindra N, Wong ZC, Andrew G, Mukherjee D, Zeger SL, El Chaer F, Spellman S, Howard A, Chen K, Auletta J, Devine SM, Jimenez Jimenez AM, De Lima MJG, Litzow MR, Kebriaei P, Saber W, Weisdorf DJ, Hourigan CS. DNA Sequencing to Detect Residual Disease in Adults With Acute Myeloid Leukemia Prior to Hematopoietic Cell Transplant. JAMA 2023; 329:745-755. [PMID: 36881031 PMCID: PMC9993183 DOI: 10.1001/jama.2023.1363] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/28/2023] [Indexed: 03/08/2023]
Abstract
Importance Preventing relapse for adults with acute myeloid leukemia (AML) in first remission is the most common indication for allogeneic hematopoietic cell transplant. The presence of AML measurable residual disease (MRD) has been associated with higher relapse rates, but testing is not standardized. Objective To determine whether DNA sequencing to identify residual variants in the blood of adults with AML in first remission before allogeneic hematopoietic cell transplant identifies patients at increased risk of relapse and poorer overall survival compared with those without these DNA variants. Design, Setting, and Participants In this retrospective observational study, DNA sequencing was performed on pretransplant blood from patients aged 18 years or older who had undergone their first allogeneic hematopoietic cell transplant during first remission for AML associated with variants in FLT3, NPM1, IDH1, IDH2, or KIT at 1 of 111 treatment sites from 2013 through 2019. Clinical data were collected, through May 2022, by the Center for International Blood and Marrow Transplant Research. Exposure Centralized DNA sequencing of banked pretransplant remission blood samples. Main Outcomes and Measures The primary outcomes were overall survival and relapse. Day of transplant was considered day 0. Hazard ratios were reported using Cox proportional hazards regression models. Results Of 1075 patients tested, 822 had FLT3 internal tandem duplication (FLT3-ITD) and/or NPM1 mutated AML (median age, 57.1 years, 54% female). Among 371 patients in the discovery cohort, the persistence of NPM1 and/or FLT3-ITD variants in the blood of 64 patients (17.3%) in remission before undergoing transplant was associated with worse outcomes after transplant (2013-2017). Similarly, of the 451 patients in the validation cohort who had undergone transplant in 2018-2019, 78 patients (17.3%) with residual NPM1 and/or FLT3-ITD variants had higher rates of relapse at 3 years (68% vs 21%; difference, 47% [95% CI, 26% to 69%]; HR, 4.32 [95% CI, 2.98 to 6.26]; P < .001) and decreased survival at 3 years (39% vs 63%; difference, -24% [2-sided 95% CI, -39% to -9%]; HR, 2.43 [95% CI, 1.71 to 3.45]; P < .001). Conclusions and Relevance Among patients with acute myeloid leukemia in first remission prior to allogeneic hematopoietic cell transplant, the persistence of FLT3 internal tandem duplication or NPM1 variants in the blood at an allele fraction of 0.01% or higher was associated with increased relapse and worse survival compared with those without these variants. Further study is needed to determine whether routine DNA-sequencing testing for residual variants can improve outcomes for patients with acute myeloid leukemia.
Collapse
MESH Headings
- Female
- Humans
- Male
- Middle Aged
- Hematopoietic Stem Cell Transplantation
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Neoplasm, Residual/blood
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/genetics
- Nuclear Proteins/genetics
- Preoperative Care
- Retrospective Studies
- Sequence Analysis, DNA
- Recurrence
- Survival Analysis
Collapse
Affiliation(s)
- Laura W. Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gege Gui
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kristin M. Page
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- Medical College of Wisconsin, Milwaukee
| | - Niveditha Ravindra
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Zoë C. Wong
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Georgia Andrew
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Devdeep Mukherjee
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Scott L. Zeger
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Karen Chen
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Jeffery Auletta
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- The Ohio State University College of Medicine, Columbus
| | - Steven M. Devine
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | | | | | | | | | - Wael Saber
- Medical College of Wisconsin, Milwaukee
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
- University of Minnesota, Minneapolis
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Singh N, Gupta A, Kumar S, Mawalankar G, Gupta B, Dhole N, Kori R, Singh A. Flow cytometric measurable residual disease in adult acute myeloid leukemia: a preliminary report from Eastern India. J Hematop 2023; 16:17-25. [PMID: 38175369 DOI: 10.1007/s12308-022-00527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Presence of measurable residual disease (MRD) in acute myeloid leukemia (AML) is considered to be an independent predictor of relapse and poorer survival outcomes. MRD can be measured by flow cytometric, quantitative PCR, and NGS-based assays at varying sensitivities. There is scant Indian data on different aspects of MFC-MRD in AML including analysis strategies as well as molecular spectrum, clinical correlation, etc. This retrospective observational study included all newly diagnosed patients of acute myeloid leukemia in whom complete baseline diagnostic workup was available including flow cytometry and cytogenetic and molecular studies. Among patients with cytogenetic abnormalities (n = 25), no statistically significant correlation was observed between flow cytometric MRD positivity and presence of ≥ 3 mutations as well as relapsed disease. However, in AML patients with normal karyotype (n = 32), MRD positivity correlated strongly with relapsed status (p = 0.02), although no significant correlation was found with respect to FLT3 mutation, IDH mutation, NPM1 mutation, or complex genotype. Interestingly, 90.5% of MRD-positive patients belonged to ELN (2017) intermediate to high-risk category unlike only 9.5% in the good risk category (p = 0.0002). Median relapse-free survival was 8.5 months with a follow-up range of 3-24 months. On the basis of the observations of the present study, it can be clearly inferred that MRD status affects relapse status in the normal karyotype subgroup and can delineate patients who require stem cell transplantation in addition to molecular signatures.
