1
|
Hamid MWA, Bin Abd Majid R, Victor Ernest VFK, Mohamed Shakrin NNS, Mohamad Hamzah F, Haque M. A Narrative Review of Acanthamoeba Isolates in Malaysia: Challenges in Infection Management and Natural Therapeutic Advancements. Cureus 2024; 16:e72851. [PMID: 39493340 PMCID: PMC11530292 DOI: 10.7759/cureus.72851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Acanthamoeba, a free-living amoeba (FLA) found in diverse ecosystems, poses significant health risks globally, particularly in Malaysia. It causes severe infectious diseases, e.g., Acanthamoeba keratitis (AK), primarily affecting individuals who wear contact lenses, along with granulomatous amoebic encephalitis (GAE), a rare but often life-threatening condition among immunocompromised individuals. AK has become increasingly prevalent in Malaysia and is linked to widespread environmental contamination and improper contact lens hygiene. Recent studies highlight Acanthamoeba's capacity to serve as a "Trojan horse" for amoeba-resistant bacteria (ARBs), contributing to hospital-associated infections (HAIs). These symbiotic relationships and the resilience of Acanthamoeba cysts make treatment challenging. Current diagnostic methods in Malaysia rely on microscopy and culture, though molecular procedures like polymerase chain reaction (PCR) are employed for more precise detection. Treatment options remain limited due to the amoeba's cyst resistance to conventional therapies. However, recent advancements in natural therapeutics, including using plant extracts such as betulinic acid from Pericampylus glaucus and chlorogenic acid from Lonicera japonica, have shown promising in vitro results. Additionally, nanotechnology applications, mainly using gold and silver nanoparticles to enhance drug efficacy, are emerging as potential solutions. Further, in vivo studies and clinical trials must validate these findings. This review highlights the requirement for continuous research, public health strategies, and interdisciplinary collaboration to address the growing threat of Acanthamoeba infections in Malaysia while exploring the country's rich biodiversity for innovative therapeutic solutions.
Collapse
Affiliation(s)
| | - Roslaini Bin Abd Majid
- Medical Parasitology and Entomology, National Defence University of Malaysia, Kuala Lumpur, MYS
| | | | | | - Firdaus Mohamad Hamzah
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
2
|
Wang F, Xu Y, Zhou Q, Xie L. Biomolecule-based hydrogels as delivery systems for limbal stem cell transplantation: A review. Int J Biol Macromol 2024; 280:135778. [PMID: 39304050 DOI: 10.1016/j.ijbiomac.2024.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Limbal stem cell deficiency (LSCD) is a complex disease of the cornea resulting from dysfunction and/or loss of limbal stem cells (LSCs) and their niche. Most patients with LSCD cannot be treated by conventional corneal transplants because the donor tissue lacks the LSCs necessary for corneal epithelial regeneration. Successful treatment of LSCD depends on effective stem cell transplantation to the ocular surface for replenishment of the LSC reservoir. Thus, stem cell therapies employing carrier substrates for LSCs have been widely explored. Hydrogel biomaterials have many favorable characteristics, including hydrophilicity, flexibility, cytocompatibility, and optical properties suitable for the transplantation of LSCs. Therefore, due to these properties, along with the necessary signals for stem cell proliferation and differentiation, hydrogels are ideal carrier substrates for LSCD treatment. This review summarizes the use of different medical-type hydrogels in LSC transplantation from 2001 to 2024. First, a brief background of LSCD is provided. Then, studies that employed various hydrogel scaffolds as LSC carriers are highlighted to provide a multimodal strategic reference for LSCD treatment. Finally, an analysis of prospective future developments and challenges in the field of hydrogels as LSC carriers for treating LSCD is presented.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Yuehe Xu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| |
Collapse
|
3
|
Haapanen S, Barker H, Carta F, Supuran CT, Parkkila S. Novel Drug Screening Assay for Acanthamoeba castellanii and the Anti-Amoebic Effect of Carbonic Anhydrase Inhibitors. J Med Chem 2024; 67:152-164. [PMID: 38150360 PMCID: PMC10788897 DOI: 10.1021/acs.jmedchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
| | - Harlan Barker
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Fabrizio Carta
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Claudiu T. Supuran
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Seppo Parkkila
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
4
|