Collapse
Affiliation(s)
- Neha Singh
- Hematopathology, Tata Memorial Center, Varanasi, India.
| | - Avinash Gupta
- Hematopathology, Tata Memorial Center, Varanasi, India
| | - Sujeet Kumar
- Adult Hematolymphoid Unit, Tata Memorial Center, Varanasi, India
| | | | - Bhumika Gupta
- Hematopathology, Tata Memorial Center, Varanasi, India
| | - Nilesh Dhole
- Hematopathology, Tata Memorial Center, Varanasi, India
| | | | - Anil Singh
- Adult Hematolymphoid Unit, Tata Memorial Center, Varanasi, India
| |
Collapse
|
36
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
37
|
Canali A, Vergnolle I, Bertoli S, Largeaud L, Nicolau ML, Rieu JB, Tavitian S, Huguet F, Picard M, Bories P, Vial JP, Lechevalier N, Béné MC, Luquet I, Mansat-De Mas V, Delabesse E, Récher C, Vergez F. Prognostic Impact of Unsupervised Early Assessment of Bulk and Leukemic Stem Cell Measurable Residual Disease in Acute Myeloid Leukemia. Clin Cancer Res 2023; 29:134-142. [PMID: 36318706 DOI: 10.1158/1078-0432.ccr-22-2237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Acute myeloid leukemias (AML) are clonal diseases that develop from leukemic stem cells (LSC) that carry an independent prognostic impact on the initial response to induction chemotherapy, demonstrating the clinical relevance of LSC abundance in AML. In 2018, the European LeukemiaNet published recommendations for the detection of measurable residual disease (Bulk MRD) and suggested the exploration of LSC MRD and the use of multiparametric displays. EXPERIMENTAL DESIGN We evaluated the performance of unsupervised clustering for the post-induction assessment of bulk and LSC MRD in 155 patients with AML who received intensive conventional chemotherapy treatment. RESULTS The median overall survival (OS) for Bulk+ MRD patients was 16.7 months and was not reached for negative patients (HR, 3.82; P < 0.0001). The median OS of LSC+ MRD patients was 25.0 months and not reached for negative patients (HR, 2.84; P = 0.001). Interestingly, 1-year (y) and 3-y OS were 60% and 39% in Bulk+, 91% and 52% in Bulk-LSC+ and 92% and 88% in Bulk-LSC-. CONCLUSIONS In this study, we confirm the prognostic impact of post-induction multiparametric flow cytometry Bulk MRD in patients with AML. Focusing on LSCs, we identified a group of patients with negative Bulk MRD but positive LSC MRD (25.8% of our cohort) with an intermediate prognosis, demonstrating the interest of MRD analysis focusing on leukemic chemoresistant subpopulations.