Hernández-Martínez D, Castro Pot E, Hernández Olmos P, Guzmán Hernández EA, Cobos DS, Villa Ramírez S, Villamar Duque TE, Durán Díaz Á, Omaña-Molina M. Acanthamoeba castellanii trophozoites that survive multipurpose solutions are able to adhere to cosmetic contact lenses, increasing the risk of infection. Heliyon 2023; 9:e19599. [PMID: 37809484 PMCID: PMC10558846 DOI: 10.1016/j.heliyon.2023.e19599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Amoebae of the genus Acanthamoeba are etiological agents of amoebic keratitis, for which up to now there is no treatment of choice and one of its main risk factors is the use of contact lenses, including cosmetic contact lenses. Recently there has been an increase in amoebic keratitis cases due to the use of cosmetic contact lenses. Therefore, having a solution for the care of lenses with an efficient disinfectant effect that prevents the adhesion of trophozoites to lenses becomes essential. This study was carried out to determine the effect of 8 multipurpose contact lenses care solutions on Acanthamoeba castellanii trophozoites viability, and the efficiency of two of them to prevent the trophozoites adherence onto two cosmetic contact lenses (Acuvue 2, approved by the US Food and Drug Administration, and Magic Eye CCL, not approved). After 3 h of interaction, only AO Sept Plus, OPTI FREE Replenish, Renu Plus, Bio True and Multiplus significantly reduced the number of viable trophozoites with respect to the control; at 6 h Renu Plus, and at 12 h Conta Soft Plus and Multiplus, maintained the inhibitory effect. Only Opti Free Pure Moist did not significantly reduce the number of viable trophozoites. Multiplus and Opti Free Pure Moist (selected for their greater and lesser antiamibic effect) significantly reduced trophozoite adherence to both lenses; however, Opti Free Pure Moist was more efficient, despite the fact that A. castellanii adhered similarly to both lenses. Our results show that in all the multipurpose solutions evaluated, hundreds of viable A. castellanii trophozoites remain after several hours of incubation. Therefore, storage of the lenses in their case with MPS maintains the potential risk of amoebic keratitis in, cosmetic contact lenses wearers. Moreover, the use of CCL, not approved by the FDA, can increase the risk factor for AK since its poor manufacture can favor the permanence of amoebae, in addition to being a risk for corneal integrity.
Collapse
Affiliation(s)
- Dolores Hernández-Martínez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Edson Castro Pot
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Perla Hernández Olmos
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | | | - David Segura Cobos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Sandra Villa Ramírez
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Tomás Ernesto Villamar Duque
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Ángel Durán Díaz
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Maritza Omaña-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| |
Collapse
|
5
|
Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front Microbiol 2023; 14:1147077. [PMID: 37089530 PMCID: PMC10113681 DOI: 10.3389/fmicb.2023.1147077] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. Acanthamoeba usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease. Acanthamoeba can infect several human body tissues such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract, especially when the tissue barriers are damaged. Furthermore, serious infections can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin, and lung infections. With an increasing number of Acanthamoeba infections in recent years, the pathogenicity of Acanthamoeba is becoming more relevant to mainstream clinical care. This review article will describe the etiological characteristics of Acanthamoeba infection in detail from the aspects of biological characteristic, classification, disease, and pathogenic mechanism in order to provide scientific basis for the diagnosis, treatment, and prevention of Acanthamoeba infection.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Linzhe Jiang
- General Surgery, Jilin People’s Hospital, Jilin City, China
| | - Yitong Zhao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Xiaohong Ju
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Le Wang
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Liang Jin
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Ryan D. Fine
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mingguang Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
- *Correspondence: Mingguang Li,
| |
Collapse
|
6
|
Campolo A, Pifer R, Walters R, Thomas M, Miller E, Harris V, King J, Rice CA, Shannon P, Patterson B, Crary M. Acanthamoeba spp. aggregate and encyst on contact lens material increasing resistance to disinfection. Front Microbiol 2022; 13:1089092. [PMID: 36601401 PMCID: PMC9806144 DOI: 10.3389/fmicb.2022.1089092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Acanthamoeba keratitis is often caused when Acanthamoeba contaminate contact lenses and infect the cornea. Acanthamoeba is pervasive in the environment as a motile, foraging trophozoite or biocide-resistant and persistent cyst. As contact lens contamination is a potential first step in infection, we studied Acanthamoeba's behavior and interactions on different contact lens materials. We hypothesized that contact lenses may induce aggregation, which is a precursor to encystment, and that aggregated encystment would be more difficult to disinfect than motile trophozoites. Methods Six clinically and/or scientifically relevant strains of Acanthamoeba (ATCC 30010, ATCC 30461, ATCC 50370, ATCC 50702, ATCC 50703, and ATCC PRA-115) were investigated on seven different common silicone hydrogel contact lenses, and a no-lens control, for aggregation and encystment for 72 h. Cell count and size were used to determine aggregation, and fluorescent staining was used to understand encystment. RNA seq was performed to describe the genome of Acanthamoeba which was individually motile or aggregated on different lens materials. Disinfection efficacy using three common multi-purpose solutions was calculated to describe the potential disinfection resistance of trophozoites, individual cysts, or spheroids. Results Acanthamoeba trophozoites of all strains examined demonstrated significantly more aggregation on specific contact lens materials than others, or the no-lens control. Fluorescent staining demonstrated encystment in as little as 4 hours on contact lens materials, which is substantially faster than previously reported in natural or laboratory settings. Gene expression profiles corroborated encystment, with significantly differentially expressed pathways involving actin arrangement and membrane complexes. High disinfection resistance of cysts and spheroids with multi-purpose solutions was observed. Discussion Aggregation/encystment is a protective mechanism which may enable Acanthamoeba to be more disinfection resistant than individual trophozoites. This study demonstrates that some contact lens materials promote Acanthamoeba aggregation and encystment, and Acanthamoeba spheroids obstruct multi-purpose solutions from disinfecting Acanthamoeba.
Collapse
Affiliation(s)
| | - Reed Pifer
- Alcon Research, LLC, Fort Worth, TX, United States
| | | | - Megan Thomas
- Alcon Research, LLC, Fort Worth, TX, United States
| | - Elise Miller
- Alcon Research, LLC, Fort Worth, TX, United States
| | | | - Jamie King
- Alcon Research, LLC, Fort Worth, TX, United States
| | - Christopher A. Rice
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States,Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, IN, United States,Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, IN, United States
| | - Paul Shannon
- Alcon Research, LLC, Fort Worth, TX, United States
| | | | - Monica Crary
- Alcon Research, LLC, Fort Worth, TX, United States,*Correspondence: Monica Crary,
| |
Collapse
|
7
|
Kennedy SM, Deshpande P, Gallagher AG, Horsburgh MJ, Allison HE, Kaye SB, Wellings DA, Williams RL. Amoebicidal Activity of Poly-Epsilon-Lysine Functionalized Hydrogels. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 34994769 PMCID: PMC8742527 DOI: 10.1167/iovs.63.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0–2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid–Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Stephnie M Kennedy
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Pallavi Deshpande
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew G Gallagher
- SpheriTech Ltd, The Heath Business and Technical Park, Runcorn, Cheshire, United Kingdom
| | - Malcolm J Horsburgh
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Heather E Allison
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen B Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Donald A Wellings
- SpheriTech Ltd, The Heath Business and Technical Park, Runcorn, Cheshire, United Kingdom
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Ţălu Ş. Advanced morphological analysis of siloxane-hydrogel contact lenses. Microsc Res Tech 2021; 84:2702-2715. [PMID: 34036670 DOI: 10.1002/jemt.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
The purpose of this work is to provide a better understanding of three-dimensional (3-D) surface texture of siloxane-hydrogel contact lenses (CLs) using atomic force microscopy (AFM) and stereometric analysis. The 3-D surface texture characterization of unworn/worn siloxane-hydrogel CLs made of Filcon V (I FDA group) was performed with stereometric analysis. The atomic force microscopy (AFM) measurements of surface roughness and micromorphology of CLs were made using a Nanoscope V MultiMode (Bruker) in intermittent-contact mode, in air, on square areas of 5 × 5 μm. Stereometric study of 3-D surface texture was made according with ISO 25178-2:2012 for CLrins (taken from the blister and rinsed with deionized water); CLss (preserved for 12 hr in saline solution and rinsed with deionized water); CLworn-smooth (worn for 8 hr and presenting the smooth type morphology), and CLworn-sharp (worn for 8 hr and presenting the sharp-type morphology). The 3-D surface texture of siloxane-hydrogel CLs was found to have specific morphological characteristics. Statistical parameters revealed local geometrical and morphological spatial structures at nanometer scale attributed to the specific interactions at the CLs surface. Before wear, the surface micromorphology of Filcon V CLs is regular with uniformly distributed microasperities and relatively small heights (Sq = 0.6 nm). After 12 hr in saline, it is found that the micromorphology changes relatively easily, but retaining the main morphological characteristics (Sq = 1.2 nm). After 8 hr of wear, there are two typical micromorphologies: smooth type, characterized by gutter structures and isolated microasperities (Sq = 2.5 nm), while the sharp type has an appearance with compactly arranged microasperities of hill type flanked by compactly arranged microregions of valley type (Sq = 2.2 nm). Surface statistical parameters allow manufacturers in developing the next generation of CLs with improved surface texture while improving biocompatibility and minimizing the impact of the material on corneal physiology. Furthermore, the micro-elastohydrodynamic lubrication due to surface texture at a nanometer scale between the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid can be deeper and more nuanced to understand in light of modern tribological theories.