Collapse
Affiliation(s)
- Alban Canali
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Inès Vergnolle
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Laetitia Largeaud
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Marie-Laure Nicolau
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Baptiste Rieu
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Muriel Picard
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Pierre Bories
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean Philippe Vial
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Nicolas Lechevalier
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Marie Christine Béné
- Laboratoire d'Hématologie, CHU de Nantes, Nantes, CRCI²NA INSERM UMR1307, CNRS UMR 6075, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - François Vergez
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| |
Collapse
|
38
|
Blachly JS, Walter RB, Hourigan CS. The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica 2022; 107:2810-2822. [PMID: 36453518 PMCID: PMC9713561 DOI: 10.3324/haematol.2022.282034] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Considerable progress has been made in the past several years in the scientific understanding of, and available treatments for, acute myeloid leukemia (AML). Achievement of a conventional remission, evaluated cytomorphologically via small bone marrow samples, is a necessary but not sufficient step toward cure. It is increasingly appreciated that molecular or immunophenotypic methods to identify and quantify measurable residual disease (MRD) - populations of leukemia cells below the cytomorphological detection limit - provide refined information on the quality of response to treatment and prediction of the risk of AML recurrence and leukemia-related deaths. The principles and practices surrounding MRD remain incompletely determined however and the genetic and immunophenotypic heterogeneity of AML may prevent a one-sizefits- all approach. Here, we review the current approaches to MRD testing in AML, discuss strengths and limitations, highlight recent technological advances that may improve such testing, and summarize ongoing initiatives to generate the clinical evidence needed to advance the use of MRD testing in patients with AML.
Collapse
Affiliation(s)
- James S. Blachly
- Division of Hematology/Department of Medicine, The Ohio State University - The James Comprehensive Cancer Center, Columbus, OH,Department of Biomedical Informatics, The Ohio State University, Columbus, OH,J.S. Blachly
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA,Department of Epidemiology, University of Washington, Seattle, WA
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Pessach I, Spyropoulos T, Lamprianidou E, Kotsianidis I. MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers (Basel) 2022; 14:cancers14174294. [PMID: 36077826 PMCID: PMC9454571 DOI: 10.3390/cancers14174294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Measurable residual disease (MRD) is emerging as an important prognostic and predictive biomarker in acute myeloid leukemia (AML). However, its use is currently hampered by the disparity and lack of harmonization between the available MRD methodologies. In addition, the current assessment of MRD in AML focuses only on the quantification of the residual leukemic burden, without addressing the parallel alterations of the antineoplastic immune response that can critically affect the course and outcome of AML, often despite MRD persistence. Incorporating parameters of immune competence provides more consistency with the biological concept of MRD and may lead to higher accuracy. Multiparameter flow cytometry (MFC) is a highly efficacious and sensitive technology for the thorough and synchronous investigation of the kinetics of both antitumor immunity and the leukemic clone. MFC-based MRD provides the platform for the development of a composite leukemia- and immune-based biomarker which can outcompete the current MRD assessment. Abstract Acute myeloid leukemia (AML) is a heterogeneous group of clonal myeloid disorders characterized by intrinsic molecular variability. Pretreatment cytogenetic and mutational profiles only partially inform prognosis in AML, whereas relapse is driven by residual leukemic clones and mere morphological evaluation is insensitive for relapse prediction. Measurable residual disease (MRD), an independent post-diagnostic prognosticator, has recently been introduced by the European Leukemia Net as a new outcome definition. However, MRD techniques are not yet standardized, thus precluding its use as a surrogate endpoint for survival in clinical trials and MRD-guided strategies in real-life clinical practice. AML resistance and relapse involve a complex interplay between clonal and immune cells, which facilitates the evasion of the leukemic clone and which is not taken into account when merely quantifying the residual leukemia. Multiparameter flow cytometry (MFC) offers the possibility of capturing an overall picture of the above interactions at the single cell level and can simultaneously assess the competence of anticancer immune response and the levels of residual clonal cells. In this review, we focus on the current status of MFC-based MRD in diverse AML treatment settings and introduce a novel perspective of combined immune and leukemia cell profiling for MRD assessment in AML.
Collapse
Affiliation(s)
- Ilias Pessach
- Department of Hematology, Athens Medical Center, 11634 Athens, Greece
| | - Theodoros Spyropoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece
- Correspondence: or ; Tel.: +30-25-5103-0320; Fax: +30-25-5107-6154
| |
Collapse
|
40
|
Wästerlid T, Cavelier L, Haferlach C, Konopleva M, Fröhling S, Östling P, Bullinger L, Fioretos T, Smedby KE. Application of precision medicine in clinical routine in haematology-Challenges and opportunities. J Intern Med 2022; 292:243-261. [PMID: 35599019 PMCID: PMC9546002 DOI: 10.1111/joim.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Precision medicine is revolutionising patient care in cancer. As more knowledge is gained about the impact of specific genetic lesions on diagnosis, prognosis and treatment response, diagnostic precision and the possibility for optimal individual treatment choice have improved. Identification of hallmark genetic aberrations such as the BCR::ABL1 gene fusion in chronic myeloid leukaemia (CML) led to the rapid development of efficient targeted therapy and molecular follow-up, vastly improving survival for patients with CML during recent decades. The assessment of translocations, copy number changes and point mutations are crucial for the diagnosis and risk stratification of acute myeloid leukaemia and myelodysplastic syndromes. Still, the often heterogeneous and complex genetic landscape of haematological malignancies presents several challenges for the implementation of precision medicine to guide diagnosis, prognosis and treatment choice. This review provides an introduction and overview of the important molecular characteristics and methods currently applied in clinical practice to guide clinical decision making in haematological malignancies of myeloid and lymphoid origin. Further, experimental ways to guide the choice of targeted therapy for refractory patients are reviewed, such as functional precision medicine using drug profiling. An example of the use of pipeline studies where the treatment is chosen according to the molecular characteristics in rare solid malignancies is also provided. Finally, the future opportunities and remaining challenges of precision medicine in the real world are discussed.