Collapse
Affiliation(s)
- Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
9
|
The role of Acanthamoeba spp. in biofilm communities: a systematic review. Parasitol Res 2021; 120:2717-2729. [PMID: 34292376 DOI: 10.1007/s00436-021-07240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Acanthamoeba spp. have always caused disease in immunosuppressed patients, but since 1986, they have become a worldwide public health issue by causing infection in healthy contact lens wearers. Amoebae of the Acanthamoeba genus are broadly distributed in nature, living either freely or as parasites, and are frequently associated with biofilms throughout the environment. These biofilms provide the parasite with protection against external aggression, thus favoring its increased pathogeny. This review aims to assess observational studies on the association between Acanthamoeba spp. and biofilms, opening potential lines of research on this severe ocular infection. A systematic literature search was conducted in May 2020 in the following databases: PubMed Central®/Medline, LILACS, The Cochrane Library, and EMBASE®. The studies were selected following the inclusion and exclusion criteria specifically defined for this review. Electronic research recovered 353 publications in the literature. However, none of the studies met the inclusion criterion of biofilm-producing Acanthamoeba spp., inferring that the parasite does not produce biofilms. Nonetheless, 78 studies were classified as potentially included regarding any association of Acanthamoeba spp. and biofilms. These studies were allocated across six different locations (hospital, aquatic, ophthalmic and dental environments, biofilms produced by bacteria, and other places). Acanthamoeba species use biofilms produced by other microorganisms for their benefit, in addition to them providing protection to and facilitating the dissemination of pathogens residing in them.
Collapse
|
10
|
Silver Nanoparticles Conjugated with Contact Lens Solutions May Reduce the Risk of Acanthamoeba Keratitis. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050583. [PMID: 34064555 PMCID: PMC8151187 DOI: 10.3390/pathogens10050583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Acanthamoeba keratitis (AK), a severe sight-threatening corneal infection, has become a significant medical problem, especially among contact lens wearers. The disease manifests as eye pain, congestion, blurred vision, lachrymation, and ring-shaped infiltrates of the cornea, and can lead to permanent blindness. Inappropriate habits of contact lens users may result in an increased risk of AK infection. The anti-amoebic efficiency of popular multipurpose contact lens solutions is insufficient to reduce this risk. An effective and non-toxic therapy against AK has not yet been developed. The prevention of AK is crucial to reduce the number of AK infections. Nanoparticles are known to be active agents against bacteria, viruses, and fungi and were also recently tested against protozoa, including Acanthamoeba spp. In our previous studies, we proved the anti-amoebic and anti-adhesive activity of silver nanoparticles against Acanthamoeba castellanii. The aim of this study is to evaluate the activity, cytotoxicity, and anti-adhesive properties of silver nanoparticles conjugated with five commonly used multipurpose contact lens solutions against the Acanthamoeba castellanii NEFF strain. The obtained results show a significant increase in anti-amoebic activity, without increasing the overall cytotoxicity, of Solo Care Aqua and Opti Free conjugated with nanoparticles. The adhesion of Acanthamoeba trophozoites to the contact lens surface is also significantly reduced. We conclude that low concentrations of silver nanoparticles can be used as an ingredient in contact lens solutions to decrease the risk of Acanthamoeba keratitis infection.