Collapse
Affiliation(s)
- Tove Wästerlid
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Marina Konopleva
- Department of Leukemia, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) Berlin Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Science for Life Laboratory, Lund University and Clinical Genomics Lund, Lund, Sweden
| | - Karin E Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Azenkot T, Jonas BA. Clinical Impact of Measurable Residual Disease in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14153634. [PMID: 35892893 PMCID: PMC9330895 DOI: 10.3390/cancers14153634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Advances in immunophenotyping and molecular techniques have allowed for the development of more sensitive diagnostic tests in acute leukemia. These techniques can identify low levels of leukemic cells (quantified as 10−4 to 10−6 ratio to white blood cells) in patient samples. The presence of such low levels of leukemic cells, termed “measurable/minimal residual disease” (MRD), has been shown to be a marker of disease burden and patient outcomes. In acute lymphoblastic leukemia, new agents are highly effective at eliminating MRD for patients whose leukemia progressed despite first line therapies. By comparison, the role of MRD in acute myeloid leukemia is less clear. This commentary reviews select data and remaining questions about the clinical application of MRD to the treatment of patients with acute myeloid leukemia. Abstract Measurable residual disease (MRD) has emerged as a primary marker of risk severity and prognosis in acute myeloid leukemia (AML). There is, however, ongoing debate about MRD-based surveillance and treatment. A literature review was performed using the PubMed database with the keywords MRD or residual disease in recently published journals. Identified articles describe the prognostic value of pre-transplant MRD and suggest optimal timing and techniques to quantify MRD. Several studies address the implications of MRD on treatment selection and hematopoietic stem cell transplant, including patient candidacy, conditioning regimen, and transplant type. More prospective, randomized studies are needed to guide the application of MRD in the treatment of AML, particularly in transplant.
Collapse
Affiliation(s)
- Tali Azenkot
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Brian A. Jonas
- Division of Cellular Therapy, Bone Marrow Transplant, and Malignant Hematology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-916-734-3772
| |
Collapse
|
42
|
Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine. Cancers (Basel) 2022; 14:cancers14153576. [PMID: 35892834 PMCID: PMC9332730 DOI: 10.3390/cancers14153576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The prognostic value of measurable residual disease (MRD) by flow cytometry in acute myeloid leukemia (AML) patients treated with non-intensive therapy is relatively unexplored. The clinical value of MRD threshold below 0.1% is also unknown after non-intensive therapy. In this study, MRD to a sensitivity of 0.01% was analyzed in sixty-three patients in remission after azacitidine/venetoclax treatment. Multivariable cox regression analysis identified prognostic factors associated with cumulative incidence of relapse (CIR), progression-free survival (PFS) and overall survival (OS). Patients who achieved MRD < 0.1% had a lower relapse rate than those who were MRD ≥ 0.1% at 18 months (13% versus 57%, p = 0.006). Patients who achieved an MRD-negative CR had longer median PFS and OS (not reached and 26.5 months) than those who were MRD-positive (12.6 and 10.3 months, respectively). MRD < 0.1% was an independent predictor for CIR, PFS, and OS, after adjusting for European Leukemia Net (ELN) risk, complex karyotype, and transplant (HR 5.92, 95% CI 1.34−26.09, p = 0.019 for PFS; HR 2.60, 95% CI 1.02−6.63, p = 0.046 for OS). Only an MRD threshold of 0.1%, and not 0.01%, was predictive for OS. Our results validate the recommended ELN MRD cut-off of 0.1% to discriminate between patients with improved CIR, PFS, and OS after azacitidine/venetoclax therapy.
Collapse
|