Collapse
|
11
|
Lacerda AG, Lira M. Acanthamoeba
keratitis: a review of biology, pathophysiology and epidemiology. Ophthalmic Physiol Opt 2020; 41:116-135. [DOI: 10.1111/opo.12752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/13/2023]
Affiliation(s)
| | - Madalena Lira
- Centre of Physics University of Minho Braga Portugal
| |
Collapse
|
12
|
Jones L, Walsh K, Willcox M, Morgan P, Nichols J. The COVID-19 pandemic: Important considerations for contact lens practitioners. Cont Lens Anterior Eye 2020; 43:196-203. [PMID: 32273245 PMCID: PMC7129028 DOI: 10.1016/j.clae.2020.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 01/08/2023]
Abstract
A novel coronavirus (CoV), the Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2), results in the coronavirus disease 2019 (COVID-19). As information concerning the COVID-19 disease continues to evolve, patients look to their eye care practitioners for accurate eye health guidance. There is currently no evidence to suggest an increased risk of contracting COVID-19 through contact lens (CL) wear compared to spectacle lens wear and no scientific evidence that wearing standard prescription spectacles provides protection against COVID-19 or other viral transmissions. During the pandemic there will potentially be significant changes in access to local eyecare. Thus, it is imperative CL wearers are reminded of the steps they should follow to minimise their risk of complications, to reduce their need to leave isolation and seek care. Management of adverse events should be retained within optometric systems if possible, to minimise the impact on the wider healthcare service, which will be stretched. Optimal CL care behaviours should be the same as those under normal circumstances, which include appropriate hand washing (thoroughly with soap and water) and drying (with paper towels) before both CL application and removal. Daily CL cleaning and correct case care for reusable CL should be followed according to appropriate guidelines, and CL exposure to water must be avoided. Where the availability of local clinical care is restricted, practitioners could consider advising patients to reduce or eliminate sleeping in their CL (where patients have the appropriate knowledge about correct daily care and access to suitable lens-care products) or consider the option of moving patients to daily disposable lenses (where patients have appropriate lens supplies available). Patients should also avoid touching their face, including their eyes, nose and mouth, with unwashed hands and avoid CL wear altogether if unwell (particularly with any cold or flu-like symptoms).
Collapse
Affiliation(s)
- Lyndon Jones
- School of Optometry & Vision Science, Centre for Ocular Research & Education (CORE), University of Waterloo, Waterloo, Ontario, Canada.
| | - Karen Walsh
- Centre for Ocular Research & Education (CORE), University of Waterloo, Waterloo, Ontario, Canada.
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW, Sydney, Australia.
| | | | - Jason Nichols
- University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Hendiger EB, Padzik M, Sifaoui I, Reyes-Batlle M, López-Arencibia A, Rizo-Liendo A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Chiboub O, Rodríguez-Expósito RL, Grodzik M, Pietruczuk-Padzik A, Stępień K, Olędzka G, Chomicz L, Piñero JE, Lorenzo-Morales J. Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis. Pathogens 2020; 9:pathogens9050350. [PMID: 32380785 PMCID: PMC7281428 DOI: 10.3390/pathogens9050350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide has been increasing every year. Moreover, 90% of Acanthamoeba keratitis cases are related to contact lens use. Wearing and storage contact lenses not in accordance with the physicians and manufacturers recommendations are the primary key risk factors of this disease. Amoebae can easily adhere to the contact lens surface and transmit to the corneal epithelium. Preventing amoebae adhesion to the contact lens surface could significantly decrease the number of AK infections. Until now, the effective therapy against AK is still under development. Currently proposed therapies are mainly limited to the chlorhexidine digluconate combined with propamidine isethionate or hexamidine applications, which are insufficient and very toxic to the eye. Due to lack of effective treatment, looking for new potential preventive agents is crucial to decrease the number of Acanthamoeba keratitis infections, especially among contact lens users. Nanoparticles have been already included in several novel therapies against bacteria, viruses, fungi, and protist. However, their anti-amoebic potential has not been fully tested yet. The aim of this study was to assess silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) anti-amoebic activity and influence on the amoebae adhesion to the surface of four different groups of contact lenses-classified according to the Food and Drugs Administration (FDA) guidelines. The obtained results show that both tested nanoparticles were effective against Acanthamoeba trophozoites and decreased the amoebae adhesion to the contact lens surface. AgNPs showed better anti-amoebic activity to cytotoxicity dependence and reduced amoebae adhesion in a wider spectrum of the tested contact lenses. Our studies also confirmed that ionization next to hydration of the contact lens material is a crucial parameter influencing the Acanthamoeba adhesion to the contact lens surface. In conclusion, silver nanoparticles might be considered as a novel preventive agent against Acanthamoeba keratitis infection.
Collapse
Affiliation(s)
- Edyta B. Hendiger
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - Marcin Padzik
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
- Correspondence: ; Tel.: +48-503-151-318
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
- Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, 2070 Carthage, Tunisia
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Pietruczuk-Padzik
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (A.P.-P.); (K.S.)
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; (A.P.-P.); (K.S.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - Lidia Chomicz
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (G.O.); (L.C.)
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias and Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain; (E.B.H.); (I.S.); (M.R.-B.); (A.L.-A.); (A.R.-L.); (C.J.B.-E.); (D.S.N.-H.); (O.C.); (R.L.R.-E.); (J.E.P.); (J.L.-M.)
| |
Collapse
|
14
|
Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations Between Solution Components, Keratitis, and Contact Lens Discomfort. Eye Contact Lens 2018; 44:355-366. [DOI: 10.1097/icl.0000000000000458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abstract
BACKGROUND This study aimed to evaluate the adhesion of Acanthamoeba trophozoites on cosmetic contact lenses (CLs) with and without CL care multipurpose solution (MPS) treatment. METHODS Acanthamoeba lugdunensis L3a trophozoites were inoculated onto disks trimmed from CLs: 1-day Acuvue moist, 1-day Acuvue define, Acuvue 2, and Acuvue 2 define. After 18-hour inoculation, the number of adherent trophozoites was counted under phase contrast microscopy. The effects of MPS, Opti-Free Express, soaking CLs for 6 hours, on Acanthamoeba adhesion were analyzed. Scanning electron microscopic examination was performed for assessment of Acanthamoeba attached on the lens surface. RESULTS Acanthamoeba trophozoites showed greater adhesion to cosmetic CL (P = 0.017 for 1-day CL and P = 0.009 for 2-week CL) although there was no significant difference between the types of cosmetic CL. On all lenses, the number of adherent Acanthamoeba was significantly reduced after treatment with MPS (P < 0.001 for 1-day Acuvue moist, P = 0.046 for 1-day Acuvue define, P < 0.001 for Acuvue 2, and P = 0.015 for Acuvue 2 define), but there was still significant difference between conventional and cosmetic CLs (P = 0.003 for 1-day CL and P < 0.001 for 2-week CL, respectively). More attachment of Acanthamoeba was observed on colored area and the acanthopodia of Acanthamoeba was placed on the rough surface of colored area. CONCLUSION Acanthamoeba showed a greater affinity for cosmetic CL and mostly attached on colored area. Although MPS that contained myristamidopropyl dimethylamine reduced the adhesion rate, there was a significant difference between conventional and cosmetic CLs.
Collapse
Affiliation(s)
- Seung Mok Lee
- Department of Geological Science, Pusan National University, Busan, Korea
| | - Ji Eun Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Da In Lee
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hak Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Korea.
| |
Collapse
|
16
|
Lee SM, Jung JW, Lee DH, Park SH, Lee JH, Yu HS, Kim YK, Lee JE. Anti-pseudomonal Effect of a Nephrite-containing Contact Lens Storage Case. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2018. [DOI: 10.3341/jkos.2018.59.8.724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sang Min Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Jae Woo Jung
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Dong Hyun Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Sung Hee Park
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Heon Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Hak Sun Yu
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Yoon Kyung Kim
- Department of Optometry, Busan Women's College, Busan, Korea
| | - Ji-Eun Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
17
|
Effect of Multipurpose Solution Combined With Autophagy Inhibitors on Adhesion of Acanthamoeba trophozoites to Silicone Hydrogel Contact Lenses. Cornea 2017; 36:1538-1543. [DOI: 10.1097/ico.0000000000001340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Jung JW, Lee JH, Park SH, Yu HS, Kim YK, Lee JE. Amoebicidal Effect of Nephrite-containing Contact Lens Storage Case. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.5.509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jae Woo Jung
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Heon Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Sung Hee Park
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hak Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Korea
| | - Yoon Kyung Kim
- Department of Optometry, Busan Women's College, Busan, Korea
| | - Ji-Eun Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|